
Creating Context-Aware Software Agents

Harry Chen1, Sovrin Tolia1, Craig Sayers2, Tim Finin1, and Anupam Joshi1

1
eBiquity Research Group

University of Maryland Baltimore County

1000 Hilltop Circle, Baltimore, MD 21250, USA,

fhchen4,stolia1,finin,joshig@cs.umbc.edu
2
Software Technology Laboratory

Hewlett-Packard Laboratories

1501 Page Mill Road, Palo Alto, CA 94340, USA,

craig sayers@hpl.hp.com

Abstract. Sharing ontology, sensing context and reasoning are crucial

to the realization of context-aware software agents. This document de-

scribes our e�ort on using Resource Description Framework (RDF) and

the Prolog Forward Chaining (Pfc) system to provide support for ontol-

ogy sharing and reasoning in the CoolAgent Recommendation System

(CoolAgent RS), a context-aware multi-agent system. This document

also describes the implementation of the CoolAgent RS document and

cuisine recommendation services that provide tailored services by ex-

ploiting user's context.

1 Introduction

We humans are context-aware. We are able to use implicit situational informa-

tion, or context, to increase our conversational bandwidth [2]. This ability allows

us to act in advance and anticipate other's needs.

For example, when two people are in the same room, Person A asks Person

B, \close the door please." Naturally, Person B would reason that Person A is

requesting the door in the same room to be closed, not the door in any other

room.

This simple example demonstrates context-awareness in human beings. The

fact that Person B is able to take the right action is due to the following three

valuable capabilities of humans:

1. Ontology sharing { humans are able to share communication languages and

vocabularies

2. Sensing { humans are able to perceive their environment through sensory

organs

3. Reasoning { humans are able to make sense out of what they have perceived

based on what they already know

If Person B is unable to share ontology with Person A or unable to sense

from Person A or unable to make sense out of what he/she has perceived, then

Person B would not be able to close the door that Person A desires. In other

words, Person B becomes context-aware only when he/she possesses all of the

three capabilities described above.

We believe ontology sharing, sensing and reasoning are not only crucial to

human context-awareness, but also signi�cant to the realization of context-aware

applications.

1.1 Context-aware applications

The construction of context-aware applications is cumbersome and challenging

[15]. Exploiting context in applications requires sensing infrastructures to cap-

ture contextual information in the physical environment, and reasoning infras-

tructures to support inferencing in distributed applications.

After reviewing existing context-aware systems [7, 11, 17], we �nd that much

of the current e�ort has been focused on the creation of reusable infrastructures

for sensing contextual information. Futhermore, from a survey of context-aware

research [3], we learn that context modeling and reasoning have not been seri-

ously considered in the existing context-aware systems.

The Mobisaic Web Browser [18] is one of the early context-aware application

that exploits location-related, and time-related, contextual information. Mobi-

saic extends standard client browsers to allow authors to reference dynamic con-

textual information in dynamic URLs containing environment variables. The dy-

namic URL is interpreted using current values of the environment variables, and

an appropriate page is returned. Mobisaic neither includes any context modeling

framework nor does it provide a domain-independent sensing infrastructure.

The Conference Assistant [6] assists attendees by exploiting context from

their location, the current time, and the schedules of presentations. After a

mobile user enters a conference room, it automatically displays the name of the

presenter, the title of the presentation and related information.

Available audio and video equipment automatically record the current pre-

sentation, comments, and questions for later retrieval. The core of the Confer-

ence Assistant is the Context Toolkit [15], which has limited expressive power

to support context modelling and reasoning.

Other systems [19, 13] that we have reviewed also possess similar weaknesses

in providing support for ontology sharing and reasoning. In particular, generic

contextual information is often directly programmed as part each domain-speci�c

implementation. Such design forces the overall systems to be tightly coupled, and

the system behavior becomes highly dependent on the structural representation

of the contextual information.

In this document, we describe our e�orts on using RDF and Pfc to provide

support for sharing ontology and reasoning in CoolAgent RS, a context-aware

multi-agent system. We also describe the implementation of the CoolAgent RS

document and cuisine recommendation services that provide tailored services by

exploiting user's context.

