
An Intelligent Broker Architecture for
Context-Aware Systems

by
Harry Chen

A PhD. Dissertation Proposal in Computer Science
at the University of Maryland Baltimore County

January 2003

Abstract

Context-aware computing is an emerging paradigm to free everyday users
from manually configuring and instructing computer systems. As the general
trend of computing is progressing towards an open and dynamic infrastructure,
building context-aware systems can be difficult and costly. In order to build
successful context-aware systems, we must develop an architecture to reduce the
difficulty and cost of building these systems. This PhD. dissertation proposal
describes a research plan to develop a broker-centric agent architecture that
is aimed to relieve the burden of capability-limited agents of acquiring and
reasoning about contexts, and to protect the privacy of users in a context-
aware environment. The implementation of the Context Broker Archiecture
will explore Web Ontology Language for modeling contexts and privacy policies,
Jess for building a hybrid reasoning mechanism and JADE/FIPA for realizing
broker behaviors and agent communications.

Contents

1 Introduction 2
1.1 What’s Context-Aware Computing? 2
1.2 Problems in Context-Aware Computing 3

1.2.1 Lack of Reusable Context-Aware Mechanisms 3
1.2.2 Limited Resources in Mobile Devices 4
1.2.3 Privacy Issues in Accessing User Information 6

1.3 Proposed Solution: Context Broker Architecture 6
1.3.1 Use Case . 7
1.3.2 Research Contribution . 8

1.4 Proposal Outline . 9

2 Background 11
2.1 Reasons to Study Context . 11
2.2 Definitions of Context . 11
2.3 Aspects of Context-Aware Computing 13

2.3.1 Enhancing User Interfaces 13
2.3.2 Guiding the Adaptation of System Behavior 14
2.3.3 Enabling Smart Space Applications 14

2.4 How Do Applications Acquire Contexts? 15
2.4.1 Direct Access to Hardware Sensors 16
2.4.2 Facilitated by a Middle-ware Infrastructure 16
2.4.3 Acquiring Contexts from a Context Server 18

2.5 Context-Aware Computing Meets Semantic Web 19

3 Context Broker Architecture 21
3.1 Objectives . 21
3.2 Modeling the Physical World in Domains 22
3.3 An Example System of the Context Broker Architecture 22
3.4 The Design of Domain Context Broker 24

3.4.1 Knowledge Base . 25
3.4.2 Inference Engine . 26
3.4.3 Context Acquisition Component 28
3.4.4 Broker Behavior . 28

i

CONTENTS ii

4 Summary and Research Plan 32
4.1 Initial Approach to Implementation 32

4.1.1 Modeling Ontology and Policy using OWL 32
4.1.2 Building the Inference Engine using Jess 33
4.1.3 Implementing the Broker Behavior using JADE 34

4.2 Feasibility Study . 35
4.3 Milestones . 36

List of Figures

3.1 An example of COBRA system 23
3.2 The conceptual design of Domain Context Broker 25
3.3 A UML diagram of the privacy policy negotiation protocol 29
3.4 A UML diagram of the inform protocol 29
3.5 A UML diagram of the query protocol 30
3.6 A UML diagram of the subscription protocol 31

4.1 A partial example of an OWL ontology 33

1

Chapter 1

Introduction

In the last few years, the demand for computing devices and services has rapidly
increased. As these devices and services become more complex and sophisti-
cated, everyday users often find themselves spending more time and efforts in
configuring and instructing these devices and services. Context-aware comput-
ing is an emerging paradigm to overcome these issues. By enabling computer
systems to understand their situational contexts, context-aware computing frees
users from being the slaves of their computer systems. Thus, it helps the users
to do more by doing less [18].

The general trend of computing is progressing towards the vision of Ubiq-
uitous Computing, in which devices are seamlessly integrated into the life of
everyday users, and services are readily available to users anywhere they go at
any time [50]. In contrast to the traditional computing paradigm, in which the
computing environment is often static and well-defined, in Ubiquitous Comput-
ing, however, the underlying environment is open and dynamic [44, 50]. Because
of these characteristics, building context-aware systems to operate in a Ubiqui-
tious Computing environment will be costly and difficult. In order to develop
successful context-aware systems, we must develop an architecture to reduce the
difficulty and cost of building these systems.

In this proposal, I will study context-aware computing using intelligent
agents [51]. The research aim is to show that the difficulty and the cost of
building context-aware systems can be greatly reduced by the use of a broker-
centric agent architecture called Context Broker Architecture (COBRA).

1.1 What’s Context-Aware Computing?

Framing context-aware computing from the perspective of agents, it is a paradigm
for building intelligent agents that can anticipate the needs of users and act on
their behalf [13]. In the traditional agent paradigm, the behavior of an agent
is fixed for a specific set of environment conditions. In the context-aware com-
puting paradigm, however, the behavior of an agent is designed to adapt to the

2

CHAPTER 1. INTRODUCTION 3

changes of contexts in the environment.
But what is context? The dictionary definition of context is “the interre-

lated conditions in which something exists or occurs” [21]. In context-aware
computing, context is any information that can be used to characterize the
situation of an entity (i.e. a person, computing device, or non-computational
physical object) [19]. For the purpose of introducing context-aware computing,
let’s consider how context plays a role in the following two computing systems:

• Call forwarding [49]: The objective of this system is to automatically
forward calls to users and manage incoming calls based on the contexts
of users in an office. When the system detects a user is not currently
in his office room, it tries to determine his present location in the office
and forward calls to a phone that is nearest to that location (location
context). In addition, when the system detects the user is meeting with
his supervisor in the office, the system automatically forwards calls to the
voice mailbox without interrupting the meeting (social context).

• Shopping Assistant [4]: The objective of this system is to enhance the
shopping experience of users by exploiting their contexts in a store. In
this system, each shopper carries a specialized mobile device. As the
shopper wonders around in the store, the mobile device automatically
displays the description of the items that the shopper is currently seeing
(location context). The device can also recommend sales items that match
users’ interests without any explicit user instructions (personal context).

1.2 Problems in Context-Aware Computing

Although many context-aware systems have been developed in the past few
years [1, 4, 10, 11, 14, 6, 26, 27, 33, 42], the functions of these systems remain to
be primitive [12] because building context-aware systems are often difficult and
costly. In this section, I will describe three key problems that often arise when
building context-aware systems: 1) lack of reusable context-aware mechanisms,
2) limited resources on mobile devices, and 3) privacy issues in accessing user
information.

1.2.1 Lack of Reusable Context-Aware Mechanisms

Building context-aware systems from scratch are often costly and difficult. In
general every context-aware system requires mechanisms to support context
sensing and context reasoning. While context sensing mechanisms deal with
the acquisition of information from the physical environment, context reasoning
mechanisms deal with the interpretation of the acquired information. Because
of lacking reusable context sensing and reasoning mechanisms, many of the
existing context-aware systems are difficult and costly to build.

Context sensing, or acquiring information from the physical environment,
usually involves hardware sensors [1, 10, 27]. In a dynamic environment, a

CHAPTER 1. INTRODUCTION 4

great amount of hardware sensors are required for agents to acquire a wide
divergence of information. Although with the advent of technology the cost
of hardware sensors has been decreasing, attaching a large amount of context
sensors with individual agents remains to be a costly operation. In addition
to the high monetary cost, without reusable mechanisms, directly attach sen-
sors with context-aware agents also makes difficult for building more advanced
and complex systems. Although research attempts have been made to develop
a reusable sensing mechanism by providing a middle-ware infrastructure be-
tween the agents and the sensors (e.g. Context Toolkit [19] and Context Fabric
[28]), as context-aware computing progresses towards an open and dynamic en-
vironment, new problems arise. In an open and dynamic environment, contexts
in question are often distributed in heterogenous sources (e.g. the Web, user
profiles, corporate database, personal agents, etc.). Because the middle-ware
infrastructure that the agents use to acquire contexts are tightly coupled with
the implementation of the agents, modifying the middle-ware infrastructure of-
ten requires modifiying the implementation of the agents. When the number of
agents in the system grows, any modification to the middle-ware infrastructure
could cause the need to modify all agents’ implementations, which is a difficult
and costly operation.

While it is important to develop reusable mechanisms for context sens-
ing, it is also important to develop reusable mechanisms for context reason-
ing. Context-aware agents must reason about the information that they have
acquired in order to become aware of their contexts. The complexity of any con-
text reasoning mechanism is determined by the complexity of the information
that the mechanism attempts to process. Context reasoning mechanisms varies
from simple IF-THEN programming procedures [43, 19] to complex rule-based
programming [14]. With the increasing demand for intelligent systems that can
process more advanced contexts (e.g. user intentions, user roles, activities etc.),
developing context reasoning mechanisms will become more complex and spe-
cialized (e.g. knowledge representation, user modeling, logic programming etc.).
Without any reusable mechanisms for context reasoning, building context-aware
systems from scratch will be difficult and costly.

1.2.2 Limited Resources in Mobile Devices

With the rapid technology advance in mobile computing, mobile devices are
gradually becoming an intricate part of the future computing infrastructure.
While mobile devices have been the core of many of the existing context-aware
systems, these devices often hinder the functionality of their respective systems,
making difficult to build more advanced and complex system behaviors. This
is mainly due to limited computational resources on mobile devices, such as
battery power, information storage, computing power, and communication.

CHAPTER 1. INTRODUCTION 5

Battery Power Constraint

Context-aware agents often rely on sensors to acquire contexts. However, most
of the mobile devices are not designed to support sophisticated sensing hardware
due to their battery power constraint. Although researchers have successfully
integrated sensors on some advanced mobile devices such as Pocket PC [27], the
type of contexts that can acquired using these sensors remain to be basic and
limited. It might be argued that as the mobile computing technology advances,
more powerful devices such laptops and wearable computers will have less re-
stricted battery power. Thus, it will be possible for these devices to be equipped
with sophisticated sensors. However, there is one problem with this argument.
The use of mobile devices is meant for convenience. When mobile devices are
attached with multiple external sensors that are awkward and clumsy, they will
loss their basic function as convenient computing devices.

