
A Planner for Composing Services Described in DAML-S

Mithun Sheshagiri
∗

University of Maryland,
Baltimore County
1000 Hilltop Circle

Baltimore, Maryland 21250

mits1@csee.umbc.edu

Marie desJardins
University of Maryland,

Baltimore County
1000 Hilltop Circle

Baltimore, Maryland 21250

mariedj@csee.umbc.edu

Timothy Finin
University of Maryland,

Baltimore County
1000 Hilltop Circle

Baltimore, Maryland 21250

f̃inin@csee.umbc.edu

ABSTRACT
A web service is a web-accessible piece of software or hard-
ware. In recent years, industry has been showing increasing
interest in web services as a technology for building dis-
tributed web applications. However, web services as a tech-
nology lacks in several departments. Representations for
describing web services have been widely investigated by
industry and academia. Service composition-that is, auto-
mated methods for constructing a sequence of web services
to achieve a desired result- has been relatively neglected. We
present in this paper, a planner that composes atomic/basic
services described in DAML-S [4] into a composite service.
We discuss issues involved with the design of planners for
composition. We also propose a set of guidelines for de-
scribing services that facilitates composition.

Keywords
Web Services, Automatic Composition, DAML-S, Planning

1. INTRODUCTION
Web services are a relatively new paradigm for building

distributed web applications. In spite of keen interest shown
by industry in web services, several obstacles have prevented
companies from effectively harnessing web service technol-
ogy to build web applications. One obstacle is the lack
of a set of tools that would allow developers (or intelli-
gent agents) to describe, discover and compose web services.
WSDL [6] is a popular XML-based language for describing
web services, but it does not capture semantics. DAML-S
is an application of DAML+OIL [2] that can be used for
semantic description of web services. DAML-S consists of
a set of ontologies that provide a vocabulary to describe
services. The use of semantics enables inference about the
requirements and effects of services, which in turn facilitates

∗Mithun Sheshagiri is a graduate student at UMBC

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
AAMAS ’03 Melbourne, Australia
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

automatic discovery and reasoning. We have built a plan-
ner that uses STRIPS-style services to compose a plan, given
the goal and a set of basic services. We have used the Java
Expert Shell System (JESS) [7] to implement the planner
and a set of JESS rules that translate DAML-S descriptions
of atomic services into planning operators. Our experience
with building this planner revealed certain desirable proper-
ties of service descriptions that will make composition for a
planner easier. We also stress the importance of developing
ontologies that can capture relationships between services,
which are crucial for composition.

2. RELATED WORK
SWORD [10] is a model for web service composition.

However, it uses its own simple description language and
does not support any existing standards like WSDL or DAML-
S. Services are modeled using inputs and outputs, which are
specified using an Entity Relationship model. Inputs are
classified into conditional inputs and data inputs. Outputs
are classified similarly. Conditional inputs/outputs are as-
sertions about entities on which the service operates and the
relationships between entities. Data inputs/outputs consti-
tute the actual data (attributes of entities) that the service
uses.
The focus of [12] is primarily on information discovery, ex-

traction and integration and does not deal specifically with
web services or automatic composition. This system has
been been designed to work with a specific set of services;
our system is designed to be a generic service composer.
This system describes a forward-chaining composer, spe-
cialized to information integration queries; our system uses
a backward-chaining planner and we plan to build a more
general partial-order planner. Like [10], they have their
own model for describing web services; we specifically deal
with services described in DAML-S.
A similar framework is being developed at IBM Research

Laboratories as part of the Web Services Toolkit (WSTK)
[1]. A composition engine [11] has been built for services
described in WSDL. Although [11] describes the use of a
planner for composition, constructing operators from the
service description is not fully automated. This is primarily
because of the absence of a mechanism to capture domain
knowledge in WSDL. Our planner makes use of services de-
scribed in DAML-S. DAML+OIL helps us to describe ex-
plicit ontologies for capturing domain language. This added
knowledge gives our planner greater versatility and helps
compose complex services.

