Dynamic Service Discovery for Mobile Computing:
Intelligent Agents Meet Jini in the Aether ”

Harry Chen
Department of Computer
Science and Electrical
Engineering
University of Maryland,
Baltimore County
1000 Hilltop Circle, Baltimore,
MD 21250

hchen4@cs.umbc.edu

ABSTRACT

The emergence of ad-hoc pervasive connectivity for devices
based on Bluetooth-like systems provides a new way to cre-
ate applications for mobile systems. We seek to realize ubig-
uitous computing systems based on the cooperation of au-
tonomous, dynamic and adaptive components (hardware as
well as software) which are located in vicinity of one another.
In this paper we present this vision. We also describe a pro-
totype system we have developed that implements parts of
this vision — in particular a system that combines agent ori-
ented and service oriented approaches and provides dynamic
service discovery. We point out why existing systems such
as Jini are not suited for this task, and how our system
improves on them.

General Terms

Design, Experimentation

Categories and Subject Descriptors

J.m [Computer Applications]|: Miscellaneous

Keywords

service discovery, Jini, multi-agent system

1. INTRODUCTION

In the past year or two, the research community has seen
plenty of hype associated with wirelesss, pervasive, mobile
and ubiquitous computing. Mobile Commerce (M-Commerce)
in particular was declared as the “killer app” driving the

*Paper published in Cluster Computing volume 4, issue 4
Special Issue on Internet Scalability: Advances in Parallel,
Distributed, and Mobile Sytems

Anupam Joshi
Department of Computer
Science and Electrical
Engineering
University of Maryland,
Baltimore County
1000 Hilltop Circle, Baltimore,
MD 21250

joshi@cs.umbc.edu

Tim Finin
Department of Computer
Science and Electrical
Engineering
University of Maryland,
Baltimore County
1000 Hilltop Circle, Baltimore,
MD 21250

finin@cs.umbc.edu

wireless revolution. Cell phones and wirelessly connected
PDAS essentially became mobile storefronts for e-tailers. We
are all familiar with the ads of people buying stuff via their
cellphones from the beach. The drawbacks of this idea are
not hard to identify, as an increasing number of recent crit-
ical commentaries show. This approach essentially replaces
the desktop computers with the palmtop devices allowing
users to order goods and access information in an anywhere
and any time fashion. This client-proxy-server approach has
been developed by the academia over the last five or six years
in contexts such as web access from mobile platforms (for
instance [2, 3, 12, 11, 13, 15, 17]) or transaction support for
database access [8].

Variants of this approach are now emerging from several
commercial companies in the form of systems that allow
phone based “microbrowsers” or PDAs to access domain
specific internet content, such as headline news, stocks, sports
etc., from designated portals. The WAP consortium (http:
//waw.wap.com/) is leading efforts among telecommunica-
tion companies and service providers to evolve a standard
mechanism and markup language to support this. There
have also been efforts, mostly from startups and e-tailers, to
allow people to buy goods using the phone microbrowsers or
PDAs. In some sense, one can think of this as a supermarket
approach, where a few identified service providers exist and
the traffic in services is one-way.

Viewed in a broader perspective however, M-Commerce in
particular, and Mobile Computing in general, have yet to
be fully articulated or explored, especially in the context
of emerging mobile ad-hoc networks. Staying with the M-
Commerce idea, but let’s consider to move away from the
prevailing mobile storefront vision. In the future, instead of
just interacting with the “buy—it—yourself” web storefronts,
consumers will be able to interact with service providers in
a personalized way via automated service-oriented eMarket
models. The selling of tangible goods will be one such ser-
vice. Other services would include data, information, soft-
ware components or even processing time/storage on net-
worked machines. There will be no explicit clients and
servers — but peers, often other persons/machines in ones
vicinity, which can be both consumers and providers of dif-

ferent services. M-Commerce will thus be transformed into
what we refer to as Me-Commerce, or more generally, into
Me-Services — a personalized view of services dynamically
available from fixed providers on the wired side, as well as
wirelessly connected peers in the vicinity.

In this paper we describe our initial research efforts to re-
alize ubiquitous computing systems based on the coopera-
tion of autonomous, self-describing, highly interactive and
adaptive components that are located in “vicinity” of one
another. In such dynamic environments, service discovery
becomes a critical research problem. Hardware and soft-
ware components will automatically become aware of each
other and establish basic communication. They will also be
able to discover and exchange services with each other. In
Sections 2 and 3, we describe our vision of the future mo-
bile computing environment. The next section 4 discusses
the weakness in the current service discovery schemes, while
section 5 evaluates the Jini service discovery mechanism in a
mobile computing environment in light of these deficiencies.
In Section 6 we describe the design goals and the architec-
ture of the Ronin Agent Framework. In Section 7 we present
a restaurant recommendation system called Agents2Go that
we have developed based on the Ronin Framework. Our re-
search findings are summarized in Section 8.

2. SOJOURNSINTO THE FUTURE

We envision our protagonist (Jane) driving down I95. A
palmtop and cellular phone are in her purse, and the car
has its own onboard computer. All these devices are net-
worked using Bluetooth. The car’s onboard computer con-
nects with computers in nearby cars using Bluetooth, and
exchanges information necessary to coordinate their driving
in a Distributed Traffic Management Environment. Some-
times when the driver is not sure of things (where the nearest
gas station with a car wash is, for example), the computer
can ask the other cars around it. Every five miles or so down
the highway, while the car is within range of an electronic-
sign or a rest area, it is connected to broadband high speed
wireless LAN. While driving, Jane receives a page on the
palmtop alerting her that her office is sending her a fax.
Her palmtop dials out on the phone to retrieve the fax and
requests that it be converted to an audio stream that can be
played on her car’s sound system. The server cannot honor
this request, so the palm activates a proxy agent when the
car passes the next e-sign. This agent locates and negotiates
with fax-to-audio conversion services in the vicinity to effect
the conversion, and migrates to the next e-sign the car will
pass. When the car is in range, the proxy agent streams the
audio to the car. After listening, Jane decides that this is
something she will need to read carefully. It is getting close
to 7 in the evening, so Jane decides to call it a day. She tells
her palmtop to book her a room at the next Chariott hotel
and have the fax print there. She wants to have dinner at a
Mexican restaurant before going to the hotel. At the next
e-sign, the Palm device contacts the proxy agents for the
local hotel/motel and restaurant associations. It negotiates
to get Jane the best possible deal on the room she wants
(non smoking, king). It also finds out that the hotel and the
Mexican restaurant are at some distance, but that there is
a Tex-Mex restaurant close to the hotel which serves Jane’s
favorite dish. The Tex-Mex restaurant also agrees to print
her fax at no extra charge, and the agent reserves her a ta-

