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ABSTRACT
This document describes a new approach that explores the
use of Semantic Web languages in building an architec-
ture for supporting context-aware systems. This new archi-
tecture called Context Broker Architecture (CoBrA) differs
from other architectures in using the Web Ontlogy Language
OWL for modeling ontologies of context and for supporting
context reasoning. Central to our architecture is a broker
agent that maintains a shared model of context for all com-
puting entities in the space and enforces the privacy policies
defined by the users. We also describe the use of CoBrA and
its associated ontologies in prototyping an intelligent meet-
ing room.

1. INTRODUCTION
The Semantic Web, described by Tim Berners-Leeet. al.[4],
is an extension of the current web in which information is
given well-defined meaning, better enabling computers and
people to work in cooperation . A key difference between
the Semantic Web and the present Web lies in the repre-
sentation of information. In the present Web, the repre-
sentation is meant for machines to process information at
the syntax level. In the future Semantic Web, however,
the representation allows machines to process and reason
about information at the semantic level. In this paper, we
describe a new approach that explores the use of Seman-
tic Web technologies (i.e., languages, logic inferences, and
programming tools) in building an architecture for support-
ing context-aware systems in smart spaces (e.g., intelligent
meeting rooms, smart vehicles, and smart houses).

Context is any information that can be used to characterize
the situation of a person or a computing entity [8]. Previ-
ous research [16, 23] have viewed location information as
an important aspect of context. We believe in addition to
the location information, an understanding of context should
also include information that describes system capabilities,
services offered and sought, the activities and tasks in which
people and computing entities are engaged, and their situa-
tional roles, beliefs, desires, and intentions.

The dynamic nature of a smart space environment creates
great challenges for developing context-aware systems. We
believe some of the critical research issues are context mod-
eling, context reasoning, knowledge sharing, and user pri-
vacy protection. To address these issues, we propose an
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agent-oriented architecture called Context Broker Architec-
ture that exploits Semantic Web languages to model ontolo-
gies of context, reason with context in a smart space, and
define a policy language for users to control their context
information.

The rest of this document is organized as the following: Sec-
tion 2 gives a brief overview of the Semantic Web and the
Web Ontology Language OWL. In Section 3 we describe
the rationale behind our Semantic Web approach to build-
ing a new architecture for context-aware systems. Section
4 presents the design of CoBrA and its use case scenario in
an intelligent meeting room. Section 5 describes our pre-
liminary work on prototypingEasyMeeting, an intelligent
meeting room system that builds on the design of CoBrA.
Discussions of the related work and concluding remarks are
given in Section 6 and Section 7, respectively.

2. AN OVERVIEW OF THE SEMANTIC WEB
The Semantic Web is a vision in which web pages are aug-
mented with information and data that is expressed in a way
that facilitates its understanding by computing machines
[1]. The current human-centered web is largely encoded in
HTML, which focuses largely on how text and images would
be rendered for human viewing. Over the past few years we
have seen a rapid increase in the use of XML as an alter-
native encoding, one that is intended primarily for machine
processing. The machine which process XML documents
can be the end consumers of the information or they can be
used to transform the information into a form appropriate
for human understand (e.g., as HTML, graphics, and syn-
thesized speech). As a representation language, XML pro-
vides essentially a mechanism to declare and use simple data
structures and thus leave much to be desired as a language
in which to express complex knowledge. Enhancements to
basic XML, such XML Scheme, address some of the short-
comings, but still do not result in an adequate language for
representing and reasoning about the kind of knowledge es-
sential to realizing the Semantic Web vision.

A goal of the Semantic Web initiatives sponsored by the
World Wide Web Consortium (W3C) is to develop languages
that are adequate for representing and reasoning about the
semantics of information on the Web. The Web Ontology
Language OWL is the latest standard proposed by the Web-
Ontology Working Group. The OWL language builds on
XML’s ability to define customized taggging schemes and
RDF’s flexible approach to representing data [15]. Due to
space limitation, in this section we describe some of the
OWL language constructs and show how they are used to



Figure 1: An example of OWL classes and properties of
a simple ontology.

define ontologies.

OWL is a language for defining and instantiating ontologies.
An ontology is a formal explicit description of concepts in
a domain of discourse (or classes), properties of each class
describing various features and attributes of the class, and re-
strictions on properties [20]. The normative OWL exchange
syntax is RDF/XML. OWL ontologies are usually placed on
web servers as web documents, which can be referenced by
other ontologies and downloaded by applications that use
ontologies. Figure 1 shows an example of an OWL ontol-
ogy encoded in RDF/XML.

The definition in our example ontology has two parts. The
first part is a set of classes and properties that describe peo-
ple, devices, and the ownership relation between them. The

second part is a set of class individuals that represent specific
people and devices in some imaginary domain discourse.

The beginning of our ontology defines a set of XML names-
paces declarations, enclosed in an openingrdf:RDF tag,
that indicate what specific vocabularies are being used. The
first two declarations identify the namespace associated with
this ontology. The first makes it the default namespace, stat-
ing that unprefixed names refer to our example ontology.
The second identifies the namespace of our example ontol-
ogy with the prefixexd: .

The third namespace declaration says that in this document,
elements prefixed withowl: should be understood as re-
ferring to things drawn from the OWL namespace (http:
//www.w3.org/2002/07/owl# ). This declaration in-
troduces the OWL vocabulary.