Information Storage Constraint

Context-aware agents often need to store acquired contextual knowledge in order
to reduce the cost of performing repetitive context acquisition and to exploit
the historical information of contexts from the past.

On mobile devices, the available disk space for storing information are of-
ten limited. Agents usually do not have the privilege to continuously store all
knowledge that are acquired as they provide round the clock services for users.
In order to work with limited storage space, agents will be faced with the chal-
lenge to be selective about what kind of knowledge should be stored and what
kind of knowledge should deleted. Furthermore, because contextual knowledge
acquired from physical environment are potentially inaccurate, agents will also
be challenged to maintain knowledge consistency and resolve information am-
biguity.

Computing Power Constraint

Knowledge management and context reasoning are both computation intensive
processes. They often require substantial computing power (i.e. CPU power and
memory). Because mobile devices are often lack of CPU power and memory,
context-aware agents on mobile devices can only process primitive contexts [12].

One solution to this problem is to off-loaded the computation intensive pro-
cesses to some resource rich stationary computers [43, 19]. However, this raises
the issues in the communication constraint of mobile devices.

Communication Constraint

In a dynamic environment, the communication between agents on mobile de-
vices and the nearby context sources often cannot be pre-defined. This problem
is twofold. First, agents may be lack of sufficient knowledge to communicate
with context sources in the environment (e.g. knowing which sensor can pro-
vide what information and how to communicate). Second, context sources may

CHAPTER 1. INTRODUCTION 6

dynamically join and leave the environment without notifying the agents. For
these two reasons, it will be difficult for context-aware agents on a mobile device
to effectively acquire contexts.

1.2.3 Privacy Issues in Accessing User Information

People have always been concerned about privacy issues in computing systems.
Especially, people are worried about how computer systems use and share their
personal information. In a context-aware environment, agents often collect and
share user information. This raises great concern for user privacy.

Privacy is intrinsically bound up with control - who controls what infor-
mation as well as the applications (agents) that construct and disseminate that
information [2]. In the existing context-aware systems [19, 30, 33, 4], users often
do not have control over how personal information are to be acquired. As con-
text sensors are built to be hidden in the physical space, personal information
are collected without the explicit consent of the users. This is a serious privacy
problem.

Privacy issues also arise when sharing user information. Let’s consider the
following example [2]: a user walks into a conference room. The air-conditioning
agent wishes to adjust the temperature appropriately, and thus asks the room
agent to acquire the identify of the user. The room agent asks the user for
his identity. At the same time, a file caching agent wishes to provide some
file caching services for the user, and thus it asks the room agent for the user
information. The problem here is that when the user has provided the room
agent of his identity for the purpose of adjusting room temperature, there is no
way for the user to know further uses of his identity information provided to the
file caching agent. In another word, the downstream consequences for providing
private information are unknown or unspecified [2].

1.3 Proposed Solution: Context Broker Archi-
tecture

In order to reduce the cost and difficulty of building context-aware systems, I
propose to develop a broker-centric agent architecture (i.e. COBRA) to provide
runtime supports for context-aware systems in an Intelligent Meeting Room en-
vironment1. The design of the COBRA architecture is aimed with the following
two objectives:

1. Enabling distributed context-aware agents (possibly running on resource-
limited mobile devices) to contribute to and access a shared model of the
context

1Intelligent Meeting Room is a type of Ubiquitious Computing system which emphasis
on the any time, anywhere computing paradigm in office meeting rooms. Intelligent Meeting
Room research has close relationship with Intelligent Room [10] and Smart Space [24] research.

CHAPTER 1. INTRODUCTION 7

2. Allowing users to control the access of their personal information in a
context-aware environment

The core of the COBRA architecture is a broker entity called Domain Con-
text Broker (or broker for short). Broker is an autonomous agent that manages
and controls the context model of a specific domain (e.g. an office, a conference
room, or a department). In a domain, the broker has the following responsibil-
ities:

1. Maintaining the context model of the domain, which includes domain
contexts from the past and at the present

2. Resolving inconsistancies and ambiguities of the domain contexts through
information fusion

3. Establishing privacy policies with users before sharing their personal in-
formation

4. Providing knowledge sharing service for context-aware agents through
agent communications

1.3.1 Use Case

As the COBRA architecture finds its application in an Intelligent Meeting Room
environment, let’s consider a use case of the architecture.

After purchasing the latest version of COBRA implementation, the system
administrator installs Domain Context Broker in every rooms of the company
(i.e. conference rooms, office rooms, cafeteria etc.). Each broker is loaded with
specific domain knowledge of the company (e.g. maps of the building, organi-
zational charts etc.) and is connected to various sensors (e.g. badge sensors,
video cameras, corporate messaging services etc.) for acquiring contexts from
the physical environment.

One day afternoon, a scheduled meeting is about to begin. As Alice and
Bob enters the conference room, the broker in the room detects the presence
of the personal agents that run on the devices that Alice and Bob are carrying
(e.g. cell phones, RDIF badges, PDA, laptop etc.). Subsequently the broker
concludes Alice and Bob are currently present in the room.

Before the broker shares these information with any agents in the system,
it negotiates privacy policies with Alice and Bob for sharing personal contexts.
Alice’s policy specifies that her personal contexts can be shared with her per-
sonal agents and any agents that provide meeting related services, as long as she
is attending the meeting. Bob’s policy, on the other hand, specifies that none
of his personal contexts should be disclosed to any agents excepts the meeting
minutes-recording agent and his personal agents (running on remote Web sites
and local mobile devices). Knowning the policies of these two users, the broker
informs their personal agents of their location contexts.

Meanwhile, as other participants arrive at the meeting, from contextual in-
formation acquired from various sources (e.g. the Web, the corporate database,

CHAPTER 1. INTRODUCTION 8

meeting schedule, user profiles etc.), the broker constructs the context model of
the meeting domain. This model includes contextual information about people
who attend or organize the meeting, the location context of the participants,
the activities that are expected to happen during the meeting (e.g. presenta-
tion, discussion, conference calls, demo session etc.) and the roles of different
participants during the meeting (e.g. speaker, audience, organizer, visitor etc.).
Knowning that Alice has a role of being a speaker and will give a presentation
at the begining of the meeting, the broker informs all agents in the room that
wishes to assist Alice for presentation.

Among all the agents that are being informed, the projector agent wishes
to help Alice to setup the presentation. In order to upload the correct slides
to the projector, the agent asks the broker for information. Not knowing the
answer, the broker asks Alice’s laptop agent for slides that Alice is expected to
give a presentation on. The laptop agents replies with appropriate information.
After updating the context model of the domain, the broker immediately relays
that information to the projector agent. Upon receiving information about the
presentation, the projector agent automatically setup the slides and dims the
lights before the presentation starts.

After the presentation, participants decide to have a short break. Leaving
his personal device behind, Bob goes to the cafeteria for a cup of coffee. As
he enters the cafeteria, the local broker detects his presence in the cafteria
and informs his personal agent on the Web of his current location context. At
this moment, without being informed that Bob has ever left the conference
room, Bob’s personal agent on the Web detects knowledge inconsistency of
Bob’s location context. Immediately, the agent reports this critical problem to
both brokers of the conference room and the cafeteria. After sharing evidences
with each other, the brokers resolve knowledge inconsistency in regard to Bob’s
location context and informs his personal agent of the correct information.

1.3.2 Research Contribution

In the user case described in the previous section, if the context-aware agents
(i.e. the personal agents and the projector agent) operate without the support
of the COBRA architecture, then it is clear that each agent must be devel-
oped with specialized context-aware mechanisms. Because the COBRA archi-
tecture will provide agents with a suite of essential context-aware mechanisms,
the developers of the agents can concentrate on the functions of more advanced
context-aware behaviors rather than specific context-aware mechanisms.

The contribution of this dissertation will be to show that the difficulty and
cost of building context-aware systems can be greatly reduced by the use of the
COBRA architecture. This broker-centric agent architecture will demonstrate
the following key features:

• Context aquisition in Semantic Web: in a dynamic environment,
physical sensors can only offer agents with limited access to contexts. To
widen the types of contexts that can be accessed by the agents, the CO-

CHAPTER 1. INTRODUCTION 9

BRA architecture will exploit the emerging Semantic Web infrastructure
and technolgy. In specific, the architecture will demonstrate how Semantic
Web langauges such as OWL (Web Ontology Language) and RDF/RDFS
can be use to model and reason about contexts in an Intelligent Meeting
Room environment.

• Hybrid context reasoning mechanism: maintaining consistent and
coherent model of context in a dynamic environment requires advanced
context reasoning mechanisms. In the previously developed context-aware
systems, context reasoning has always been built on ad hoc procedures
with deductive reasoning in core. To improve upon the existing approach,
the COBRA architecture will integrate the context reasoning with other
means of machine reasoning (e.g. heuristic reasoning, fuzz logic, statistic
analysis, user modeling etc.) to build a hybrid context reasoning mecha-
nism.

• Knowledge sharing through context models: when acting in isola-
tion, agents have limited access to context. To overcome this problem,
the COBRA architecture will extend the standard FIPA architecture [22]
to allow distributed agents to contribute to and access a shared model of
context. Through knowledge sharing, context-aware agents can effective
detect and resolve inconsistent contextual knowledge.

• Policy-driven privacy protection: in a context-aware environment,
using or sharing users’ personal contexts without the consent of the users
violate user privacy. In order to allow users to control how their personal
contexts can be used and shared, the COBRA architecture will define a
policy-driven mechanism to protects the privacy of users. This mechanism
allows users to negotiate with the context-aware systems to form policy
rules that defines how personal contextual information can be used and
shared.