Section 2 discusses the use of contextual information in the CoolAgent RS

recommendation services. Section 3 provides a design overview of the CoolAgent

RS and reviews some of the related work. Section 4 describes the implementa-

tion details of the CoolAgent ontology, reasoning and agents. Conclusion and

acknowledgement are given in Sect. 5 and Sect. 6, respectively.

2 Context-Aware Services in CoolAgent RS

Our context-aware multi-agent system is designed around the three important

factors that contribute to human context-awareness: ontology sharing, sensing,

and reasoning. In this section, we describe two context-aware recommendation

services that exploit those three factors.

2.1 CoolAgent RS Document Recommendation Service

Similar to many of the existing document recommendation services, this rec-

ommendation service is designed to recommend relevant documents to meeting

participants. Nevertheless, unlike most of the existing services that often make

recommendations based on the relevance rankings between the document con-

tents and user requests, the CoolAgent RS Document Recommendation Service

makes recommendations based on the dynamic contextual information of the

users.

The recommendation service exploits the following contextual information:

{ the presence of a meeting participant : a person is a meeting participant if

and only if that person is present in a location during the time when that

location is anticipated to have a scheduled meeting

{ the pro�le of a meeting participant : this includes the personal and profes-

sional background information of the participant (e.g. what is job title of the

participant? what are the research interests of the participant? what is the

placement of the participant in the company's organization chart?)

{ the planned meeting context : this includes the subject of the meeting, re-

search work and projects that are related to the meeting, the schedule of the

meeting and the anticipated participants etc.

{ organizational information: this includes the employment relationships among

the participants (e.g. is person A the supervior of person B? is person A work-

ing with person B on the same project?) and the company internal policies

(e.g. what kind of documents would a department manager be interested

in?)

It is easy to see how some of the described contextual information can be

used in a document recommendation process. For example, the presence of a

participant can be used to pinpoint the recommenation candidates, and the

research interests of the participant can be used to limit the search space of

�nding relevant documents.

On the other hand, some others (e.g. the schedule of a meeting) cannot be

used independently to support recommendations. Nevertheless, this information,

as a piece of integrated knowledge, can be used to deduce new contextual in-

formation to allow more sophisticated reasoning that would otherwise not be

possible. For example, by knowning Person A is supervising Person B, and Per-

son B is working on project CoolTown, then it is appropriate to recommend

CoolTown documents to Person A.

2.2 CoolAgent RS Food Recommendation Service

Similar to the CoolAgent RS Document Recommendation Service, this recom-

mendation service recommends customized lunch specials to the people in a

cafeteria during lunch hours. This service exploits the following contextual in-

formation:

{ the presence of a diner : a person is a diner if and only if that person is in a

dining venue during the lunch hours

{ the pro�le of a diner : similar to the pro�le information that is used in the

document recommendation service

{ the daily lunch special menu: the description of the lunch specials, including

the ingredients and cuisine information

2.3 The Need to Share Ontology

One interesting observation from the services described above is that the same

contextual information is exploited by two di�erent services in very distinct

application domains. For example, the presence of people, the pro�le of people

etc..

This observation leads us to conclude that ontology sharing is important

to our context-aware system. If services can share a common representation

and context semantics, then overlapping information can be easily shared and

exchanged, thereby increasing the interoperability and
exiblity of the overall

system.

3 Desiging CoolAgent RS

The CoolAgent RS was started in the summer of 2001 as a Summer Intern

project at Hewlett-Packard Laboratories. The goal was to develop a context-

aware extension to a prototype multi-agent Meeting Management system termed

CoolAgent[16].

CoolAgent RS is a multi-agent system that can automatically recommend

di�erent types of tailored information to users by reasoning from their context

without any explicit manual input. The goal is to develop a proof-of-concept

agent system that demonstrates the signi�cance of logical reasoning and ontology

sharing in a context-aware distributed computing environment.