ble, downloads directions into her car’s computer and routes
the fax to the restaurant’s printer.

3. BACKGROUND AND RATIONALE

The basic assumption behind our work is that at the level of
computing and networking hardware, we will see dramatic
changes in the next few years. More specifically, we pre-
dict the emergence of (i) palmtop and wearable/embeddable
computers, (ii) Bluetooth-like systems which will provide
short range, moderate bandwidth connections at extremely
low costs, and (iii) widely deployed, easily accessible wire-
less LANs and satellite WANs. We assume that there will
be a mixture of traditional low bandwidth systems and next
generation high speed ones. These developments will lead
to wireless networks that will scale all the way from ad hoc
local area networks to satellite WANSs, and link together
supercomputers, “walkstations” and embedded controllers.
There is ongoing research in creating the hardware and low
level networking protocols that are needed to realize this
vision.

The industry’s present vision of the use of Bluetooth-like
devices is fairly narrow — essentially as point-to-point com-
municators to replace cables, similar to IrDA for computers
and printers. However, both industry and academia have of
late realized that these devices can also be used in creating
ad hoc networks — e.g. when police and emergency personnel
respond to a call, their computers would automatically get
networked when they come in each others’ vicinity. There
is significant ongoing work in solving various network layer
problems associated with mobile ad hoc systems. The point
of departure for us is the creation of a software infrastruc-
ture that can actually exploit ubiquity arising from ad hoc
networking, and enable a new class of applications.

In order for an entity to cooperate with others in its vicin-
ity, it first needs to discover other entities as it moves into
a new location. This problem of “service discovery”! has
recently been explored in the context of distributed systems
and elsewhere. State of the art systems such as Jini[1], Salu-
tation[20], Universal Plug and Play (UPnP)[16], as well as
IETF’s draft Service Location Protocol[18, 23] provide for
networked entities to advertise their functionality. Within
these newly emerged distributed systems, our evaluation [6]
shows that Jini provides a more flexible and robust service
discovery infrastructure for building distributed components
comparing to other systems.

The Jini discovery infrastructure supports both unicast and
multicast service discovery protocol. This infrastructure al-
lows services to be found in a uniform way, either on a local
or a remote network. The service advertisement takes the
form of interface descriptions. This simple form of the ad-
vertisement mechanism can be easily employed to provide
high-level of abstractions for both software and hardware
entities in the network. This is how a Jini-enabled printer
can talked to a Jini-enabled digital camera. It is clear that
the Jini discovery infrastructure provides a good base foun-
dation for developing a system with distributed components
need to discover each other in the network. However, the
Jini discovery process is tightly bounded to the Java class

1We use the term service here in a broad sense

interface description advertisement. The simplicity of this
mechanism is also the major weakness of the Jini service
discovery architecture.

4. DEFECIENCIESINEXISTING SERVICE
DISCOVERY ARCHITECTURES

Architectures and systems like Service Location Protocol
(SLP), Jini, Universal Plug and Play (UPnP) and Saluta-
tion have recently been developed to explore the service dis-
covery issues in the context of distributed systems. While
many of the architectures provide good base foundations for
developing systems with distributed components in the net-
work, we argue that they are not sufficient for building the
Me-Services environment due to the following:

e Lack of Rich Representations:

Services in the Me-Services world are heterogeneous in
nature. These services are defined in terms of the their
functionalities and capabilities. The functionality and
capability descriptions of these services are used by
the service clients to discover the desired services. The
existing service discovery infrastructures lack expres-
sive languages, representations and tools that are suf-
ficient for representing a broad range of service de-
scriptions and are also useful for reasoning about the
functionalities and the capabilities of the services [4].
In the Jini architecture, service functionalities and ca-
pabilities are described in Java object interface types
[1]. Service capability matchings are processed at the
syntax-level only using objects.

e Lack of Constraint Specification and Inexact
Matching:

Most of the discovery protocols only allow service re-
quests to match exactly with service descriptions, and
have simplistic notion of contraints. For instance, the
default registry that comes with Jini allows a service
client to find a printing service that supports B/W
printing, but will not return a color printing service
if it can’t find a B/W one. The protocols do exact
syntactic matching while finding out a service. Thus
they lack the power to give a close match even if it was
available. Similarly, the protocol will allow finding a
printer at a given location or with a given sized print
queue, but the registry is not powerful enough to find
a geographically closest printing service that has the
shortest print queue.

e Lack of Ontology Support:

Services need to interact with clients and other services
in the vicinity. Service descriptions and information
need to be understood and agreed among various par-
ties. In another words, well-defined common ontology
must be present before any effective service discovery
process can take place in dynamic ad-hoc network sys-
tems.

We found that common ontology infrastructures are of-
ten either missing from or not well represented in the
existing service discovery architectures. Architectures
like Service Location Protocol, Jini and Salutation do
provide some sort of mechanisms to capture ontology

among services. However, these mechanisms like Java
class interfaces and ad-hoc data structures are un-
likely to be widely adapted and become standards. In
the Universal Play and Plug (UPnP) architecture, ser-
vice descriptions are represented in XML (eXtensible
Markup Language), which provides a good base foun-
dation for developing extensible and well-formed ontol-
ogy infrastructure [16]. However, service descriptions
in UPnP does not play a role in the service discovery
process [19]. Newer XML based semantic standards,
such as RDF or DAML [7] are perhaps better suited
for service description.