In addition to the design of the COBRA architecture, along with required
ontologies, APIs and protocols, I will also demonstrate the feasibility of this
broker-centric approach by developing a prototype system. This system will be
evaluated thru a series of experiments in an Intelligent Meeting Room scenario
(see Sec. 4.2).

1.4 Proposal Outline

• In Ch. 2, I will discuss the notion of context and context-aware comput-
ing research. In addition, I will examin the future research direction of
context-aware computing in the light of Semantic Web.

• In Ch. 3, I will describe a detailed design of the Context Broker Archi-
tecture. The discussion will cover how COBRA organizes contexts, how
broker maintains a model of context, negotiate privacy policy with users,
and sharing contextual knowledge with agents.

CHAPTER 1. INTRODUCTION 10

• In Ch. 4, I will summarize this document and present the preliminary
research approach. A feasibility study will be described for the purpose
of evaluating the COBRA architecture. At the end, the milestones of the
future research will be presented.

Chapter 2

Background

2.1 Reasons to Study Context

We humans often exploit context when we communicate and take actions. Be-
cause we are context-aware beings, we are able to effectively convey ideas with-
out needing to explicitly state background information during conversations.
For example, when two people walk into the same room, one person tells the
other person, “Close the door, please”. Because they share a common context,
there is no need for the first person to explicitly point out the door he intends
to close. Context can also guide us to adapt behavior in changing environment
conditions. For example, in a movie theater, when a movie starts to play, we
usually try to avoid loud conversations; when driving on a highway, as traffic
becomes heavier, we usually slow down in order to avoid hitting other cars.

Because the notion of context effects the intelligent behavior of the humans,
it is generally agreed that context-awareness should be simulated in comput-
ing systems to strengthen their capability to communicate, to behavior and to
process information. Context has been studied in many different fields of com-
puter science, including Artificial Intelligent [36, 48], Information Retrieval [11],
Nomadic Computing [30], Sensor Networks [46, 40] and Ubiquitous Computing
[42, 43, 3, 13]. Although different fields of research have studied contexts with
distinctive aims, they all recognize that context-awareness is the vehicle to the
realization of intelligent computing systems.

2.2 Definitions of Context

In order to engineer computing systems that are context-aware, it is important
to understand what constitutes context from an engineering perspective. In
another word, how should the notion of context be defined when developing a
context-aware system?

In Ch. 1 we have seen the general definition of context in a dictionary is “the
interrelated condition in which something exists or occurs”. Some researchers

11

CHAPTER 2. BACKGROUND 12

argue that the dictionary definition does not offer much understanding about
how context is related to computing environment [12]. Thus, a more precise
definition of context must be developed for building context-aware systems.

Schilit et al. characterize context as a collection of information that describe
the users in a context-aware system. Schilit describes context as the following
[43]:

Definition 1 In a mobile distributed computing system, contexts are the loca-
tion of the user, the identity of people and physical objects that are nearby the
user, and the states of devices that the user interact with.

While this definition characterizes the types of contexts that Schilit et al.
have developed [43], but it does not cover any other types of contexts that are
useful for building context-aware systems (e.g. the intentions of the users, the
activities that the users are participanting etc.). Dey argue that a definition
of context should not just be a list of information that describes users or the
system because “context is all about the whole situation that is relevant to an
application and its set of users” [19]. Because the situation relevant to an
application and its users consists of potentially infinite number of information
[12], it is not suitable for the definition to be just based on the enumeration of
these information. Dey gives a different definition of context [19]:

Definition 2 Context is any information that can be used to characterize the
situation of an entity. An entity is a person, or object that is considered relevant
to the interaction between a user and an application, including the user and
application themselves.

It is clear that Def. 2 is more general in comparing to Def. 1. While it does
not bind to a specific list of information, Def. 2 extends the notion of context to
include any information that describes physical objects and computing appli-
cations in addition to users. Besides Schilit’s and Dey’s definitions of contexts,
few other researchers also have attempted to describe context from a computing
persepective [46, 12]. All of which are closely in spirit of the formers.

Although a number of definitions of context have been offered, but none so
far has been adopted as the standard definition of context for context-aware
computing. In my opinion it is likely that multiple definitions of contexts will
co-exists for various reasonings (e.g. political or technical). Subscribing to the
thinking of McCarthy and Buvac [36], I believe that it is acceptable for vari-
ous definitions of context to co-exist if they are all useful for building effective
computing systems. However, it is important to recognize that when adopting
a general definition of context for the development purpose, it is still necessary
for developers to further specify or enumerate a list of contextual information
that will give design specification of the system. In other word, I suggest a
combination of Schilit’s and Dey’s approaches to define context.

In this document, I will introduce a modified version of Def. 2 as the defini-
tion of context for developing the COBRA architecture. This definition (Def. 3)
aims to describe the following four piecie of contexts in an Intelligent Meeting
Room environment:

CHAPTER 2. BACKGROUND 13

1. Who are the people in the environment?

2. Where are these people (in the past, now, and in the future)?

3. What devices are around or carried by these people?

4. Why are these people and devices in the environment?

Definition 3 Context is any information that can be used to characterize the
situation of an entity. An entity is a person, a computing device or a non-
computing physical object that is considered relevant to the interaction between a
user and an application. In an Intelligent Meeting Room environment, contexts
are

1. the identity of people and devices,

2. the location of the people and devices,

3. the activities that the people are participanting in, and

4. the roles and intentions of people when participating in the activities.

2.3 Aspects of Context-Aware Computing

2.3.1 Enhancing User Interfaces

One aspect of context-aware computing is aimed to enhance the user interface
of mobile devices. Mobile devices become increasing important in our everyday
life. Although these devices give us the freedom to exploit computing services
without constraining us to sit in front of the desktop computers, they also
raise new challenge in designing user interfaces. At any time, the users can be
simultaneously engaged in real-world activities while interacting with the mobile
devices, for example walking down a busy street, talking to other people, and
driving a car. Because typical sessions with these devices may last seconds or
minutes rather hours, the design of user interfaces must be minimally disruptive
and minimally demanding of cognitive and visual attention [27].

For today’s mobile devices, the size of a device often constrains the design of
its user interfaces. These devices often have tiny buttons, small display screens.
Users often feel awkward to interact with the device through these miniature
interfaces. For example, finding a button or activating a control on the screen
can require significant visual attention [27].

To overcome this problem, Hinckley el at. have developd a context-aware
approach to replace some traditional user interface on a palm-size PC (i.e. Cas-
siopeia E-105) [27]. In their approach, the functions of the device can be con-
trolled by the way how a user holds the device, the position of the device and
the orientation of the device. For example, when the on-board sensors detect
the user is holding the device like a cell phone or microphone and speaking into

CHAPTER 2. BACKGROUND 14

the device, then the device will automatically active the voice memo applica-
tion. When the sensors detect the user is holding the device in a landscape
orientation as oppose to portrait, the device will automatically reformats the
display to suit the current viewing orientation.

Schilit et al. [44, 43], Rekimoto [41], Harrison et al. [26] also have develop
similar approaches to enhance the user interfaces on mobile devices. Schmidt et
al. [45] describe a cell phone that combines tilt, light, head, and other sensors
to sense the context of the device such as sitting on a table, in a briefcase,
or being used outdoors. These states are exploited to automatically adjust the
tone and the volume of the ring. Rekimoto uses the tilting position of the device
for guiding menu selection. Harrison et al. exploits the tilting position to help
users to scroll through the information on the device display.

2.3.2 Guiding the Adaptation of System Behavior

In an open and dynamic environment, conditions are constantly changing. Con-
text is useful for guiding systems to adapt their behavior. The key characteris-
tic of the future computing world is dynamic. Because the interactions between
users and computers will no longer be restricted in a fixed environment, user de-
vices and computing systems will need to be able to dynamic adapt their behav-
iors. For example, when the network bandwidth changes, the video streaming
application on a wireless PDA must be able to dynamically adjust the stream-
ing quality without interrupting the viewer’s attention [44]; in a public social
environment, when not all people are trusted users, a document sharing service
must be able to dynamically adjust the policy for sharing sensitive documents
based on the role of the users [14].

Network properties are commonly used contexts for guiding the behavior
change of mobile applications. These properties include network bandwidth,
error rate, connection setup time, usage costs, security requirements, contention,
disconnection rate, and round-trip delay [44]. Among these properties, network
bandwidth is the mostly used. For example, the context of network bandwidth
can guide the video player application on a mobile device to automatically
adjusts the quality of video to play without interpreting the streaming of the
video, and it can also guide a web browser to decide the right image files to
request from the web server without increasing the downloading time [37].

2.3.3 Enabling Smart Space Applications

Context also plays important role in developing intelligent applications in Smart
Space research. The research is developed on the belief that in order for ubiqui-
tous computing to be successful, we must develop computer systems that draw
computing into the natural world of the humans, as oppose to drawing humans
into the complex world of computers [25]. In the context of Smart Space, the
notion of context provide a means for computer systems to automatically reason
about the situation of the human users. Thus, it allows systems to anticipate
the needs of users and act on their behalf.

CHAPTER 2. BACKGROUND 15

User location is a commonly used context in Smart Space research. In Cy-
berguide [19], the location of a tourist is exploited by the system to provide
direction services and interactive map services. In the call forwarding system
described in Ch. 1, the system exploits the location of employees when routing
incoming calls in an office. Bennett et al. [6] describes a teleporting system
which exploits user locations to enable the user interface of applications to dy-
namically migrate from resource-poor mobile devices to nearby resource-rich
devices. In Intelligent Room project [15], the location of a user in a room is
used in conjunction with other context to determine the user’s intention.