Golog has been used for service composition [9] by con-
structing general templates that are then modified based
on user preferences, yielding a composite plan. The tem-
plates are not automatically built and constitute part of the
plan. Our approach is able to build plans dynamically from
scratch and does not rely on templates for composition.

3. SERVICE DESCRIPTION USING DAML-
S

DAML-S uses DAML+OIL to describe a set of ontologies
for characterizing web services. DAML-S [3] describes the
following ontologies:

1. A Service ontology that forms the topmost part of a
hierarchy of services.

2. A Service “presents” a ServiceProfile. The ServicePro-
file is typically used for advertising and discovering the
service.

3. A Service “isDescribedBy” a ServiceModel. The Ser-
viceModel contains information required for composi-
tion: inputs, outputs, preconditions and effects (IOPEs).
A ProcessModel is a type of ServiceModel.

4. A Service “supports” a ServiceGrounding. Service-
Grounding provides low-level details like communica-
tion protocols (e.g., RPC, SOAP), ports and descrip-
tions of data structures exchanged. This information
is used by a web service execution engine to actually
invoke services.

The manner in which DAML-S is used is slightly unusual.
Typically when using DAML+OIL, a schema or ontology
is designed and concepts (classes and properties) defined in
this schema are instantiated as a next step. DAML-S uses
an intermediate step where services are described as new
schemas and not instantiated. The actual instantiation of
services is done only during run time. This is analogous to
writing procedures which form the service descriptions and
a call to these procedures creates an instance of this proce-
dure [8]. An atomic service is a directly invocable service
that executes in a single step. An atomic service consists of
inputs, preconditions, effects and outputs. These are defined
as properties in DAML-S specifications.

4. PLANNER
The Service model describes the service and consists of

inputs, preconditions, outputs and effects of services. The
first step in planning a service composition consists of con-
verting DAML-S ServiceModel descriptions of services into
Verb-Subject-Object(VSO) triples. All VSO triples corre-
sponding to the services are asserted into the JESS KB as
facts.
The next step involves building planning operators that

correspond to each of the atomic services. We have written
a set of rules and queries (defrules and defqueries in JESS)
that transform services encoded as VSO triples into a set of
facts that form the planning operator. The planning oper-
ators are similar to STRIPS planning operators and consist
of a service name, inputs, preconditions, outputs and effects.
We characterize inputs and preconditions (IPs) into two

types: external IPs and internal IPs. External IPs are IPs

that are provided directly by the agent or satisfied exter-
nally and are not generated as effects or outputs of other
operators. Internal IPs, on the other hand, can be provided
or satisfied only by other operators/services. For example,
the user provides his/her contact information through some
interface. Therefore, this information is an external IP. Sup-
pose that there is an operator that produces the effect Pro-
filePresent when user fills in his/her profile information. In
this case, ProfilePresent is an internally generated effect;
therefore it is an internal IP if used as a precondition by
another operator.
Outputs and effects as defined by DAML-S specifications

can be conditional: that is, depending on the current state
of the world, the effect or output of a service can be dif-
ferent. It is not necessary for a composer to represent the
control structure for conditional effects and outputs; merely
enumerating them as multiple effects or outputs is sufficient
for composition. The DAML-S website includes a sample
book-buying domain called congo.com, which includes ser-
vice descriptions and ontologies associated with the domain.
Figure 1 shows an example of a service from this domain
that creates an account:

Figure 1: CreateAcct Service described in DAML-S

The equivalent planning operator of the service described
in Figure 1 is the following set of facts:
(sname http://www.csee.umbc.edu/mits1/daml/modCongoProcess.daml#CreateAcct)

(precon http://www.csee.umbc.edu/mits1/daml/modCongoProcess.daml#CreateAcct

nil)

(input http://www.csee.umbc.edu/mits1/daml/modCongoProcess.daml#CreateAcct

http://www.csee.umbc.edu/mits1/daml/modCongoProcess.daml#createAcctInfo)