5. EVALUATING THE JINI SERVICE DIS
COVERY INAMOBILEENVIRONMENT

Jini provides an infrastructure for providing services in a
network, and for creating spontaneous interactions between
programs use these services [1]. Services can join and leave
the network in a robust fashion. The Jini service leasing
mechanism allows clients to be well informed of the avail-
ablity of visible services.

Our studies show that the service discovery infrastructure is
one of the shortcomings of Jini [6]. The weaknesses are the
following: 1) it is difficult to discover services that require
specific attribute value that are depended on the dynamic
content of the environment, 2) it is difficult for cross-domain
services to discover and interoperate when service descrip-
tions are expressed in the object-level and syntax-level.

The existing Jini architecture requires service advertisements
to be expressed in the form of Java interface descriptions.
For example, a printing service may advertise itself as a
generic printing service by implementing an interface called
Printer. If the printing service wants to advertise itself
as a color printer, then it may add an extra service at-
tribute entry class called TypeOfPrinter with the string
value ¢‘Color Printer’’. A client that is looking for a
color printer will ask the Jini Lookup Service to match for
an advertised service that implements the Printer interface
and has an attribute entry class TypeOfPrinter with the
string value ¢‘Color Printer’’.

When the Jini Lookup Service performs matching, the match-
ing is done based on comparing the Java class interface types
and the string values of the service attribute entries. This
syntax level matching creates the obvious semantic inter-
operability problem. For example, two services are in the
printer domain. One service implements an interface called
PrinterInterface, and the other implements the Printer
interface. Both of these have the same functionality. Yet if a
client is looking for a printing service using the Printer in-
terface, then the Jini Lookup Service would not match the
service that uses the PrinterInterface. Similarly, when
service descriptions are expressed in the object-level and
syntax-level, it is difficult for cross-domain services to dis-
cover and interoperate with each other. For example, a
digital camera client is looking for a printing service that
is capable of printing 30 pictures with resolution 1024x768
pixels in 30 minutes. It will be difficult for the Jini Lookup
Service to find a matching printing service if the printing
service domain uses dots per inch (dpi) instead of pixels as
the unit for measuring printing resolutions.

Another problem is that the Jini Lookup Service cannot per-
form inexact matching. For example, consider a printer ser-
vice that has advertised an attribute entry TypeOfPrinter
with value ¢ ‘Color Printer’’. When a client is looking for
a printer service that has an attribute entry TypeOfPrinter
with value ‘‘Black and White’’, it is intuitively obvious
that the Color Printer should be returned as a match, es-
pecially if no B/W printers are found. However, the Jini
Lookup Service is not capable of doing such type of reason-
ing.

Furthermore, due to the limitation of the Jini matching
strategy, it is difficult to discover services that require spe-
cific dynamic attribute values. For example, a client can
easily discover a color printer service, but it is difficult to
discover a printer service that is geographically the closest,
since the notion of a “least of all X” type constraint is not
present in Jini’s matching approach.

One way to enhance the Jini discovery mechanism is to re-
implement or expand the existing Jini lookup process, for ex-
ample, by adding XML support as a rich service description
and lookup mechanism and by permitting fuzzy matches and
complex constraints. We have created such as system called
XReggie [14]. Another approach, which we will describe in
detail in this paper, is to apply the agent-oriented design
model to the Jini service designs. In particular, clients look-
ing for services look to find broker agents using simple Jini
type approaches, and can then negotiate with these brokers
using richer representations. The brokers can also use sig-
nificantly more “intelligence” in the matching process than
Jini does.

6. RONIN AGENT FRAMEWORK

The Ronin Agent Framework introduces a hybrid approach
to developing dynamic distributed systems based on the
composition of the agent-oriented and service-oriented pro-
gramming design. [4] The framework not only creates a
flexible and robust development solution for creating multi-
agent systems, but it also enhances the existing Jini service
discovery, allowing services to be discovered based on the
domain-independent agent attributes. The proxy-oriented
Ronin Agent Deputy design allows remote hardware and
software services to be used as if they were local services.

6.1 Ronin Design Goals

The Ronin Agent Framework is designed to aid the devel-
opment of dynamic distributed/mobile systems, taking the
advantages of the Jini architecture and the agent technology.
The design goals of the framework are the following:

e Enhancing the service discovery mechinsim: By
incorporating agent attributes into the service discov-
ery process, agents should be able to find each other
as well as domain specific brokers .

e Making knowledge sharing possible: The frame-
work should provide an infrastructure that allows dis-
tributed components in a network to share and ex-
change knowledge easily.

e Supporting InterAgent Communication using
ACLs: Agent Communication Languages (ACLs) [10,

9] such as KQML or FIPA-ACL provide a great com-
munication infrastructure for heterogeneous agents to
exchange content-rich knowledge about their environ-
ment. Using ACL communication, the protocols and
the conversations among agents can be formally mod-
eled and precisely defined.

e Promoting distributed AI tools: Al tools, such as
knowledge representation systems, inference engines,
logic programming tools, are very useful to the devel-
opment of the future Me—Services environment, in par-
ticular in creating sophisticated service discovery sys-
tems. These powerful Al tools should be made avail-
able to the light-weight distributed components in the
network.

e Handling mobility related constraints: Mobile
networks present well known problems of low band-
width and elective disconnections. The system should
hide these problems as much as possible.

e Enhancing the Jini service development pro-
cess: It is important not to create a solution that
is more complicated than the original problem. The
Ronin framework should enhance and simplify the de-
ployment process, overcoming the weakness of the ex-
isting Jini development environment.