User identity is another commonly used context. The identity of the user
is often mapped from some kind of physical objects that the user carries (e.g.
RFID badge, Active Badge, and PDA) [43, 19, 34]. From user identity informa-
tion, systems can provide customized services without requiring explicit inputs
from the users, and thus minimizes the efforts on the side of the users to manu-
ally configure and instruct the systems. Asthana et al. [4] describes a shopping
assistant system that uses user identity information to distinguish shoppers from
regular customers who are anonymous and store customers whose identities are
known by the system.

In a few Smart Space systems, the intention of a user have been explored
as one type of user context. Unlike user location and identity contexts, user
intention cannot be easily acquired from direct sensing. Customized reason-
ing mechanism is required to infer user intention from conditional information
gathered from the environment. In the Intelligent Room project, user intention
is inferred from the behavior model that is associated with the user [15]. For
example, a user can be walking, sitting, standing or pointing in a meeting. De-
pends on the noise level and people motions, the system can conclusion about
what the user is current doing.

2.4 How Do Applications Acquire Contexts?

Context is any information that can be used to characterize the situation of
a person, a device or a non-computing physical object. To enable context-
awareness, system developers must provide agents with the access to context.
The process of acquiring context from the physical environment is called context
acquisition. This section reviews three different approaches that enable context-
aware agents to acquire contexts:

1. Contexts are acquired by directly accessing low-level context sensors.

2. Contexts are acquired from some kind of middle-ware infrastructures that
in turn interact with low-level context sensors.

3. Contexts are acquired from servers that maintain situational knowledge
about the environment.

CHAPTER 2. BACKGROUND 16

2.4.1 Direct Access to Hardware Sensors

To access contexts in the real world requires sensors. Thanks to the advance of
sensing technology, a diverse type of contexts can be made available to context-
aware agents. Many mobile devices and system applications have exploited this
opportunity to bring about context-awareness.

In the design of a context-aware user interface for palm-size PC [27], the
device acquires contexts by directly accessing three different type on-board sen-
sors: proximity range sensors, touch sensors, and tilt sensors. From the prox-
imity range sensors, the device can determine a proximate distance between a
physical object in the range and the device. From the touch sensors, the device
can determine whether a user is holding the device and how long it has been
held. From the tilt sensors, the device can determine the tilt angles of the device
(i.e. left/right and back/forward), the display orientation of the device, whether
the device is being shook etc.

In the design of the Forget-me-not devices, the device directly access Active
Badge sensors to determine the location of the users and people whom the
users have encountered [33]. Using Active Badges, in the call forwarding system
described by Want et al. [49] and in the teleporting system described by Bennett
et al. [6], context-aware agents also directly access the sensors for the up-to-date
location information of the users.

Langheinrich el at. describes a RFID Chef application that recommends
cooking recipes for available foods on the kitchen table [34]. In this system, the
agent directly access RFID sensors to identify the type of food that is available.

It is clear that all systems described in the above acquire context from a
diverse type of sensors. However, they all have one theme in common: from the
raw data provided by the low-level sensors, individual agents apply their own
interpretation of contexts. This approach has some potential problems.

First, in order to extend an existing agent to consider additional contexts,
the agent must be modified and the context acquisition procedures must be
rewritten. Second, because the context acquisition procedures are tightly cou-
pled with the application implementations, such design discourages code reuse.

2.4.2 Facilitated by a Middle-ware Infrastructure

To overcome the extensibility and reusability problem impose by tight coupling
sensor accessing and application implementation, middle-ware approaches have
been proposed to facilitate context acquisition. The underlying principle in
the middle-ware approach is to separate the low-level sensing details from the
high-level agent implementations.

In Odyssey [37], agents on mobile devices rely on a middle-ware infrastruc-
ture called Odyssey client to provide context about the communication network.
An event notification approach is used in Odyssey to notify agents about the
context changes. To acquire context, agents running on the device first specifies
a window of tolerance (the context that the agents are interested), and then
registers a event notification with the Odyssey client along with the window

CHAPTER 2. BACKGROUND 17

of tolerance. When the client discovers that the availability of a resource has
strayed outside a registered window of tolerance, it generates a upcall (notifi-
cation) to the corresponding agents. Using this architecture, Noble et al. have
develop three context-aware agents (i.e. a video player, a web browser, and a
speech recognizer) that can adapt their behaviors in changing of network band-
width.

Similar to the design of Odyssey which shields high-level implementations
from low-level context sensing details, Context Toolkit [19] is another middle-
ware infrastructure that facilitates context acquisition. Inspired by the design of
graphical user interface (GUI) toolkit which shields interface interaction details
from the applications, the Context Toolkit is designed to shield context sensing
details from the agents. The design of the toolkit builds on the widget concept.
The toolkit defines a collection of widgets called context widgets to deal with
low-level sensing details. For example, the IdentityPresence widget provides
callbacks for agents to notified about the departure and arrival information of
people. This widget in turn accesses iButton and TIRIS RF tags for context
sensing. Using widgets provided by the Context Toolkit, a number of context-
aware agents have been developed, for example, the In/Out Board which tracks
the presence of people in an office, and the DUMMBO Meeting Board which is
an instrumented digitizing whiteboard that supports the capture and the access
of meeting minutes.

Both Odyssey and Context Toolkit have taken a middle-ware approach to
facilitate context acquisition. Because the low-level sensing of contexts are
shielded from the high-level applications, both architectures make easy for devel-
opers to introduce new contexts in an existing applications. Thus, they promote
the reuse of context acquisition mechanisms.

However, in a dynamic environment, these middle-ware approaches face
knowledge consistency problems when supporting a large-scale of system. In
a large-scale system, there are a vast number of agents. With any middle-ware
approach, individual agent can only access context through their own context
acquisition components. For example, in Odyssey, agents on a mobile device
can only access the Odyssey client that are built-in to the device operating sys-
tem; in Context Toolkit, agents can only access designated context widgets in
the local environment. Because context sensed by the low-level sensors can be
noisy and possibly inaccurate [20], in the absence of a shared memory, different
agents can potentially possess inconsistent or conflicting knowledge about the
same context.

Moreover, complex middle-ware infrastructures often cannot be built into de-
vices with limited computing resource. Sensing context and interpreting context
are often computation intensive operation (e.g. communicating with hardware
sensors, computing error correction for noisy sensed data). Although the pro-
gramming codes for context sensing and interpretation are abstracted for the
agents in both Odyssey and Context Toolkit, but all computation of contexts
are processed on the same computing platform as the agents. As the complexity
of context sensing increases (i.e. more sensors and more sophisticated context in-
terpretation), resource-poor devices cannot possibly accommodate the resource

CHAPTER 2. BACKGROUND 18

demands of the middle-ware infrastructures.

2.4.3 Acquiring Contexts from a Context Server

In order to support a large number of context-aware agents (potentially with
limited resources) in a dynamic environment, an alternative approach is to en-
able agents to access contexts from a server entity (or context server). The idea
is to relieve the burden of sensing context and computing context completely
from the agents by shifting these tasks into a resource-rich server. Running
on a resource-rich computing platform, context server is a server process that
maintains contextual knowledge on the behalf of the agents.

Enabling context reasoning is the main advantage of the context server in
comparing to the previous two. Context reasoning is a process in which con-
textual knowledge acquired from low-level sensors are aggregated to deduce
additional knowledge that otherwise cannot be directly sensed using hardware
[14]. For example, the knowledge about the roles of different people in meeting
cannot be directly acquired using conventional sensors like RFID badges. Such
knowledge can only be deduced through a systematic reasoning process. For
example, when determining the context of a meeting, the knowledge about the
presence of people often need to be reasoned in conjunction with the background
knowledge of an on-going meeting [44, 19, 14].

Given the vast number of things in the real world that can have contexts,
the design of context server often divides the physical world into sets of micro-
world. In the design of the Me-Centric Domain Server (or domain server for
short), these micro-worlds are called domains [39]. The notion of domains pro-
vides domain server a means to effectively reason about contexts. For the do-
main that is managed by the domain server, customized reasoning rules (i.e.
RDF/RDFS axiom rules) are defined to deduce contextual knowledge (i.e. the
location context of the people in room).

To support context-aware applications running on resource-poor devices,
applications can acquire context from the server through high-level communica-
tions. In the Me-Centric Domain Server, communications are defined in terms
of speech act primitives. Using these defined primitives, applications can query
the domain server for desired contextual knowledge. In addition, the domain
server also allows internal contextual knowledge to be modified by applications
through communications (i.e. add/remove/update facts).

There are similarities and differences between the context server approach
and the other two approaches described in this Sec. 2.4.1 and Sec. 2.4.2. In
particular, both the context server approach and the middle-ware approach can
overcome the tight-coupling problem of the direct sensor access approach. Like
the middle-ware approach, the context server approach also can separate the
low-level sensing details from the high-level implementations. On the other
hand, the context server approach can overcome the limitation of the middle-
ware approach in supporting a largr number of agents that are potentially with
limited resources. However, there are general concern for the centralized design
of the context server (i.e. single point of failure). Kumar el at. has addressed this

CHAPTER 2. BACKGROUND 19

problem by developing a team of servers with pre-defined cooperation protocols
(i.e. Joint Intention) to achieve fault-tolerance [32].

2.5 Context-Aware Computing Meets Semantic
Web

In the past few years, the Web is gradually becoming a de facto standard for
people to share information, for business to provide services and for users to
communicate with their devices. As this trend continues, the Web will create a
number of new opportunities for context-aware computing.

First, the emerging Semantic Web standards will enhance the communication
and information sharing between context-aware applications. Second, the Web
will become a major source of information for determining the context of users
and their associated daily activities.

Semantic Web is a vision of the next generation Web infrastructure. In this
vision, both web pages and web services will all be annotated with semantic
mark-ups. These mark-ups provide a means for computer systems to “under-
stand” the content of the web pages and the operational details of the web
services [8]. The Semantic Web standards emphasis on ontology representation
as a means for describing web contents and services. An important part of the
standards is the semantic mark-up languages for representing web ontologies.
Built on XML encoding, Web ontology languages such as RDF/RDFS [35, 9],
DAML+OIL [8] and OWL [17] are some of the popular mark-up languages for
constructing web ontologies.