3.1 Design Goals

To support the context-aware services that we have described in Sect. 2, the

design goals of our system are the following:

{ separate the representation and interpretation of the contextual information

from the system's operating implementation
{ provide a knowledge representation infrastructure to allow contextual infor-

mation to be represented, shared and manipulated
{ provide a reasoning mechanism that supports cooperative reasoning

4 Implementing CoolAgent RS

The core of CoolAgent RS is a collection of agents, all of which are FIPA-

compliant JADE agents [1]. The following is an overview of the agents in CoolA-

gent RS (also see Figure 1):

Fig. 1. An overview of the CoolAgent RS architecture

Noti�cation Agent Proxy (NAP) This agent is responsible for polling the

CoolTown Web Presence Manager (WPM) [5] to determine the presences

of physical objects in a particular location. NAP acts a proxy to WPM for

agents that do not have direct access to WPM. In particular, NAP provides

an ontology mapping service, translating contextual information from the

CoolTown WPM ontology to the CoolAgent RS ontology, for agents sub-

scribing to it.

Entity Tracking Agent (ETA) This agent is responsible for tracking entity

presences in a particular location. ETA subscribes to NAP. ETA requests to

be noti�ed when any physical objects are present in a particular location.

Venue Agent (VA) This agent is responsible for mediating contextual infor-

mation among the agents. VA collects contextual information of a particular

location, including people presences, anticipated meeting information and

relationship among various types of entities, by receiving entity presence

noti�cation from ETA and communicating with the Meeting Agent.

Personal Agent (PA) This agent is responsible for providing personal and

professional pro�les of human users. PA shares common ontology with other

agents, and it does not have any built-in reasoning capability.

Meeting Agent (MA) This agent is part of the existing CoolAgent Meeting

Management prototype. It creates an RDF-encoded web page to describe

each new meeting. The VA extracts details for upcoming meetings by exam-

ining those published pages.

Document Recommendation Agent (DA) This agent is responsible for pro-

viding document recommendations to the meeting participants based on

their context.

Food Service Agent (FA) This agent is responsible for providing cuisine rec-

ommendations to the diners in a cafeteria based on their context.

In the following subsections we describe the ontology sharing and the logical

reasoning aspects of the CoolAgent RS implementation.

4.1 CoolAgent RS Ontology

The CoolAgent RS ontology consists of 231 classes and 179 properties. Classes

describe the concepts in the CoolAgent RS application domains. Properties de-

scribe various features and attributes of the classes.

The CoolAgent RS ontology is constructed using Protege-2000, a frame-based

ontology authoring tool [14]. Using Protege-2000, classes are modulated into 12

RDF Schema �les constituting di�erent namespaces.

These RDF Schema �les contains ontologies that capture a wide range of

domain concepts that describe software agents, documents, meetings, organiza-

tions, people, places, times, FIPA device ontology, HP CoolTown ontology and

HP CoolAgent meeting ontology

4.2 Reasoning

Reasoning takes place when an agent needs to make sense out of the contextual

information that is captured from the sensing infrastructure, and when an agent

needs to determine its subsequent behavior.

When a piece of contextual information is captured from the physical en-

vironment, the raw contextual information is mapped into the corresponding

RDF data model based on the CoolAgent RS ontology. For example, when the

presence of a RFID (Radio Frequency Identi�cation) badge is detected in the

HPL Cafeteria, the corresponding RDF data model can be constructed as the

following:

<dev:RDF_Badge rdf:about='urn:badge_001'

dev:badge_id='000565319'

badge_label='Harry Chen'/>

<plc:Cafeteria rdf:about='urn:cafeteria_001'

plc:name='HPL Cafeteria'/>

<plc:Is_In rdf:about='urn:is_in_001'>

<plc:entity rdf:resource='urn:badge_001'/>

<plc:location rdf:resource='urn:cafeteria_001'/>

</plc:Is_In>

To make sense out of the contextual information in RDF, the agents rely on

the support from Pfc and reasoning rules. The same approach applies when an

agent needs to determine its subsequent behavior.

Reasoning Over RDF RDF is a foundation for processing metadata. RDF

itself is not a language; it is data model for representing metadata [12]. At

present, RDF data model is commonly represented in XML statements, RDF

graphs, and triple statements.

Di�erent RDF reprsentations are suitable for di�erent processing needs. The

RDF XML representation is suitable for machine processing (parsing in par-

ticular) and for information exchange. RDF graphs provides a diagrammatic

representation of the RDF data model, which is suitable for human visualiza-

tion. On the other hand, the triple representation provides the means for logical

reasoning.