6.2 Ronin Architecture Overview

Ronin is written in Java. The framework is built on the ex-
isting Jini technology (Jini Technology Starter Kit, version
1.1 beta 2). The Ronin package provides an agent-oriented
development abstraction to the existing service-oriented Jini
development; enhances the Jini service development pro-
cessing and provides a Jini Prolog Engine Service, which
provides reasoning, knowledge representation and logic pro-
gramming functionalities.

The key components of Ronin are the following: 1) Ronin
Agent 2) Ronin Agent Deputy 3) Ronin Agent Attributes
and Domain Attributes 4) Jini Prolog Engine Service (JPES).
In the following subsections, we will describe these key com-
ponents and their related components in detail. Specifically,
we will concentrate our discussion on the Ronin agent archi-
tecture, the agent communication infrastructure, the agent
description facility and the logic programming facility.

6.2.1 Ronin Agent

A Ronin agent is a metaphor for defining an integerated
collection of Java classes and interfaces that funcations ac-
cording to certain pre-defined agent behavior. It is not the
class signatures that define a Ronin agent; it is the combined
behavior of the classes that defines an agent.

A Ronin agent has two sets of behaviors: the generic agent
behaviors and the domain specific behaviors. The generic
agent behaviors are the actions that are common to all Ronin
agents. For example, all Ronin agents need to advertise a
set of agent attributes that describe their functionality and
capability to the Lookup Service. On the other hand, the
domain behaviors differ from one agent to another. These
behaviors uniquely define an agent in the system. For exam-
ple, the domain behavior of a Ronin agent that manages the
printing service is very different from the domain behavior

of a Ronin agent that provides restraurant recommendation
services.

Ronin provides facilities (classes and interfaces) that define
the generic agent behaviors of an agent. These facilities de-
fine the infrastructures for 1) the Ronin Agent Deputy real-
ization 2) the agent capabilities and funcationality descrip-
tions and 3) interagent communication. All Ronin agents
are required to have at least one Agent Deputy. An Agent
Deputy acts as a proxy for the Ronin agent to other agents
in the network.

Ronin agents are required to provide descriptions about their
capabilities and funcationalities using the Ronin Agent De-
scription Facility. Agents are described in terms of their

public interface DeputyLocator {
AgentDeputy getAgentDeputy();
}

Figure 3: DeputyLocator interface

The AgentDeputy interface class also provides an event no-
tification mechanism that allows message-sending agents to
receive notifications regards the status of individual mes-
sage delivery process. (More details on the message delivery
notification mechanism can be found in [4].)

The Ronin framework provides two abstract Agent Deputy

. . - impl ion cl AbstractDeput AbstractAdminDeputy.
agent attributes (those attribute classes implement the AgentAttr']BHugg ementation classes, AbstractDeputy and AbstractAdminDeputy

fi cl implement the AgentDeputy interface. Th
interface) and their domain attributes (those attribute classes Classes unpiemen ¢ feentieputy itertace N
. AbstractAdminDeputy class extends the AbstractDeputy class
implement the DomainAttribute interface). The descrip-

tions of an agent are advertised to the Lookup Service the
same way as any other Jini service entries.

Ronin agents communicate with other agents using an Agent
Communication Language. However, Ronin does not have
any restriction on the ACL that agents can use. Ronin leaves
the decision of adapting the kinds of ACL standard to the
agent developers.

In contrast to the generic agent behavior facilities that are
specified and provided by Ronin, it does not specify how
the agent domain behaviors should be implemented. Ronin
leaves the decision of crafting agent domain behaviors to the
agent developers.

6.2.2 Ronin Agent Deputy

A Ronin Agent Deputy is an object that acts as a proxy
for the Ronin Agent in the network. The main duties of
an Agent Deputy are 1) mediating agent communication on
the behalf of the owner agent and 2) providing a local agent
representation of the owner agent in the network. Figure 1
shows the interactions between two Ronin agents and the
Agent Deputy.

A concrete Agent Deputy implementation is a serializable
class that implements the AgentDeputy interface (see Figure
2). All of the concrete Agent Deputy implementation classes
are required to confront to the functional specification of the
AgentDeputy interface methods.

The funcational specification of the deliveryMessage () method

defines that this method is to be invoked by a message-
sending agent when it requests the Agent Deputy of the
message-receiving agent to delivery a message to its owner
agent. The message is wrapped within an Envelope object.

The message delivery scheme can be implemented either as
a synchronous or an asynchronous process. For example,
a synchronous delivery scheme can be implemented using
socket communication procedures between the owner Ronin
agent and the Agent Deputy. An asynchronous delivery
scheme can be implemented as a set of Remote Method
Invocation (RMI) calls [21], based on the Remote Event
Model [1, 22] between the owner Ronin agent and the Agent
Deputy.

and implements the net.jini.admin.Administratable in-
terface, which provides common ways to export particular
administrative funcationality. [1]

The AbstractDeputy class provides a basic implementation
of the AgentDeputy interface. In addition it defines a flexi-
ble design pattern that allows agent developers to customize
the transport mechanism for delivering the Envelope object
from the Agent Deputy to the owner agent. The transport
mechanism that is used by an Agent Deputy is encapsu-
lated within the logic of the Transport object implementa-
tion (see Figure 4). Every instance of the AbstractDeputy
class contains an Transport object. An agent developer can
configure the AbstractDeputy class to use any Transport
implementation of his/her choice. This achieves the goal of
creating Agent Deputies with functionality that is indepen-
dent from the low-level message delivery mechanism.

The benefits of using this particular pattern can be ob-
served from the the following example. At runtime when the

deliverMessage () method isinvoked on the AbtractAgentDeputy

object, the deputy delegates the message transport task
to the contained Transport object. The Transport object
might decide the appropriate network communication (us-
ing RMI, network socket calls etc.) and the protocol (HTTP,
HTTPS etc.) to use to deliver the message. It might also de-
cide to provide more sophisticated message delivery manage-
ments, such as message filtering, message store-and-forward,
message multiplexing and message demultiplexing [1, 22].