As Web ontology languages emerge, they will play important roles in the
communication and information sharing between context-aware agents. Effec-
tive communication between independently developed agents requires sharing
of common ontology. In the existing context-aware systems, domain ontolo-
gies are often built into the specific implementation of the systems. Thus, it is
extremely difficult for independently developed systems to interoperate, com-
munication and share information. Web ontology languages could a solution to
this problem. Through explicit modeling of domain ontology, context knowl-
edge are represented and reasoned in separate of the system implementations.
A declarative representation of context allows independently developed agents
to share and exchange information and thus achieves interoperability.

Another important role of Semantic Web is context acquisition. In today’s
Internet, the Web is one of the most effective medium for people to acquire
information, whether it is information about a person, a project, a service or
an event. As the Semantic Web technology matures, the future Web will be
populated with vast amount of information that will be invaluable for deter-
mining contexts. For example, let’s consider a person who lives in a Cooltown
environment [30]. When this person enters a room, his location information
(his presence in the room) is automatically updated in his Web Presence Man-
ager (his personal web site). Immediately, context-aware agents in both remote

CHAPTER 2. BACKGROUND 20

and local environment can acquire the presence information about the person
through the Web without needing any sensing or reasoning. From this simple
scenario, it is clear that the future Web technology will be invaluable to context-
aware computing. Not only because it enables independently developed agents
to interoperate but also opens a new frontier for agents to acquire contexts.

Chapter 3

Context Broker
Architecture

Building context-aware agents can be difficult and costly without the support
of any computing infrastructure. In order to reduce the cost and difficultites
of building context-aware agents, we must develop an architecture to enable
distributed agents to contribute to and access a shared model of contexts and
to allow users to control the access of their personal information in a context-
aware environment.

In this chapter, I will describe the design of the COBRA architecture. Ex-
tending the FIPA agent platform, this architecture is aimed to relieve the burden
of context-aware agents of acquiring and reasoning about context and to provide
privacy protections for users in a context-aware environment.

3.1 Objectives

The overall design objective of the COBRA architecture is to reduce the cost
and difficulty of building context-aware agents. The design of this architecture
will demonstrate the following four key features:

1. Acquiring context from heterogeneous sources: in order to sup-
port the functions of advanced context-aware behaviors, it is necessary
for agents to consider information from a wide range of sources (e.g. the
Web, user profiles, behavior patterns etc.), not just from sensors that are
embedded in the local environment. To help capability-limited agents, the
COBRA architecture will acquire information from heterogeneous sources
and reason about contexts on the behalf of these agents.

2. Maintaining consistent contextual knowledge: in a dynamic envi-
ronment, capability-limited agents cannot maintain consistent knowledge
without the support of computing infrastructure. In order to prevent these

21

CHAPTER 3. CONTEXT BROKER ARCHITECTURE 22

agents from making inaccurate decisions due to inconsistent knowledge,
the COBRA architecture will detect and resolve any contextual knowledge
that may be inconsistent or ambigious on the behalf of the agents.

3. Enabling knowledge sharing among agents: when acting in isolation,
the knowledge of a single agent is limited. In a dynamic environment, it
is more cost-effective for agents to share their knowledge. Knowledge
sharing requires cooperation. Because independently developed agents
do not have pre-defined cooperation to share knowledge, the COBRA
architecture will enable these agents to share knowledge through high-
level agent communication.

4. Protecting the privacy of users: context-aware agents will rely on
the support of COBRA to acquire contexts. To protect user information
from being misused by context-aware agents, the COBRA architecture will
provide mechanisms for users to control how their personal information
are to be shared and used by agents in the environment.

3.2 Modeling the Physical World in Domains

Because the number of contexts that can be described are potentially infinite
in the real world, it raises the question of how to effectively model and structure
contexts?

Taking the traditional “divide and conquer” approach, the world can be di-
vided into a collection of micro-worlds that allows contexts to effectively mod-
elled and structured. In the COBRA architecture, these micro-worlds are called
domains. Each domain is a knowledge model (or context model) about a partial
world in which people, devices and non-computing physical objects interact.

The context model of domain consists of the contextual information that
describes 1) the identity of people and devices in the domain, 2) the location
of these people and devices, 3) the activities that these people are participating
in, and 4) the roles of and intentions of these people when participating in the
activities. The description of these contexts follows the definition of context
given in Def. 3 in Ch. 2.

The term domain defined here is similar to the definition of domain defined
in the Me-Centric Domain Server [39]. However, unlike the previous definition,
the COBRA architecture makes no distinction between the types domains that
make up the real world.

3.3 An Example System of the Context Broker
Architecture

In the COBRA architecture, a domain represents a part of the real world on
which a context-aware system can be built. A context-aware system may con-
sists of multiple domains. In each domain, there is an autonomous agent called

CHAPTER 3. CONTEXT BROKER ARCHITECTURE 23

Domain Context Broker. The role of the broker is to enable context-aware
agents to share a common model of context and to protect the privacy of users
in the environment. The details of a broker is described in Sec. 3.4.

Let’s consider an example of a COBRA system of a Computer Science de-
partment (see Fig. 3.1). This system consists of six different domains. The
context of each domain is managed by a broker. To make their presence to be
known by other agents, the brokers register themselves with the FIPA Agent
Directory Services.

Broker

Conference Room 210
Domain Weekly Faculty Meeting

Domain

Ad-hoc Meeting Domain

Conference Room 162
Domain

Grad. Course CMCS
411 Domain

FIPA
Agent

Directory
Service

Office Room 212
Domain

Broker

Broker

Broker

Broker

Broker

Figure 3.1: An example of COBRA system

It is important to note that in a COBRA system, there is no fixed rules
for deciding the organization of domains. System developers are responsible
for making such decisions. For example, in Fig. 3.1 there are two distinctive
meeting domains (i.e. Weekly Faculty Meeting Domain and Ad-hoc Meeting
Domain). However, it is completely legitimate for a system developer to decide
combining these two domains into one single domain (e.g. Meeting Domain).

Someone may argue that this definition of domain seems too loose and gen-
eral. It may create potential arguments for deciding whether some part of the
world should be an independent domain or should be a part of some larger do-
main. However, this problem can be solved through standardization. As the
development of Ubiquitious Computing matures, it is likely that there will be
standard ontologies for describing intelligent systems and the physical environ-
ment. With these standard ontologies, the arguments for whether some part of

CHAPTER 3. CONTEXT BROKER ARCHITECTURE 24

the world should be an independent domain or not will simply be a question of
which standard ontology should one adopt.

3.4 The Design of Domain Context Broker

Domain Context Broker is the core of the COBRA architecture. Brokers are
always pre-defined for each domain in the system. In specific, the profile of these
brokers (i.e. how can an agent communicate with the broker, which domain does
a broker belong to etc.) are pre-defined knowledge of agents in the system. A
broker has the following four responsibilities:

1. Context Acquisition and Fusion: the broker will fuse contexts by
acquiring information from heterogeneous sources. During the process of
context fusion, the broker will continuously monitor information changes
in different sources and pro-actively acquire missing information as sources
becomes available.

2. Knowledge Maintenance: the broker will maintain the context model
of the domain. During this process, the broker will continuously revise
its contextual knowledge for the purpose of ensuring a consistent and co-
herent knowledge base. This process will be triggered either when some
inconsistency knowledge are detected or when some users choose to re-
move their personal information from the knowledge base due to privacy
concerns.

3. Knowledge Sharing: the broker will enable independently developed
agents to share contextual knowledge through agent communications. The
broker will allow agents to query contextual knowledge of the domain and
to register event notifications for context changes. Through knowledge
sharing, capability-limited agents can contribute to a shared model of
contexts and can access context that are otherwise inaccessible if they act
in isolation.

4. User Privacy Protection: the broker will negotiate privacy policy
with individual users before sharing any contextual knowledge with other
agents. The privacy policy of a user will define what personal information
the user is willing to share with agents in the system, under what circum-
stances specific information can or cannot be shared etc. When sharing
information with untrusted agents, the broker will attempt to protect the
privacy of the users by assigning anonymous identities to replace the true
identities of the users.

The above four responsibilities of the broker define the functional require-
ments of the broker. To meet these requirements, Fig. 3.2 shows a conceptual
design of a Domain Context Broker. The following subsections will overview
the design of each component in the figure.

CHAPTER 3. CONTEXT BROKER ARCHITECTURE 25

Privacy Policy
Negotiation

Knowledge
Sharing

Broker Behavior

Knowledge Base

Domain
Ontology

User Privacy
Policies

Contextual Knowledge

Domain
Heuristics

Context
Reasoning

Module

Knowledge
Maintenance

Module

Inference
Engine

Ontology
Reasoning

Module

Context
Acquisition
Component

Context
Sensors

Context
Interpreter

Figure 3.2: The conceptual design of Domain Context Broker

3.4.1 Knowledge Base

The Knowledge Base of a broker is a data repository for both context model
of the domain and system knowledge of the domain. The make-up of context
model is simply contexts defined in Def. 3 (see Ch. 2). The make-up of system
knowledge consists of Domain Ontology, Domain Heuristics and User
Privacy Policies.

Domain Ontology

Domain ontology is a set of well-defined vocabularies, concepts, functions and
relationships that enable the broker to reason and to behave. In specific, this
ontology is divided into four distinctive categories:

1. Context Model: this model covers the fundamental concepts for represent-
ing contexts. It allows the broker to reason about contexts and provides
a means for the broker to share knowledge with agents in the system.

2. Information Source Model: this model defines the information sources
from which the broker can acquire contexts. It provides a specification for
the broker to communicate with sensors, users devices, and web services.