To support reasoning over RDF, we developed our infrastructure based on

the Pfc [8] package and the SICStus Prolog system. We �rst constructed a set

of Prolog rules that express the standard RDF model in �rst-order logic [4]. We

called them the basic RDF rules.

For example, the rdfs:subClassOfproperty, which speci�es a subset/superset

relation between classes, can be interpreted by the Pfc rules as

triple(A, subClassOf, B) => subClassOf(A,B).

triple(A, subClassOf, B), subClassOf(B,C) => subClassOf(A,C).

And the rdf:type property, which indicates a resource is a member of a

class, can be interpreted by the Pfc rules as

triple(I, type, C) => instanceOf(I,C).

subClassOf(B,C), instanceOf(I,B) => instanceOf(I,C).

Domain speci�c rules, that allow agents to provide their own interpretation

of the contextual information and to determine their subsequent behaviors, are

constructed from the basic RDF rules. For example, domain speci�c reasoning

that infers the ownership of a badge can be constructed using the following rules:

instanceOf(P,personClass) => person(P).

instanceOf(B,badgeClass) => badge(B).

instanceOf(R,ownsClass), triple(R,owner,P), triple(R,thing,T) => owns(P,T).

person(P), badge(B),owns(P,B) => badgeOwner(P,B).

Implementing the Rule Shipping Technique The FIPA Agent Commu-

nicative Acts and Interaction Protocols speci�cations [9] have de�ned the com-

munication language and policy for agent comunications. There are also FIPA

speci�cations for di�erent content languages. However, it is up to the imple-

mentation to provide an ontology, and the interpretation of messages using that

ontology.

In the CoolAgent RS, the communication is mainly based on the FIPA

Subscribe Interaction Protocol [10]. For example, the Venue Agent sends a

subscribemessage to the Entity Tracking Agent requesting to be noti�ed when

a person is present in a particular location. When a person is present, the Entity

Tracking Agent noti�es the Venue Agent by replying with an informmessage. In

both messages, the content messages, the request for noti�cation and the reply

to subscription, are to be de�ned by the CoolAgent RS.

To provide a
exible implementation for the Subscribe Interaction Protocol,

we have developed a rule-based content message representation technique. This

Rule Shipping technique allows an agent to send Prolog rules as the content of

a subscribe message. The content rules are evaluated by the receiver to deduce

new facts. Deduced facts are replied back to the sender as the content of a inform

message. The following example illustrates the Rule Shipping Technique:

The Entity Tracking Agent has the following contextual information ex-

pressed in RDF triples:

K1: triple('urn:loc1',rdf_type,place_Cafeteria)

K2: triple('urn:loc1',place_name,'HP Cafeteria')

K3: triple('urn:person1',rdf_type,people_Person)

K4: triple('urn:person1',people_fname,'Harry')

K5: triple('urn:person1',people_lname,'Chen')

K6: triple('urn:utc1',rdf_type,times_UTC),

K7: triple('urn:utc1',times_utc_value,'2001-03-27:T13:26:00Z')

K8: triple('urn:isin1',rdf_type, place_Is_In)

K9: triple('urn:isin1',place_entity','urn:person1')

K10: triple('urn:isin1',place_location','urn:loc1')

K11: triple('urn:isin1',times_start_time','urn:utc1')

The Venue Agent is interested in the people presences in a particular location.

It subscribes the following forward-chaining rules as the content of its subscribe

message:

R1: instanceOf(CafeteriaInst,place_Cafeteria),

triple(CafeteriaInst,place_name,PlaceName)

=> cafeteria(CafeteriaInst,PlaceName).

R2: instanceOf(PersonInst,people_Person),

triple(PersonInst,people_name,FName,LName)

=> person(PersonInst,FName,LName).

R3: instanceOf(UTCInst,times_UTC),

triple(UTCInst,utc_value,UTCTime)

=> utc(UTCInst, UTCTime).

R4: instanceOf(IsInInst,place_Is_In),

triple(IsInInst,place_entity,EntityInst),

triple(IsInInst,place_location,LocationInst),

triple(IsInInst,times_start_time,UTCInst)

=> isIn(IsInInst, EntityInst, LocationInst, UTCInst).