There are two possible ways to locate an Agent Deputy.
One way is to locate an Agent Deputy through the use of
the Jini Lookup and Discovery Protocol, and then to down-
load the Agent Deputy from the Jini Lookup Service. The
second way is to extract an Agent Deputy by calling the
getAgentDeputy() method on the DeputyLocator object.
This object can be extracted from the Envelope object by
invoking the getSenderDeputyLocator() method.

The Envelope object is a container class that contains the
message that is to be delivered to the message-receiving

Ronin agent. In addition it also has a reference to a DeputyLocator

object that can be used to extract the AgentDeputy object
of the message-sending agent.

The DeputyLocator interface has only one method (see Fig-

L
""'”?‘4- Relay messages hoent-Y@umbe.edu
| to Agent X

i i
3 i 3. Send messages
! L Ahgent Nio hoent X
' _,.-n.---{ Deputy
e i ® y Ronin Agent

I

b /

' f

1 !

' ¥

'

I

'

'

I

B H

| .

I

'

I

'

1

1. Register hgent
Deputy 3

2, Discover/lookup
Agent Deputy

Figure 1: The interactions between the Ronin agents and Agent Deputy

public interface AgentDeputy {
public void deliveryMessage (Envelope e, boolean wait);

public void addDeliveryNotificationListener (DeliveryNotificationListner
listener);

public void removeDeliveryNotificationListener(DeliveryNotificationListener
listener);

Figure 2: AgentDeputy interface

public abstract class AbstractDeputy implements AgentDeputy, Serializable {
protected Transport transport;
protected EventListenerList nofitificationListners;

public AbstractDeputy(Transport transport){...}
public void addDeliveryNotificationListener(DeliveryNotificationListener
listner){...};
public void fireDeliveryNotificationEvent(DeliveryNotificationEvent e){...}
public Transport getTransport(){...}
public void removeDeliveryNotificationListener(DeliveryNotificationListener
listener){...}

Figure 4: AbstractDeputy abstract class

ure 3), getAgentDeputy (), which returns an instance of the
AgentDeputy class. The AbstractDeputy class does not de-
fine the actual implementation of this method. The decision
of how to extract an AgentDeputy instance is left to the agent
developers to decide. The goal of such design is to allow an
individual developer to create his/her own solution to the
problem of returning a reference to the AgentDeputy object
to the requestor.

In some systems, it might be desirable for the developer to
create a DeputyLocator that contains a direct reference to a
serialized AgentDeputy object. When the getAgentDeputy ()
method is invoked, the reference to the AgentDeputy object
is simply returned. On the other hand, sometimes it might
be desirable for the developer to create a DeputyLocator
that dynamically discovers or downloads an AgentDeputy
from the network when the getAgentDeputy() method is
invoked.

6.2.3 Ronin Agent Attributes and Domain Attributes
The Ronin Agent Attributes provide a basic agent ontology
for Ronin agents. These attributes describe the capability
and the functionality of an agent in a domain-independent
fashion.

The Ronin Agent Attributes consist of five Java classes:

AgentID, AgentLang, AgentOntology, AgentOwner and AgentRole.
All of these classes extend the net.jini.entry.AbstractEntry

from the Jini Technology Core Platform and implement the
AgentAttribute interface from the Ronin Agent Framework.
Figure 5 shows the class diagram of the Ronin Agent At-
tribute classes.

Ronin defines the semantic meanings of the Ronin Agent
Attributes. The AgentID attribute contains a unique agent
identifier. The format of this identifier is expressed in the

email address format. For example, agent-name@domain. com.

The AgentLang attribute specifies the Agent Communica-
tion Language that one agent can understand. This at-
tribute is defined in terms of three string fields: format,
language and ontology. The format field defines the encod-
ing scheme of the Agent Communication Language. For ex-
ample, the scheme might simply be the java.lang.String.
The language field specifies the name of the Agent Commu-
nication Language (for example, KQML, FIPA etc.). The
ontology field is an ontology identifier of the Agent Com-
munication Language (for example, AGENTS2G0-0NT).

The AgentOntology attribute contains the ontology identifer
of the Ronin agent. The ontology of the agent is predefined
prior to the development of the agent. This attribute is
mainly used in the agent lookup process by the Jini Lookup
Service.

The AgentOwner attribute specifies the name of the institu-
tion or the organization that owns the agent. This attribute
is defined as a single string field, namely “owner”.

The AgentRole attribute specifies the acting role of the
agent in the system. A Ronin agent can take on one of
the six possible acting roles: BROKER, MATCHER, MEDIATOR,
PROBLEM SOLVER, PROXY or DEFAULT. The DEFAULT role is as-

public interface JPEServer extends java.rmi.Remote{

public void loadSourceFile(java.net.URL url)
throws java.rmi.RemoteException;

public JPESResult query(JPESQuery query)
throws java.rmi.RemoteException;

public JPESResult[] queryAll(JPESQuery query)
throws java.rmi.RemoteException;

public JPESResult queryCutFail (JPESQuery query)
throws java.rmi.RemoteException;

Figure 6: JPEServer interface

sumed to be the default role of an agent if no other role
values is supplied.

These agent attributes are required to be supplied by the in-
dividual Ronin agent. When Ronin agents come alive, they
register these agent attributes as the Jini service attributes
with the Jini Lookup Service.

6.2.4 Jini Prolog Engine Service

Jini Prolog Engine Service [5] is a Jini service that provides
the remote Prolog engine accesses to Jini-enabled compo-
nents in the network. JPES provides a simple solution to
bring inference engine and knowledge base facilities to the
distributed system.