3. Agent Profile Model: this model specifies the profile of different context-
aware agents, that is the type of services that an agent offers, the reason
for acquiring certain contexts etc. Knowing these information, the broker
can effective decide from which agents the true identity of users should
be hidden, for what purpose an agent needs to access a user’s personal
information etc.

4. Information Privacy Model: this model specifies rules for determining
whether a piece of contextual knowledge is sensitive user information and
should it be treated with great care. This model does not exclude infor-
mation that is not directly related to people to be sensitive information
(e.g. the subject and the time of a meeting).

CHAPTER 3. CONTEXT BROKER ARCHITECTURE 26

Domain Heuristics

Domain heuristics are rules for supporting context reasoning. The use of these
rules is twofolded. First, heuristic rules can help the broker to resolve knowledge
inconsistency that are caused by imperfect sensing. Second, heristic rules can
help the broker to build and maintain a shared model of context.

User Privacy Policies

User privacy policies are rules that the broker and individual users have come
to agree upon before the broker shares any of the user information with agents
in the system. Each user has his/her own privacy policy with the broker. Each
policy specifies who defines the policy, what information can or cannot be shared,
what agents does a specific rule apply to etc.

3.4.2 Inference Engine

In each broker, the Knowledge Base is always coupled with an Inference Engine.
The Inference Engine consists of three reasoning modules that each performs
distinctive reasoning tasks. These modules are Ontology Reasoning Module,
Context Reasoning Module and Knowledge Maintenance Module.

Ontology Reasoning Module

The main function of the Ontology Reasoning Module is to deduce facts that
can be concluded from the knowledge in the Knowledge Base in conjunction
with the models that are defined in the Domain Ontology. For example, based
on the Context Model, the Ontology Reasoning Module will reason about the
containment relationships between conference rooms and buildings; based on
the Information Source Model, this module will conclude in order to acquire
the location context of a meeting, the broker must communicate with the web
service which maintains the schedule of the meeting; based on the Agent Profile
Model, this model will deduce that any agent that does not carry a valid secu-
rity certificate will not be allow to share any information of the user context;
based on the Information Privacy Model, this module will conclude, the subject
of the meeting and the identity of participants are all considered as sensitive
information in a business board meeting.

Context Reasoning Module

The Context Reasoning Module of an Inference Engine is responsible for reason-
ing about the contexts of the domain. In contrast to the Ontology Reasoning
Module which focuses on ontology reasoning, this module focuses on context
reasoning. Context reasoning, again, is the process of reasoning about situa-
tional conditions of an entities by aggregating information that are acquired
from the physical environment.

CHAPTER 3. CONTEXT BROKER ARCHITECTURE 27

The underlying reasoning mechanism of this module may be a hybrid compo-
sition of logic reasoning (e.g. deduction, fuzz logic etc.) and statistical analysis
(e.g. decision trees, Bayesian networks etc.). The reasoning procedures defined
in this module will exploit the heuristic knowledge defined in the Domain Heuris-
tic component (see Sec. 3.4.1).

Knowledge Maintenance Module

The Inference Engine of a broker also include a module called Knowledge Main-
tenance Module which is solely responsible for maintaining the consistency of
contextual knowledge in the Knowledge Base. There are two different aspects
of knowledge inconsistency. In one aspect, knowledge stored in the Knowledge
Base may be inconsistent because there are noise in the information acquired
from the physical environment. In another aspect, knowledge may be incon-
sistent because knowledge stored in the Knowledge Base does not accurately
reflect the dynamic changes in the environment.

To maintain consistency of the Knowledge Base, this module will periodically
monitor the facts that are stored in the Knowledge Base. When inconsistent
knowledge exists, this module will attempt to resolve the inconsistency by mod-
ifying the Knowledge Base. There are two methods for detecting knowledge
inconsistency:

1. Check logical implication: in this method, inconsistency are detected
through a systematic process of checking logically implications between
different facts and rules. For example, assume that the Knowledge Base
has a rule which states “If A is true, then B must be true” and a
fact which states “B is not true”. Now, a new fact “A is true” is as-
serted, and which leads to the new conclusion of “B is true”. At this
moment, the module will detect that it is logically incorrect for both facts
“B is not true” and “B is true” at the same time. Thus, the module
concludes there is an inconsistency in the Knowledge Base.

2. Apply domain heuristics: in this method, inconsistency are detected through
a reasoning process which attempt to maintain consistency between the
current state of the world with the heuristics that defined in Domain
Heuristics. For example, let’s assume that there is a heuristic rule which
state “No one person can be in two different rooms at the same
time” and there is a fact which states “Bob is currently attending a
meeting in RM 201” and another fact which states “Bob is currently
typing a paper on his computer in RM 102”. It is clear that both
facts cannot be both true at the same time in according to the defined
heuristic. Thus, the module concludes there is an inconsistency in the
Knowledge Base.

CHAPTER 3. CONTEXT BROKER ARCHITECTURE 28

3.4.3 Context Acquisition Component

In the COBRA architecture, brokers do not directly access low-level sensors
for contexts. Context acquisition is facilitated by a middle-ware infrastructure
call Context Acquisition Component. This component is similar to the widget
infrastructure defined in the Context Toolkit (see discussion in Sec. 2.4.2). The
design of the Context Acquisition Component has two layers: Context Sensors
and Context Interpreter.

Context Sensors are sources of information from which contextual informa-
tion can be acquired. Sensors include both hardware sensors and virtual sensors.
For example, RFID badges are hardware sensors, and web services that provide
meeting schedule information are virtual sensors. Including virtual sensors as a
part of the context sensors is one of the difference between the architecture of
Context Toolkit and the COBRA architecture.

Context Interpreter is an ontology driven inference engine which interprets
the sensed information. Based on the Domain Ontology that are defined in the
Knowledge Base, the Context Interpreter infers the contexts and asserts the
results into the Knowledge Base. Context Interpreter does not perform any
consistency checks when asserting contextual knowledge. It is the Inference
Engine’s responsibility to maintain knowledge consistency.

3.4.4 Broker Behavior

Broker Behavior defines how a broker should behave when interact with users
and agents in the system. The behavior of the broker can be thought as a
collection of protocols that the broker is obliged to follow during its interaction
with users and agents. The Broker Behavior consists of two distinctive protocols,
one for interacting with the users called Privacy Policy Negotiation and one
for interacting with the agents called Knowledge Sharing.

Privacy Policy Negotiation

This protocol is executed when the broker attempts to establish a privacy policy
agreement with a user before sharing any of his/her contextual information with
other agents (Fig. 3.3 shows a UML sequence diagram of this protocol).

The negotiation between the broker and the user starts when the broker is
requested by some agent to reveal a user’s contexts and no privacy policy has
been established with that user in the past. In the case, the broker first proposes
a default privacy policy to the user. The default policy contains pre-defined pol-
icy rules for guiding broker’s decisions in sharing user contexts. Upon receiving
the proposal, the user may accept or reject the proposal. If the proposal is
accepted, the broker will inform the agent of the requesting information. If the
proposal is rejected, the broker will not reveal the context of user to the re-
questing agent. After rejecting the proposal, the user has the option to counter
propose a modified version of the privacy policy. After receiving a proposed for
modifying the privacy policy, the broker will re-initiate the negotiation protocol.

CHAPTER 3. CONTEXT BROKER ARCHITECTURE 29

Request for user contexts

Agent Broker User

Propose privacy policy

Reject proposal

Accept proposal

Propose modification

Propose privacy policy

Inform user contexts

Figure 3.3: A UML diagram of the privacy policy negotiation protocol

Knowledge Sharing

In the COBRA architecture, any agents in the system can share knowledge with
the broker. Agents can follow one of the three protocols to share knowledge with
the broker: 1) inform protocol, 2) query protocol and 3) subscription protocol.
It is important to note that when sharing information about user contexts, all
three protocols will be executed in according to the policy rules that are defined
by individual users.

Broker Agent

Inform contexts

Accept

Disagree

Request for contexts

Inform contexts

Figure 3.4: A UML diagram of the inform protocol

The inform protocol (see Fig. 3.4) begins when some agent wants to inform

CHAPTER 3. CONTEXT BROKER ARCHITECTURE 30

the broker of certain contextual knowledge. After receiving the inform message,
the broker can either accept the contextual facts that are stated in the message or
the broker can disagree with these facts (e.g. strong evidences in the Knowledge
Base show that these facts are inaccurate). If the informing agent receives
a disagreement message from the broker, the agent has the option to request
broker’s opinion of the context.

Broker Agent

Request for contexts

Inform contexts

Refuse

Failure

Figure 3.5: A UML diagram of the query protocol

The query protocol (see Fig. 3.5) begins when some agent wants to know
about some contextual knowledge of the domain. The agent request some spe-
cific contextual knowledge from the broker. Upon receiving the request, the
broker must decide if the requesting information is allowed to be shared in ac-
cording user privacy policy rules. If not, the broker will send a refuse message
to the agent, indicating the broker refuse to provide such information. If pri-
vacy policies allow requesting information to be shared, then the broker will
check to see if the existing Knowledge Base has such information. If there are
matching information, then the broker will inform the agent with the needed
contextual knowledge. Otherwise, a failure message is replied, indicating the
broker is unable to provide requesting contexts.

The subscription protocol (see Fig. 3.6) begins when some agent wants to
be notified about certain context changes in the domain. In order to be notified
about context changes, the agent subscribe an event change notification with
the broker. Upon receiving the subscription, the broker first checks to see if
the information described in the subscription is allowed by the user privacy
policies. If not, the broker sends a refuse message to the requesting agent.
Otherwise, an agree message is sent. When context changes occur, the broker’s
Knowledge Base is modified. In the case, if any context change subscription
match the occurring context changes, then the broker will notify the senders of
those subscriptions.