(effect http://www.csee.umbc.edu/mits1/daml/modCongoProcess.daml#CreateAcct

nil)

(output http://www.csee.umbc.edu/mits1/daml/modCongoProcess.daml#CreateAcct

http://www.csee.umbc.edu/mits1/daml/modCongoProcess.daml#createAcctOutput)

Since the output is unconditional in the above case, we

just have a single output. Now consider an example of a ser-
vice which produces an effect BookPresent if BookInStock is
true or BookAbsent if BookInStock is false. The equivalent
planning operator will have the following effects as follows.

(sname foo)

(input foo BookName)

(effect foo BookPresent)

(effect foo BookAbsent)

Although the service description exposes the BookInStock
condition, its “value” is decided by the input BookName and
therefore not known in advance. Such services are therefore
non-deterministic. The planning operators for these services
show both effects. The actual effect cannot be ascertained
till execution time. We assume the that the effect produced
during execution is the one desired by us. We plan a thor-
ough treatment of this issue in our next version. In cases
where the value of the condition is known in advance, the
planning operators are built using a technique similar to the
“when” clause described in [13]. The approach for condi-
tional ouputs is similar.

(sname S1)

--

(condeffect S1 CE1)

(CE1 FLAGA E1)

(CE1 FLAGB E2) //FLAGA = (¬FLAGB)

The planner applies the following two steps repeatedly
until none of the services satisfy any of the goals.

1. Find services that satisfy existing goal and store them
(add them to the plan).

2. Convert the inputs and preconditions of all the opera-
tors stored in step 1 into new set of goals.

Composition is successful if all outstanding goals are exter-
nal IPs. We have developed a set of atomic services that are
similar to the set of services described for congo.com. The
equivalent planning operators are shown below. For the sake
of readability complete URI’s have not been used.

(sname Login)

(input Login UserName)

(output Login UserType)

(sname GetInfo)

(input GetInfo UserType)

(effect GetInfo ProfileExists)

(effect GetInfo ProfileDoesNotExist)

(sname QueryUser)

(precon QueryUser ProfileDoesNotExist)

(output QueryUser AskUser)

(sname BookLookUp)

(input BookLookUp BookName)

(output BookLookUp ISBN)

(output BookLookUp BookInStock)

(output BookLookUp BookOutOfStock)

(sname PutInCart)

(input PutInCart ISBN)

(precon PutInCart ProfileExists)

(precon PutInCart BookInStock)

(effect PutInCart InCart)

(sname CreditCard)

(input CreditCard CardType)

(input CreditCard CardNum)

(input CreditCard CardExpiryDate)

(effect CreditCard Approved)

(effect CreditCard NotApproved)

(sname ShipItem)

(precon ShipItem InCart)

(precon ShipItem Approved)

(effect ShipItem BookShipped)

(output ShipItem InformUser)

The goal we specify to start composition is BookShipped.
Figure 2 shows the plan generated by the planner. The
light gray rectangles represent external IPs-that is, informa-
tion that must be provided by the user or some external
source such as database. The dark rectangles request inter-
nal IPs-that is, preconditions that are satisfied by effects of
services. The ellipses represent atomic services to be exe-
cuted. The structure of the plan imposes a partial ordering
on the execution of the services. For example, Login must
be executed before GetInfo, but either of these steps can be
executed in parallel with BookLookUp.

5. DESCRIBING SERVICES FOR COMPO-
SITION

Current specifications permit the description of services
without effects or outputs. We claim that it is difficult to
compose services without effects or outputs. A web ser-
vice either provides information (has outputs) or alters the
world (has effects) or both. In either case, the effect or out-
put represents the change in the state of the world that the
execution brings about. A planner uses this information to
form links with other services. If one describes a service
without any effects or outputs, then the change of state is
not made explicit, and therefore a composer would have to
maintain additional data to represent the change of state.
The effects or outputs describe what the service does and
are therefore essential, for composition. Our recommenda-
tion is that DAML-S specifications should be modified to
make specification of outputs or effects mandatory.