Like other Jini services, JPES defines a generic Prolog en-
gine service interface, which allows users to perform Prolog
operations without caring about the underlying implemen-
tation and the location of the actual Prolog engine. It also
allows users to load predefined prolog statements from a
URL.

The current version of JPES uses the SICStus Prolog imple-
mentation as its core Prolog engine. However, the design of
the JPES allows the replacement of the core Prolog engine
with any other Prolog implementations without affacting the
JPES client implementations The main reason we choose to
use the SICStus Prolog implementation as the core Prolog
engine is because the SICStus Prolog implementation comes
with a simple Java JNI API library, namely Jasper, that al-
lows Java programs to access the Prolog engine.

Figure 6 shows the JPEServer interface class that are used
by the JPES clients to access the remote Prolog engine. The
loadSourceFile method allows the service client to load a
set of predefined Prolog statments into the Prolog engine
from a URL. The query, queryAll and queryCutFail meth-
ods are provided to the clients to make queries to the Prolog
engine.

One of the advantages of using JPES with Ronin agents is
that it eliminates the requirement of the existence of heavy-
weighted Prolog engines on the physical machines where the

AgentAttribute

AgentlD
+ agentlD: String

AgentOntology
+ ontology: String

AgentLanguage

AgentOwner

+ owner: String

+ format: String
+ language: String
+ ontology: String

AgentRole
+ agentRole: String

Figure 5: The class diagram of the Agent Attribute classes

agents are executed. In addition, sharing one JPES service
between a group of agents provides a simple way for agents
to share knowledge.

7. AGENTS2GO: A SMART RESTAURANT
RECOMMENDATION SYSTEM

We have defined a futurist scenario to demonstrate the fea-
sibility of using the Ronin Agent Framework to support mo-
bile computing, called Agents2Go.

The Agents2Go project strives to create a smart restaurant
recommendation system in the future mobile computing en-
vironment. A typical Agents2Go usage scenario can be de-
scribed as the following: You are on a business trip from a
foregin country visiting Baltimore. During the lunch hour,
you are walking down the street looking for a restaurant.
Since you are not familiar with the Baltimore area and do
not have a traveler’s guide to the local restaurants, you turn
on your PDA or cell phone and ask it to help you to find a
restaurant. Given that your device is connected to the local
network wirelessly, your agent that lives on the device finds
one or more local restaurant recommendation services, and
interacts with these services. It provides them with your
preferences regarding cuisines, costs, wait times etc., and
returns back to you with a list of recommended restaurants.
You can then makes reservation at one of the restaurats on
the list.

7.1 TheExistingRestaurant Recommendation
System

At first it might seem to be trivial to realize such scenario. In
fact a number of Yellow Page like portal services are avail-
able on the Internet today (e.g. zagat.com) that provides
similar restaurant recommendation services. Some of these
also allow users to make requests through WAP-enabled cell
phones and wireless PDAs (e.g. citysearch.com and restau-
rantrow.com).

However, the restaurant information that is provided by

most of the existing services is stored in centralized databases.

Further, they provide only static attributes, such as a restau-
rant’s location, cuisine etc. Clients access the information by
communicating with centralized server applications. Such
systems cannot easily make use of the dynamic location-

depedent information as a part of the recommendation pro-
cess. For example, it is difficult for these services to consider
the current waiting times of the restaurants, or the cur-
rent traffic conditions, or any specials/discounts the restau-
rants may be offering, when making the recommendations
to users.

7.2 Agents2Go Architecture Overview

The Agents2Go restaurant recommendation system is built
on top of the Ronin. Agents2Go provides a dynamic and
personalized system that is capable of making recommen-
dations to users based on the dynamic location-dependent
information.

At its core, the Agents2Go recommendation system is not a
centralized server application. Instead it takes a distributed
approach, the Agents2Go system is built based on a col-
lection of distributed restaurant agents, restaurant recom-
mendation broker agents and personal agents. Agents are
realized using the Ronin Agent Framework. When agents
come alive, they discover the local Lookup Services and reg-
ister their Agent Deputies. Taking the advantages of the Jini
Discovery and Lookup Protocols, these agents are capable
of dynamically joining and leaving the system in a flexible
and robust fashion.

Figure 7 shows an architecture diagram of the Agents2Go
system. The restaurant agents represent the restaurants
in the community. These agents are responsible for pro-
viding both static and dynamic restaurants information to
the personal agents and the local restaurant recommenda-
tion broker agents. The restaurant agents provide infor-
mation to other agents by extracting data from their local
SQL databases. With this approach, dynamic information
of the restaurants such as the current waiting time and the
chef’s spcial of the day can be updated in the local SQL
database. New information is made available to agents in
system instantaneously. The tasks that are currently as-
signed to the restaurant agents are 1) maintaining and up-
dating the restaurant databases, 2) providing information
about the restaurants when query requests are received from
the recommendation broker agents, 3) providing reservation
services to the personal agents and 4) discovering new Jini
Lookup Services and registering the Agent Deputies of the
restaurant agents with the Jini Lookup Services.

hgents2Go
Ihobile

B

|

Figure 7: Agents2Go architecture

The recommendation broker agents are responsible for mak-
ing restaurant recommendations to the human users. The
broker agents periodically discovers the existence of the local
restaurant agents that are within their contact range. (In
the current implementation, the broker agent only pulls the
restaurant agents that are registered with the Lookup Ser-
vice.) The broker agents share the set of restaurant recom-
mendation ontology with the local restaurant agents. When
a broker agent is asked to make a recommendation by a users
personal agent, but it does not have sufficent information in
knowledge base about the local restaurants, it queries the lo-
cal restaurant agents to retrieve updated information about
the restaurants. For example, in the current implementa-
tion, the query action is taken by the broker agent when the
waiting time of the local restaurants are out of date.