CHAPTER 3. CONTEXT BROKER ARCHITECTURE 31

Broker Agent

Subscribe to some context changes

Agree

[pre-conditions holds]

Refuse

Inform context changes

Figure 3.6: A UML diagram of the subscription protocol

Chapter 4

Summary and Research
Plan

Building successful context-aware systems requires adequate supports from com-
puting infrastructure at many different levels. If no infrastructure supports are
provided to enable context-aware agents to share a common model of context
or to allow users to control how their personal information is shared and used
in a context-aware environment, building context-aware systems will not only
be difficult but also costly.

In Ch. 2, I have reviewed the previous research work that have been done
to provide architectural support for context-aware systems. Based on my re-
view, none of the existing architectures adequately supports both sharing of
contexts among resource-limited agents and protecting the privacy of users in
a context-aware environment. In order to overcome these barriers, in Ch. 3,
I have describes a preliminary design of Context Broker Architecture which is
aimed to reduce the cost and difficulty of building context-aware agents in an
Intelligent Meeting Room environment.

In the rest of this chapter, I will describe the research plan to complete my
PhD. dissertation. First, I will discuss critical technologies that are essential for
implementing the COBRA architecture. Second, I will describe the method to
evaluate the feasibility of the architecture. Third, I will present the milestones
of the future research.

4.1 Initial Approach to Implementation

4.1.1 Modeling Ontology and Policy using OWL

In order to study how context-aware agents can exploit the emerging Semantic
Web technologies, I will use Web Ontology Language (OWL) to model various
ontology and policy in COBRA. OWL is a semantic mark-up language for
defining Web ontology [47]. In OWL, an ontology is a set of definitions of classes

32

CHAPTER 4. SUMMARY AND RESEARCH PLAN 33

and properties. The ontology constraints on the way those classes and properties
can be employed (Fig. 4.1 shows a partial example of an OWL ontology).

<owl:Class rdf:ID="TalkInSession"/>

<owl:ObjectProperty rdf:ID="talkContext"/>

<owl:ObjectProperty rdf:ID="hasTalkContext">
<rdfs:domain rdf:resource="&tc;TalkInSession"/>
<rdfs:range rdf:resource="&tc;talkContext"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasAudience">
<rdfs:subPropertyOf rdf:resource="&tc;hasTalkContext"/>
<rdfs:range rdf:resource="&tc;Audience"/>

</owl:ObjectProperty>

<owl:Class rdf:ID="Audience"/>

Figure 4.1: A partial example of an OWL ontology

When modeling COBRA ontologies, each ontology model (i.e. Context Model,
Information Source Model and Agent Profile Model) will be defined in two parts:
base ontology and system ontology. The base ontology covers the basic termi-
nologies for describing concepts in the domain. Using OWL, the base ontology
specifies what are the class of things and their associated properties that can
be defined. Sharing base ontology will allow independently developed agents
to communicate and share contextual knowledge. The system ontology, on the
other hand, defines the specific concepts of the domains using the terminologies
in the base ontology. In another words, it defines the instances of class of things
in the domain.

When modeling user privacy policies, the base ontology defines the termi-
nologies for describing policy statements. Each policy statement will consist
of information about the user who define the policy, the terms and conditions
that a broker has agreed to honor when sharing user contexts etc.. When defin-
ing concepts for modeling policy terms and conditions, some of the standard
ontology for describing policy statements (e.g. P3P [16]) will be adopted.

4.1.2 Building the Inference Engine using Jess

When taking a Web ontology approach to represent and store knowledge, the
knowledge base of the system must be coupled with a specialized inference
engine. Jess [23], a rule-based expert system shell for the Java platform, will
be used for building the Inference Engine of COBRA. The main advantage of
using Jess is its interoperability with the existing Semantic Web programming
libraries and tools that are written in Java. Because Jess is a rule-based engine

CHAPTER 4. SUMMARY AND RESEARCH PLAN 34

completely implemented in Java, Jess can also interoperate with some of the
popular agent development platforms (e.g. JADE/FIPA).

In order to develop a COBRA inference engine to process OWL ontology,
specialized inference mechanisms must be coupled with Jess. An initial ap-
proach is to develop the inference mechanism to reason over OWL ontolo-
gies in triples [35]. In Jess syntax, a triple statement can be expressed as
triple([pred],[subj],[obj]). The general idea to construct the reasoning
mechanism is the following (the details of the reasoning mechanism is described
in [31]):

1. Translate OWL statements to triples: define a set of rules to translate
XML-encoded OWL ontology into triple statements in according to the
semantics defined in OWL axioms [38]

2. Build rules from triples: define a set of rules to give domain specific inter-
pretations to the triple statements in the knowledge base. These interpre-
tations forms system reasoning rules (e.g. rules to reason about contexts,
rules to reason about permission to share user contexts etc.).

There are few challenges in building an inference engine to work with triple
statements. First, a standard set of first-order axioms for interpreting OWL is
not currently available. This can be a problem for systems that do not adopt
the same logical interpretations to interoperate. Second, when building a hybrid
reasoning mechanism (i.e. integrating fuzz logic, decision tree etc. to form layers
of context reasoning), the triple representation of knowledge may not always be
suitable and efficient. Third, although OWL provides language features for
detecting conflicts and inconsistence, at present no off-the-shelf inference engine
or programming library are available to exploit these features.

4.1.3 Implementing the Broker Behavior using JADE

The COBRA architecture is aimed to provide an engineering solution for build-
ing context-aware agents in an Intelligent Meeting Room environment. To con-
struct a concrete COBRA system, I will exploit FIPA standards and a FIPA-
compliant agent system called JADE [5]. The main advantage of following the
FIPA agent paradigm is that FIPA provides a rich collection of software stan-
dards for building interoperable agent systems in large scale. Based on the
FIPA standards, JADE can greatly simplifies the development of distributed
agent systems and can offer opportunities for running FIPA agents on mobile
devices such as Pocket PC and GSM cell phones [7].

When building a COBRA system using JADE, the life cycle of agents and
the communication between agents will follow the semantics of FIPA standards.
From JADE’s perspective, a Domain Context Broker is simply a regular agent.
However, from COBRA’s perspective, a broker is a persistent agent service
that will have the same life cycle as the other standard services such as the
Agent Management Service (AMS) and the Directory Facilitator (DF). When a
COBRA system starts up, the brokers of each domain register their services with

CHAPTER 4. SUMMARY AND RESEARCH PLAN 35

the system’s DF. Each COBRA system defines its own ontology for describing
agent services. When an agent joins the system, the agent can lookup the
brokers of different domains by querying the DF. The communication between
the agent and the brokers will be facilitated by the underlying Agent Message
Transport [22].

Although the JADE/FIPA programming infrastructure provide a foundation
for building COBRA systems, a number of issues remain to be resolved. First,
the protocols for agents to communicate with the brokers need to be defined
for each Broker Behavior. For the Knowledge Sharing behavior, protocols can
extend the existing FIPA’s inform communicative act and the subscribe inter-
action protocol. For the Privacy Policy Negotiation behavior, however, new
protocols will need to be developed. Second, message content specifications
for each communication protocol also need to be defined, such as the content
messages for describing queries and event notifications. Third, in a dynamic en-
vironment, communication security between the brokers and the agents are of
great concern. In order address this problem, some of the emerging security in-
frastructure [29] for Ubiquitious Computing need to be studied and re-examined
in context of COBRA.

4.2 Feasibility Study

In order to show that the difficulty and cost of building of context-aware systems
can be greatly reduced by the use of the COBRA architecture, I will evaluate
the feasibility of using the architecture in a prototype system. This prototype
systems will be developed based on the Intelligent Meeting Room scenario de-
scribed in Sec. 1.3.1. This system will provide context-aware services based on
conference room activities in an acadimia environment.

This Intelligent Meeting Room system will consist of one domain which is
called the conference room domain. The broker of this domain will be pre-
configured with necessary sensors and background knowledge to manage and
control the context model of the domain. This context model consists of infor-
mation about 1) who is currently in the room, 2) what devices are currently
in the room, 3) what is the current location of a person (if the person is not
currently in the room), 4) what activities is currently going on in the room (i.e.
meeting, presentation, class, not activity, or unknown), 5) what role does each
person have in the current activity (i.e. audience, speaker, meeting organizer,
student, or lecturer), and 6) what do each person intend to do.

In addition, the broker will be configured to acquire information from the fol-
lowing heterogenous sources: 1) the Semantic web sites that publish class sched-
ule, talk schedule, and meeting schedule information, 2) the personal agents that
run on users’ web sites, 3) physical sensors for detecting people and device pres-
ence (i.e. RFID badge), and 4) device agents that are present in the conference
room.

Thru a series of experiments in building this systems, I will attempt to
validate the following hypothesises:

CHAPTER 4. SUMMARY AND RESEARCH PLAN 36

1. By exploiting the Semantic Web infrastructure, context-aware agents can
access a wider range of contexts in addition to what can be already ac-
cessed through physical sensors.

2. By developing a hybrid context reasoning mechanism, we can help capability-
limited agents to maintain a coherent and consistent model of contexts in
a dynamic environment.

3. By enabling agents to share a common model of contexts, we will allow
agents to access contexts that are otherwise inaccessible if they act in
isolation.

4. By defining a policy-driven mechanism to control how users’ personal con-
texts are used and shared, we can effective protect the privacy of users in
a context-aware environment.

4.3 Milestones

The proposed research work is expected to be completed in a 12-18 months
period. The work will be divided into 5 stages as follows:

• Stage 1 (estimated 1-2 months): In this stage, I will develop a de-
sign specification for the Intelligent Meeting Room system based on the
Context Broker Architecture. This specification will describe the service
functions and behaviors of context-aware agents, and how they will inter-
act with the broker in the domain.