6. SERVICE DESCRIPTION AND ADDITIONAL
CONSTRAINTS

The ServiceModel only lets one describe core properties
of services. Non-trivial composition of services from atomic
services involves factors like business logic, changing market
scenarios, temporal dependencies between services. These,
though required, are not (and typically should not be [5])
part of the service.
Consider the example of a book look-up service that takes

a book’s name as input and gives the ISBN number as an
output. Companies A and B sell books and use the book
look-up service to obtain the ISBN. Company A has a policy
that lets any user pose an ISBN request. Company B only

Figure 2: Plan generated by composer

lets users registered with them to use the ISBN look-up.
Company B therefore needs a similar ISBN look-up service
with an additional precondition. Instead of designing a new
service for B, we could provide a generic description of the
service and let B use it as it wants to. Company B could
define their policy using DAML+OIL which specifies addi-
tional constraints on the operator. It is also in the interest
of the service provider to advertise a generic version of the
service to enable varied entities to use it.
We therefore claim that for non-trivial composition, a

combination of a general description of the service and some
additional logic description is required. DAML lets you ex-
press these two parts in a single language and therefore is a
better choice for describing services. WSDL currently pro-
vides a vocabulary that lets you describe just the services;
therefore it is difficult for a system using WSDL alone to
compose a service from atomic services.
The design of our planner is in accordance with the above

principle: the actual planning engine is domain-independent.
The planner can be configured to handle specific domains by
plugging in domain specific ontologies that capture the addi-
tional constraints. The service itself provides a minimal core
set of IOPEs that form the planning operator; additional
knowledge can then be added that uses domain-centric on-
tologies to modify the existing IOPEs.

7. FUTURE WORK
In the near term, we plan to design an ontology that would

let one specify relations among services as a policy, as de-
scribed in the previous section. We also plan to demonstrate
our framework in a pervasive computing environment. In
this domain, the composer might come up with different
plans for the same goal. The agent’s location, speed and
physical limitations determine the best plan; these parame-
ters will be captured as additional knowledge.
The planner we have currently implemented is a proof of

concept, demonstrating that service composition can be per-
formed automatically from DAML-S descriptions of atomic

services. In future work, we plan to develop a more sophisti-
cated planner that can apply planning methods to do service
composition in real-world environments. We have identified
three key challenges in developing such a planner: (1) Se-
lecting among alternative atomic and composed services; (2)
reasoning about interactions between atomic services within
the plan; and (3) interleaving planning and execution dur-
ing service composition. In the following subsections, we
briefly discuss the key issues in each of these areas and our
proposed approach to addressing them.

7.1 Choosing Among Alternatives
Our first version of the planner is a simple backward-

chaining algorithm that assumes that there is always a sin-
gle service that satisfies a given goal. There can easily be
scenarios where a goal can be satisfied by more than one
service. In these cases, choosing an appropriate operator
is an obvious requirement. Composition might succeed or
fail based on the choice of service, since different operators
might have different sets of inputs and preconditions, which
form the new set of goals that need to be satisfied in the
next planning cycle. One possible approach would be to
generate all possible plans, then choose the best alternative
based on user specified criteria such as cost. This technique,
however, is not scalable. An alternative would be to use a
best-first backtracking approach by applying heuristics such
as selecting the operator (service) with the least number
of preconditions or inputs, or selecting operators that have
pre-conditions that are known to be easily satisfiable.

7.2 Reasoning About Interactions
Our current planner does not reason about interactions

between actions within the plan. However, it may be the
case that one action interferes with another (e.g., clearing
out the user’s cookies in between two service invocations on
the same website may delete the necessary authorizations,
requiring more inputs from the user), or that the effects of
a service can be used to satisfy preconditions of more than
one action in the plan (e.g., looking up the title of a book

gives not only the ISBN number to use for ordering the
book, but also the full publication information to enter in
a bibliography being produced elsewhere in the plan). The
partial-order planning and hierarchical task network plan-
ning paradigms both provide models for reasoning about in-
teractions within the plan, and resolving conflicts (or taking
advantage of opportunities).