The Agents2Go system is targeted to work with users who
have handheld devices that are capable of executing Jini-
enabled Java applications. However, due to the computa-
tion resource limitation of the existing handheld devices like
Palm(III, V, VII), the current mobile application that ex-
ecutes on the Palm device relies on a Ronin agent acting
as a proxy that lives in a computer on the wired side. The
mobile application on the palm is responsible for rendering
GUI display, taking input from the user and mediating the
communication between the user and the personal agent.

7.3 Developing the Restaurant Agents

In the current implementation, a restaurant agent consists
of the following components: 1) a connnection handle to
the database of the restaurant it represents, 2) an agent
logic/behavior component, which contains logic for the agent
to interact with others in the system, 3) a set of Agent At-
tributes and Restaurant Domain Attributes, 4) an Agent
Deputy, which acts a proxy for the agent in the Ronin agent
world.

When a restaurant agent comes alive, it first creats an in-
stance of the Agent Deputy, then initializes its Agent At-
tributes and Restaurant Domain Attributes accorrding to
the restaurant attribute definitions that are given in the
agent configuration file. Once the Agent Deputy is properly
configured, the agent executes the Jini Discovery Protocol
trying to find Jini Lookup Services in the local community.
If a Jini Lookup Service is discovered, the restaurant agent

registers the Agent Deputy with the Jini Lookup Service
along with the Agent Attributes and the Restaurant Do-
main Attributes. These attributes are registered as the Jini
service entries. If the registration process succeed, then the
restaurant agent goes into a waiting mode — waiting to re-
ceive ACL messages from either the restaurant broker agents
or the personal agents.

The restarurant agents can be thought as the representa-
tives of the restaurants in the Agents2Go world. The cur-
rent design that distributes the individual restaurant infor-
mation among agents has many advantages over the design
of storing restaurant information in a centralized server ap-
plication. With the distributed agent approach, individual
restaurant agent only has to manage a relatively small set
of information that is only related the restaurant(s) that
it represents. Furthermore, this information can be stored
and structured in any way that the restaurant’s system de-
sires. As long as all agents in the system share the same
ontology and the ACL messages schema, any changes that
are made to the internal restaurant systems would not affact
the overall system. This reduces the maintainence overheads
that are often encounted by the centrailized database-driven
systems.

7.4 Developing the Restaurant Recommenda-
tion Broker Agents

In the current implementation, a broker agent consists of the
following components: 1) a proxy object of a JPES service,
2) an agent logic/behavior component, which contains logics
for the agent to interact with others in the system, 3) a set
of Agent Attributes and Restaurant Domain Attributes that
identifies the agent as a broker agent, 4) an Agent Deputy,
which acts a proxy for the agent in the Ronin agent world.

The broker agent uses the Prolog engine that is provided by
the JPES as its inference engine and knowledge base. During
the initialization stage, the broker agent instructs the JPES
service to load a set of restaurant recommendation Prolog
rules from a remote URL to setup its inference engine and
knowledge base.

During the recommendation stage, when the broker agent is
requested by the personal agents to provide restaurant rec-

ommendations, the broker agent first converts the incoming
request into a set of Prolog facts and rules expressing the
preferences (e.g. cuisine is Japanese) and constraints (e.g.
cost < $15) of the user, and then inserts these into the JPES
inference engine. Once all rules and facts have been inserted,
the broker agent executes the recommendation rules to seek
for restaurants that have attributes that satisfy the request
contraints. Thus a more intelligent match can be done com-
pared to Jini’s limited syntactic match.

At any stage if information about certain restaurants is ei-
ther missing or out of date, the broker agent will send out
request for information to the restaurant agents to update its
knowledge base. Once requested information are received,
the broker agent converts the information into Prolog facts
and inserts them into its knowledge base using the JPES
service.

7.5 Developing the the Personal Agent

Ideally a personal agent should live on the handheld device
of the user, so that personalized services can be constantly
available to the user at all time. When a user has acti-
vated the personal agent, it dynamically discovers the bro-
ker agents in the system. Then the recommendation process
begins.

However, due to the computation limitation of the existing
handheld devices, the current implementation of the per-
sonal agent is seperated into two parts, a mobile application
part (Agents2Go Mobile) that executes on the handlehand
Palm device and a Ronin personal agents proxy that exe-
cutes on the wired side. These two components cooperate
with each other to fulfill the tasks of the personal agent.

The Agents2Go Mobile is a program that executes on a Palm
device that is connected via a CDPD network (see Figure 8).
This Palm application is implemented in the C program-
ming language. It is responsible for rendering graphic dis-
play on the Palm device and interacting with the user. It is
also responsible for transmitting user input requests to the
Ronin personal agent on the local network machine. When
the Agents2Go Mobile is activated, it makes a wireless net-
work connection with the Ronin personal agent through the
OmniSky wireless network. The contact information of the
Ronin personal agent on the network is pre-configured as a
part of the Agents2Go Mobile program preferrences.

If the connection is made successfully, then the Agents2Go
Mobile downloads the restaurant recommendation form data
from the the personal agent and renders the form on the
screen. This form provides the data model for the Agents2Go
Mobile to display the form. The data model is simply ex-
pressed as key-value pairs in strings. This allows different
brokers to potentially provide different forms that are tailor-
made to the recommendation service they provide. For ex-
ample, the broker would provide only those cuisine types as
choices that it knew corresponded to local restaurants.

Before any recommandation request is made, the user first
authenticates himself/herself with the Agents2Go Mobile.
If the authentication process succeed, then the Agents2Go
Mobile instructs the running personal agent to start the Jini
discovery process to find an local restaurant broker agent in

' Pamllc

Figure 8: A snapshot of the Agents2Go Mobile Palm
Application

the community. From this point on, any requests that are
submitted to the Agents2Go Mobile from the user is directly
delivered to the personal agent.

After a personal agent has received a discovery request from
the Agents2Go Mobile over the network, it starts the stan-
dard Jini Discovery and Lookup Protocols. It first tries to
discover a close-by Jini Lookup Service, and then it tries to
lookup a restaurant recommendation agent using the Ronin
Agent Attributes and the Restaurant Domain Attributes.