R5: isIn(IsInInst,PersonInst,LocationInst,UTCInst),

utc(UTCInst,Time), cafeteria(LocationInst,LocName),

person(PersonInst,FName,LName)

=> {add(shouldInform('com.hp.agent.palo-alto.va',

'com.hp.agent.palo-alto.eta',

'va.ruleid.131'

msg(IsInInst, LocationInst, LocName, UTCInst, Time,

PersonInst, FName, LName)))}.

Upon receiving the subscribe message, the Entity Tracking Agent asserts

these rules into it Knowledge Base (KB). The foward-chaining system in the

Entity Tracking Agent automatically adds new facts that can be deduced. Based

on the triple statements K1-K11, the following facts can be deduced and are

added to the KB:

N1: utc('urn:time1', '2001-03-27:T13:26:00Z')

N2: cafeteria('urn:loc1', 'HP Cafeteria')

N3: person('urn:person1', 'Harry', 'Chen')

N4: isIn('urn:isin1', 'urn:person1', 'urn:loc1', 'urn:time1')

N5: shouldInform('com.hp.agent.palo-alto.va',

'com.hp.agent.palo-alto.eta',

'va.ruleid.131',

msg('urn:isin1','urn:loc1','HP Cafeteria',

'urn:time1','2001-03-27:T13:26:00Z',

'urn:person1','Harry','Chen'))

N1 says there is a UTC time instance referenced by the Unique Resource

Identi�er (URI) 'urn:time1' with the UTC value '2001-03-27:T13:26:00Z'.

N2 says there is a cafeteria instance referenced by the URI 'urn:loc1' with the

venue name 'HP Cafeteria'. N3 says there is a person instance referenced by the

URI 'urn:person1' and with the �rst-name value 'Harry' and the last-name

value 'Chen'. N4 says a person referenced by URI 'urn:person1' is in a location

referenced by URI 'urn:loc1' at UTC time referenced by URI 'urn:time1'.

N5 says the Entity Tracking Agent should inform the Venue Agent, in reply to

the message ID va.ruleid.131, the fact

msg('urn:isin1','urn:loc1','HP Cafeteria',

'urn:time1','2001-03-27:T13:26:00Z',

'urn:person1','Harry','Chen')

The Entity Tracking Agent queries for shouldInform/4 whenever new facts

are asserted to its KB. In the example above, as soon as the rules from the Venue

Agent are asserted, the Entity Tracking Agent queries its KB for shouldInform/4

and returns N5.

The above example shows how the Rule Shipping Technique exploits the

triple representation of the RDF data model to enable reasoning. This technique

allows the Venue Agent to construct customized reasoning rules to infer about

people presences with the only requirement being that both the Venue Agent

and Entity Tracking Agent share a common ontology.

5 Conclusion

Enabling context-awareness is one step closer to the realization of computing

systems that can act in advance and anticipate users' needs. Ontology sharing,

reasoning and sensing are the three important properties that the context-aware

systems need to possess.

In this document we have described a context-aware multi-agent system,

CoolAgent RS. We have demonstrate the feasibility of using RDF data model

and Pfc to support ontology sharing and reasoning in a context-aware system.

We have presented the reasoning infrastructure in the CoolAgent RS, which

enables distributed reasoning and knowledge sharing among agents.

5.1 Future Work

The Rule Shipping Technique provides the foundation for building distributed

cooperative reasoning and knowledge sharing. In the current implementation, the

sender is required to provide a complete set of reasoning rules to be evaluated

by the receiver.

We believe such requirements impose potential scalability issues on the com-

munication message size and the rule construction overhead. One of our immedi-

ate objectives is to develop a more e�ective and scalable distributed cooperative

reasoning and knowledge sharing infrastructure to support context-aware sys-

tems. Moreover, it provides scope for doing research on security considerations

under this scheme.

6 Acknowledgement

The research work described in this document was conducted by Harry Chen

and Sovrin Tolia as part of their research internships at Hewlett-Packard Lab-

oratories. The active support from all the members of the Agents for Mobility

Group and CoolTown Group at HPL is gratefully acknowledged.

Harry Chen would like to thank HPL for the fellowship support that helps

him to begin his initial research work on developing context-aware software

agents.