7.3 Interleaving Planning and Execution
There are two ways to compose and execute a composite

service. In the first approach, planning and execution are
separate. The second, more advanced, approach interleaves
planning and execution. The initial planner we have imple-
mented is an instance of the former approach: the planner
produces a plan assuming that all involved services will be
available and execute normally. The design of the planner
will be different for a framework that supports parallel com-
position and execution. In this case, services are checked for
availability and successful execution before being included
in the final plan. If a service for some reason cannot be
executed, then the execution engine requests an alternative
service from the planner. More generally, the failure to exe-
cute a service could lead to a cascading effect, requiring the
planner to supply an alternative sub-plan. It is not possible
at any stage of the planning process to predict the success of
the plan. Therefore, not all services can be checked by exe-
cuting them; checking can be performed only for idempotent
services that do not alter world state. The advantage of this
framework is its capability to produce plans that are more
likely to be executed successfully compared to the ones pro-
duced by a framework with disconnected composition and
execution. Ideally, the planner would not only be able to
dynamically replan in case a service fails, but generate con-
tingency plans to anticipate such failures.

8. CONCLUSION
The overwhelming interest shown by industry indicates

that web service as a technology is here to stay. However,
a rich set of tools are required to demonstrate its use in
building distributed web applications. We present a planner
for composing services that handles services described in
DAML-S. We also argue that additional logic is required for
composing non-trivial tasks. This can be done by the use of
explicit domain-specific ontologies.

9. REFERENCES
[1] Web Services Toolkit,
http://www.alphaworks.ibm.com/tech/webservicestoolkit,
2000.

[2] DARPA Agent Markup Language,
http://www.daml.org, 2001.

[3] DAML-S Ontologies,
http://www.daml.org/services/0.7, 2002.

[4] A. Ankolenkar, M. Burstein, J. R. Hobbs, O. Lassila,
D. L. Martin, D. McDermott, S. A. McIlraith,
S. Narayanan, M. Paolucci, T. R. Payne, and
K. Sycara. DAML-S: Semantic Markup for Web
Services. In The First International Semantic Web
Conference (ISWC), Sardinia (Italy), 2002.

[5] C. Bussler, A. Maedche, and D. Fensel. A Conceptual
Architecture for Semantic Web Enabled Web Services.
2002.

[6] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. Web Service Description Language,
http://www.w3.org/TR/wsdl, 2001.

[7] E. J. Friedman-Hill. Jess, The Expert System Shell for
the Java Platform, 2002.

[8] D. Martin. Web Services Mailing List,
http://lists.w3.org/Archives/Public/www-
ws/2001Nov/0009.html,
2001.

[9] S. McIlraith and T. Son. Adapting Golog for
Composition of Semantic Web Services. In Proceedings
of the Eighth International Conference on Knowledge
Representation and Reasoning (KR2002), Toulouse,
France, 2002.

[10] S. R. Ponnekanti and A. Fox. SWORD: A Developer
Toolkit for Web Service Composition. In Proc. of the
Eleventh International World Wide Web Conference,
Honolulu, HI, 2002.

[11] B. Srivastava. Automatic Web Services Composition
Using Planning. In Proc. of KBCS 2002, Mumbai,
India, December 2002.

[12] S. Thakkar, C. A. Knoblock, J. L. Ambite, and
C. Shahabi. Dynamically Composing Web Services
from On-line Sources. In Workshop on Intelligent
Service Integration, The Eigth National Conference on
Artificial Intelligence (AAAI), Edmonton, Alberta,
Cananda, 2002.

[13] D. S. Weld. An introduction to least commitment
planning. AI Magazine, 15(4):27–61, 1994.