If there is an appending recommendation request from the
Agents2Go Mobile, the personal agent starts a restaurant
recommendation ACL conversation with the available rec-
ommendation broker agent. It then returns the recommen-
dation results back to the Agents2Go Mobile. All ACL com-
munication messages are expessed in KQML, and the con-
tent messages are expressed in Prolog-like rules.

8. CONCLUSION

Computing is no longer a discrete activity bound to a desk-
top; mobile computing is fast becoming a part of everyday
life. The emerging mobile networking technologies will cre-
ate a world where persons and devices will wirelessly interact
with other devices all around them, in addition to interact-
ing with tethered networked entities. In order to develop a
mobile e-services system which will use such networks, these
hardware/software components need to be aware of others
components in their vicinity, and interact and interoperate
with them.

The Ronin Agent Framework, which we present in this pa-
per, introduces a hybrid architecture, a composition of service-
oriented and agent-oriented architectures, that provides a
simple and uniform scheme for deploying highly dynamic
distributed “intelligent” components in a mobile world that
easily discover and communicate with others components.
We also present the Agents2Go system which uses Ronin to
create a restaurant recommender system for the mobile sce-
nario that provides for discovery and intelligent matching in
a dynamic environment.

0.

ACKNOWLEDGEMENTS

This work was funded in part by NSF awards IIS 9875433
and CCR 0070802, and an award from DARPA under the
DAML program.

10.

[1]

[10]

[11]

REFERENCES
K. Arnold, A. Wollrath, B. O’Sullivan, R. Scheifler,
and J. Waldo. The Jini specification. Addison-Wesley,
Reading, MA, USA, 1999.

H. Bharadvaj, A. Joshi, and S. Auephanwiriyakyl. An
active transcoding proxy to support mobile web
access. In Proc. IEEE Sumposium on Reliable
Distributed Systems, October 1998.

E. Brewer, R. Katz, Y. Chawathe, A. Fox, S. Gribble,
T. Hodes, G. Nguyen, T. Henderson, E. Amir,

H. Balakrishnan, A. Fox, V. Padmanabhan, and

S. Seshan. A network architecture for heterogeneous
mobile computing. IEEE Personal Communications
Magazine, 5(5):8-24, 1998.

H. Chen. Developing a Dynamic Distributed
Intelligent Agent Framework Based on the Jini
Architecture. Master’s thesis, University of Maryland
Baltimore County, Jan. 2000.

H. Chen. Jini prolog engine service (jpes), 2000.
Available online from
http://gentoo.cs.umbc.edu/jpes/.

H. Chen, D. Chakraborty, et al. Service discovery in
the future electronic market. In Proc. Workshop in
Knowledge Based Electronic Market. AAAT, AAAI
Press, 2000.

J. Davis. The semantic web. Daily Insight, INSIGHTS
Online News, Sep. 2000.
http://www.business2.com/content/insights/
dailyinsights/2000/09/27/199679.

M. Dunham, A. Helal, and S. Balakrishnan. A mobile
transaction model that captures both the data and
movement behavior. ACM/Baltzer Journal of Mobile
Networks and Applications, 2(2):149-162, 1997.

T. Finin, Y. Labrou, and J. Mayfield. Kqml as an
agent communication language. In J. Bradshaw,
editor, Software Agents. MIT Press, 1997.

FIPA, Geneva, Switzerland. FIPA ACL Message
Structure Specification, edition 2000/08/01 edition,
Aug. 2000.

R. John. UPnP, Jini and Salutaion - A look at some
popular coordination framework for future network
devices. Technical report, California Software Labs,
1999. Available online from
http://www.cswl.com/whitepaper/tech/upnp.html.

A. Joshi. On proxy agents, mobility and web access.
ACM/Baltzer Journal of Mobile Networks and
Applications, 2000. (accepted for publication, also
availbe as UMBC CS TR 99-02).

[13]

[14]

18]

[19]

[20]

[21]

A. Joshi, S. Weerawarana, and E. N. Houstis.
Disconnected Browsing of Distributed Information. In
Proc. Seventh IEEE Intl. Workshop on Research
Issues in Data Engineering, pages 101-108. IEEE,
April 1997.

R. H. Katz, E. A. Brewer, E. Amir, H. Balakrishnan,
A. Fox, S. Gribble, T. Hodes, D. Jiang, G. T. Nguyen,
V. Padmanabhan, and M. Stemm. The bay area
research wireless access network (barwan). In
Proceedings Spring COMPCON Conference, 1996.

M. Liljeberg, M. Kojo, and K. Raatikainen. Enhanced
services for world-wide web in mobile wan
environment.
http://www.cs.Helsinki.FI/research/mowgli/mowgli-
papers.html,

1996.

Microsoft Corporation. Universal Plug and Play
Device Architecture Reference Specification, version
0.9 edition, 1999.

B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E.
Tilton, J. Flinn, and K. R.Walker. Agile
application-aware adaptation for mobility. In
Proceedings of the 16th ACM Symposium on Operating
System Principles.

C. Perkins. Rfc 2002: Ip mobility support. Technical
report, IBM, 1996.

The Salutation Consortium Inc. Salutation
Architecture Specification (Part-1), version 2.1 edition,
1999.

Sun Microsystems, 901 San Antonio Road, Palo Alto,
CA 94303, USA. Java Remote Method Invocation
Specification, revision 1.5, jdk 1.2 edition, Oct. 1998.

Sun Microsystems, 901 San Antonio Road, Palo Alto,
CA 94303, USA. Jini Distributed Event Specification,
revision 1.0 edition, Jan. 1999.

SVRLOC Working Group. SLP White Paper.
SVRLOC Working Group, May 1997.

L. Xu. Using Jini and XML to build a component
based distributed system. Technical report, University
of Maryland Baltimore County, 2000.