References

[1] F. Bellifemine. Jade: what it is and what it is next. In Workshop on Models and

Methods of Analysis for Agent Based Systems (MMAABS), Genova, April 2001.

[2] P. J. Brown, N. Davies, M. Smith, and P. Steggles. Towards a better understand-

ing of context and context-awareness. In H.-W. Gellerson, editor, Handheld and

ubiqitous computing, number 1707 in Lecture Notes in Computer Science, pages

304{7. Springer, September 1999.

[3] G. Chen and D. Kotz. A survey of context-aware mobile computing research.

Technical Report TR2000-381, Dept. of Computer Science, Dartmouth College,

November 2000.

[4] W. Conen and R. Klapsing. A logical interpretation of rdf. In Linkping Electronic

Articles in Computer and Information Science, volume 5 (2000):nr 013 of ISSN

1401-9841. Linkping University Electronic Press, 2000.

[5] P. Debaty. web presence manager documentation. Hewlett-Packard Laboratories.

http://cooltown.hp.com/dev/reference/coolbase/wpm/wpm_user_guide.asp.

[6] A. K. Dey, M. Futakawa, D. Salber, and G. D. Abowd. The conference assistant:

Combining context-awareness with wearable computing. In Proceedings of the 3rd

International Symposium on Wearable Computers, pages 21{28, San Francisco,

CA, October 1999.

[7] A. K. Dey, J. Manko�, and G. D. Abowd. Distributed mediation of imperfectly

sensed context in aware environments. Technical Report GIT-GVU-00-14, Georgia

Institute of Technology, September 2000.

[8] T. Finin, R. Fritzson, and D. Matuszek. Adding forward chaining and thruth

maintenance to prolog. In Proc. of the Fifth Conference on Arti�cial Intelligence

Applications CAIA-89, pages 123{130, Miami, FL, 1989.

[9] FIPA. FIPA Communicative Act Library Speci�caiton, pc00037h edition. http:

//www.fipa.org/specs/fipa00037/.

[10] FIPA. FIPA Subscribe Interaction Protocol Speci�caiton, pc00035d edition. http:

//www.fipa.org/specs/fipa00035/PC00035D.pdf.

[11] K. Hinckley, J. Pierce, M. Sinclair, and E. Horvitz. Sensing techniques for mobile

interaction. In Proceedings of the 13th annual ACM symposium on User interface

software and technology, pages 91{100, San Diego, CA USA, November 2000.

[12] O. Lassila and R. R. Swick. Resource Description Framework (RDF) Model and

Syntax Speci�cation. W3C, February 1999.

[13] N. Marmasse and C. Schmandt. Location-aware information delivery with com-

motion. In Proceedings of Second International Symposium on Handheld and

Ubiquitous Computing, HUC 2000, pages 157{171, Bristol, UK, Spetember 2000.

Springer Verlag.

[14] N. F. Noy, R. W. Fergerson, and M. A. Musen. The knowledge model of protege-

2000: Combining interoperability and
exibility. In 2th International Conference

on Knowledge Engineering and Knowledge Management (EKAW'2000), Juan-les-

Pins, France, 2000.

[15] D. Salber, A. K. Dey, and G. D. Abowd. The context toolkit: Aiding the develop-

ment of context-enabled applications. In Proceedings of the 1999 Conference on

Human Factors in Computing Systems (CHI '99), pages 434{441, 1999.

[16] C. Sayers and R. Letsinger. The coolagent ontology: A language for publishing

and scheduling events. Technical Report HPL-2001-194, Software Technology

Laboratory, Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA

94340, USA, 2001.

[17] B. Schiele, T. Starner, B. Rhodes, B. Clarkson, and A. Pentland. Sit-

uation aware computing with wearable computers. citeseer.nj.nec.com/

schiele99situation.html.

[18] G. M. Voelker and B. N. Bershad. Mobisaic: An information system for a mobile

wireless computing environment. In Proceedings of IEEE Workshop on Mobile

Computing Systems and Applications, pages 185{190, Santa Cruz, California, De-

cember 1994. IEEE Computer Society Press.

[19] H. Yan and T. Selker. Context-aware oÆce assistant. In Intelligent User Inter-

faces, pages 276{279, 2000.

$Revision: 1.13 $, $Date: 2001/09/21 03:19:32 $