• Stage 2 (estimated 3-5 months): In this stage, I will prototype a
Domain Context Broker to support context-aware agents. The prototype
system will include implementations of the Knowledge Base, the Inference
Engine, the Context Acquisition Component and Broker Behavior.

• Stage 3 (estimated 3-5 months): In this stage, the main focus is to
build a running demo system based on the COBRA architecture. I will
implement the Intelligent Meeting Room system in according to the design
specification developed in Stage 1.

• Stage 4 (estimated 2-3 months): In this stage, I will evaluate the
feasbility of the COBRA architecture by conducting a series of experiments
based on the prototyped system.

• Stage 5 (estimate 2-3 months): In this stage, the main focus is to com-
plete the writing of the PhD. dissertation. Minor development efforts are
expected, mainly in debugging and fine-tuning the context-aware agents
and the COBRA architecture.

Bibliography

[1] Gregory D. Abowd, Anind K. Dey, Robert Orr, and Jason A. Brotherton.
Context-awareness in wearable and ubiquitous computing. In ISWC, pages
179–180, 1997.

[2] Mark Ackerman, Trevor Darrell, and Daniel J. Weitzner. Privacy in con-
text. Special Issue on Context-Aware Computing. Human-Computer Inter-
action, 16(2-4), 2001.

[3] Philip E. Agre. Changing places: Contexts of awareness in computing.
Special Issue on Context-Aware Computing. Human-Computer Interaction,
16(2-4), 2001.

[4] Abhaya Asthana, Mark Cravatts, and Paul Krzyzanowski. An indoor wire-
less system for personalized shopping assistance. In IEEE Workshop on
Mobile Computing Systems and Applications, Santa Cruz, CA, US, 1994.

[5] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Developing
multi agent systems with a fipa-compliant agent framework. Software -
Practice And Experience, 31(2):103–128, 2001.

[6] Frazer Bennett, Tristan Richardson, and Andy Harter. Teleporting - Mak-
ing Applications Mobile. In Proceedings of 1994 Workshop on Mobile Com-
puting Systems and Applications, Santa Cruz, December 1994.

[7] Federico Bergenti and Agostino Poggi. Leap: a fipa platform for hand-
held and mobile devices. In Agent Theories, Architectures, and Languages
(ATAL-2001), 2001.

[8] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.
Scientific American, may 2001.

[9] Dan Brickley and R.V. Guha. Rdf vocabulary description language 1.0:
Rdf schema. www.w3c.org, nov 2002.

[10] R. Brooks. The intelligent room project, 1997.

[11] Paul Castro and Richard Muntz. Using context to assist in multimedia
object retrieval, 1999.

37

BIBLIOGRAPHY 38

[12] Guanling Chen and David Kotz. A survey of context-aware mobile comput-
ing research. Technical Report TR2000-381, Dartmouth College, Computer
Science, Hanover, NH, nov 2000.

[13] Harry Chen and Sovrin Tolia. Steps towards creating a context-aware agent
system. Technical report, Hewlett Packard Labs, 2001.

[14] Harry Chen, Sovrin Tolia, Craig Sayers, Tim Finin, and Anupam Joshi.
Creating context-aware software agents. In Proceedings of the First
GSFC/JPL Workshop on Radical Agent Concepts, 2001.

[15] Michael H. Coen. Building brains for rooms: Designing distributed software
agents. In AAAI/IAAI, pages 971–977, 1997.

[16] Lorrie Cranor, Marc Langheinrich, Massimo Marchiori, Martin Presler-
Marshall, and Joseph Reagle. The platform for privacy preferences 1.0
(p3p1.0) specification. www.w3c.org, jan 2002.

[17] Mike Dean, Dan Connolly, Frank van Harmelen, James Hendler, Ian Hor-
rocks, Deborah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea
Stein. Web ontology language (owl) reference version 1.0. W3C Working
Draft – www.w3c.org, nov 2002.

[18] Michael Dertouzos. The Unfinished Revolution. HarperCollins Publishers,
Inc., 2001.

[19] Anind K. Dey. Providing Architectural Support for Building Context-Aware
Applications. PhD thesis, Georgia Institute of Technology, 2000.

[20] Anind K. Dey, Jennifer Mankoff, and Gregory D. Abowd. Distributed
mediation of imperfectly sensed context in aware environments.

[21] Merrian-webster online. www.m-w.com.

[22] Fipa abstract architecture specification. www.fipa.org.

[23] Ernest J. Friedman-Hill. Jess, The Expert System Shell for the Java Plat-
form. Sandia National Laboratories, version 6.1a4 edition.

[24] Krzysztof Gajos. Rascal - a resource manager for multi agent systems in
smart spaces. In Proceedings of CEEMAS 2001, 2001.

[25] Nicholas Hanssens, Ajay Kulkarni, Rattapoom Tuchinda, and Tyler Hor-
ton. Building agent-based intelligent workspaces. In Proceedings of ABA
Conference, June 2002. To Appear.

[26] Beverly L. Harrison, Kenneth P. Fishkin, Anuj Gujar, Carlos Mochon, and
Roy Want. Squeeze me, hom me, tilt me! an exploration of manipulative
user interfaces. In CHI98, 1998.

BIBLIOGRAPHY 39

[27] Ken Hinckley, Jeffrey S. Pierce, Mike Sinclair, and Eric Horvitz. Sensing
techniques for mobile interaction. In UIST, pages 91–100, 2000.

[28] Jason I. Hong and James A. Landay. An infrastructure approach to context-
aware computing.

[29] Lalana Kagal, Tim Finin, and Anupam Joshi. Developing secure agent sys-
tems using delegation based trust management. In Proceedings of Security
of Mobile Multi-Agent Systems Workshop (AAMAS 2002, 2002.

[30] Tim Kindberg and John Barton. A Web-based nomadic computing sys-
tem. Computer Networks (Amsterdam, Netherlands: 1999), 35(4):443–456,
2001.

[31] Joe Kopena and William C. Regli. Daml-
jesskb: A tool for reasoning with semantic web.
edge.mcs.drexel.edu/assemblies/software/damljesskb/articles/DAMLJessKB-
2002.pdf.

[32] Sanjeev Kumar, Philip R. Cohen, and Hector J. Levesque. The adaptive
agent architecture: Achieving fault-tolerance using persistent broker teams.
In Proceedings of the Fourth International Conference on Multi-Agent Sys-
tems, pages 159–166, 2000.

[33] Mik Lamming and Mike Flynn. Forget-me-not: intimate computing in
support of human memory. In Proceedings FRIEND21 Symposium on Next
Generation Human Interfaces, 1994.

[34] Marc Langheinrich, Friedemann Mattern, Kay Rmer, and Harald Vogt.
First steps towards an event-based infrastructure for smart things. Ubiq-
uitous Computing Workshop at PACT 2000.

[35] Ora Lassila and Ralph R. Swick. Resource description framework (rdf)
model and syntax specification. www.w3c.org, feb 1999.

[36] John McCarthy and Sasa Buvac. Formalizing context (expanded notes).
In Sasa Buvač and ÃLucia Iwańska, editors, Working Papers of the AAAI
Fall Symposium on Context in Knowledge Representation and Natural Lan-
guage, pages 99–135, Menlo Park, California, 1997. American Association
for Artificial Intelligence.

[37] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric
Tilton, Jason Flinn, and Kevin R. Walker. Agile application-aware adap-
tation for mobility. In Sixteen ACM Symposium on Operating Systems
Principles, pages 276–287, Saint Malo, France, 1997.

[38] Peter F. Patel-Schneider, Patrick Hayes, Ian Horrocks, and Frank van
Harmelen. Web ontology language (owl) abstract syntax and semantics.
www.w3c.org, jul 2002.

BIBLIOGRAPHY 40

[39] Filip Perich. A service for aggregating and interpreting contextual infor-
mation. Technical report, Hewlett Packard Labs, 2002.

[40] Nissanka B. Priyantha, Anit Chakraborty, and Hari Balakrishnan. The
cricket location-support system. In Mobile Computing and Networking,
pages 32–43, 2000.

[41] Jun Rekimoto. Tilting operations for small screen interfaces. In ACM
Symposium on User Interface Software and Technology, pages 167–168,
1996.

[42] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context toolkit:
Aiding the development of context-enabled applications. In CHI, pages
434–441, 1999.

[43] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing
applications. In IEEE Workshop on Mobile Computing Systems and Ap-
plications, Santa Cruz, CA, US, 1994.

[44] William Noah Schilit. A System Architecture for Context-Aware Mobile
Computing. PhD thesis, Columbia University, 1995.

[45] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. Van Laerhoven,
and W. Van de Velde. Advanced interaction in context. Lecture Notes in
Computer Science, 1707:89–??, 1999.

[46] A. Schmidt and M. Beigl. There is more to context than location: Envi-
ronment sensing technologies for adaptive mobile user interfaces, 1998.

[47] Michael K. Smith, Deborah McGuinness, Raphael Volz, and Chris Welty.
Web ontology language (owl) guide version 1.0. www.w3c.org, nov 2002.

[48] Roy M. Turner. Context-sensitive reasoning for autonomous agents and co-
operative distributed problem solving. In Proceedings of the IJCAI Work-
shop on Using Knowledge in its Context, Chambéry, France, 1993.

[49] Roy Want, Andy Hopper, Veronica Falcao, and Jon Gibbons. The active
badge location system. Technical Report 92.1, Olivetti Research Ltd., ORL,
24a Trumpington Street, Cambridge CB2 1QA, 1992.

[50] Marc Weiser. The computer for the 21st century. Scientific American,
265(30):94–104, 1991.

[51] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory
and practice. HTTP://www.doc.mmu.ac.uk/STAFF/mike/ker95/ker95-
html.h (Hypertext version of Knowledge Engineering Review paper), 1994.

$Revision: 1.56 $, $Date: 2003/01/13 06:36:05 $