OWL depends on constructs defined by RDF, RDF-S, and
XML Schema datatypes. In our example, therdf: prefix
refers to things drawn from the namespace calledhttp://
www.w3.org/1999/02/22-rdf-syntax-ns# . The
next two namespace declarations make similar statements
about the RDF Schema (rdfs: ) and XML Schema
datatype (xsd: ) namespaces.

After the namespace declarations, a collection of assertions
about the ontology is grouped under theowl:Ontology
tag. These assertations define the meta-data for the exam-
ple ontology document. Therdfs:comment tag encloses
a short comment about this document. Therdfs:label
tag encloses a string that is meant to be a human-readable
version of the ontology label.

The class definition in our example begins with the concept
Person andDevice . A class represents a set of individu-
als in the domain (i.e.,Person represents a set of individual
person,Device represents a set of individual device).PDA
andCellphone are two other classes that represent a set
of individual PDA and cellphones in our domain. They are
both subclasses of the classDevice . Note that, by default,
every individual in the OWL world is a member of the class
owl:Thing . Thus, all of our defined classes are implicitly
subclasses ofowl:Thing .

Properties in OWL lets us assert general facts about the
members of classes and specific facts about individuals [22].
A property is a binary relation. Two types of properties
are distinguished: datatype properties and object proper-
ties. The former is relations between instances of classes
and RDF literals and XML Schema datatypes. The latter is
relations between instances of two classes.

When defining a property, its domain and range can be spec-
ified. Specifying the domain of a property asserts that the
domain value of the property must belong to a specified
class. Specifying the range of a property asserts that the
range value of the property must belong to a specified class
or to a specified data type.

In our example, thename property is defined as a type
of the datatype property. It has domainowl:Thing
and rangehttp://www.w3.org/2001/XMLSchema#
string . This asserts that any individual member of the



owl:Thing class can have aname property with some
string value. For example, the individualP1 is instantiated
with the name stirng “Harry Chen”, and individualD1 is in-
stantiated with the name string “Harry’s Blue Phone”.

There are two object properties in our ontologies. First,
the ownedBy property has domainDevice and range
Person . This asserts that theownedBy property can re-
late a device to its owner (e.g., the deviceD2 is owned by
the personP2). The owns property is defined as an in-
verse of theownedBy property. This asserts that for every
triple (X, ownedBy, Y), there is a triple (Y, owns, X) and
vice versa (since the inverse relation is symmetric). Thus,
from the example, since we know(P1, owns, D1) , we
can conclude(D1, ownedBy, P1) , and similiarly since
we know(D2, ownedBy, P2) , we can conclude(P2,
owns, D2) also holds.

3. WHY SEMANTIC WEB
A key requirement for realizing context-aware systems is to
give computer systems the ability to understand their situ-
ational conditions. To achieve this, it requires contextual
information to be represented in ways that are adequate for
machine processing and reasoning. We believe the Seman-
tic Web languages are well suited for this purpose for the
following reasons:

• Ontologies expressed in the Semantic Web languages
provide a means for independently developed context-
aware systems to share context knowledge, minimizing
the cost of and redundancy in sensing.

• RDF and OWL are knowledge representation languages
with rich expressive power that are adequate for modeling
various types of contextual information, e.g., information
associated with people, events, devices, places, time, and
space.

• Because context ontologies have explicit representations
of semantics, they can be reasoned by the available logic
inference engines. Systems with the ability to reason
about context can detect and resolve inconsistent context
knowledge that often result from imperfect sensing.

• The Semantic Web languages can be used as meta-
languages to define other special purpose languages such
as communication languages for knowledge sharing, pol-
icy languages for privacy and security [12]. A key advan-
tage of this approach is better interoperability. Tools for
langages that share a common root of constructs can bet-
ter interoperate than tools for languages that have diverse
roots of constructs.

4. CONTEXT BROKER ARCHITECTURE
The use of Semantic Web languages and tools are key fea-
tures in our Context Broker Architecture. In CoBrA, the
OWL language is used to define ontologies for modeling
context, providing common vocabaries for knowledge shar-
ing, reasoning about the relation between the context and
the domain heuristic knowledge, and expressing user defined
policies. The core of our architecture is a specialized server
entity calledcontext broker.

In a smart space a context broker has the following respon-
sibilities: (i) provide a centralized model of context that can
be shared by all devices, services, and agents in the space,
(ii) acquire contextual information from sources that are un-
reachable by the resource-limited devices, (iii) reason about
contextual information that cannot be directly acquired from
the sensors (e.g., intentions, roles, temporal and spatial re-
lations), (iv) detect and resolve inconsistent knowledge that
is stored in the shared model of context, and (v) protect user
privacy by enforcing policies that the users have defined to
control the sharing and the use of their contextual informa-
tion.

4.1 An Intelligent Meeting Room Scenario
The design of CoBrA is aimed to support context-aware sys-
tems in smart spaces. The following is a typical use case
scenario of CoBrA in an intelligent meeting room system:

R210 is an intelligent meeting room with RFID sensors1 em-
bedded in the walls and furniture for detecting the presence
of the users’ devices and clothing. As Alice enters the room,
these sensors inform the R210 broker that a cell phone be-
longing to her is present and the broker adds this fact in its
knowledge base.

As she sits, the agent on Alice’s Bluetooth enabled cell
phone discovers R210’s broker and engages in a “hand
shake” protocol (e.g. authenticates agent identities and es-
tablishes trust [12]) after which it informs the broker of Al-
ice’s privacy policy. This policy represents Alice’s desires
about what the broker should do and includes (i) the con-
text information about Alice that the broker is permitted or
prohibited from storing and using (e.g., yes to her location
and roles, no to the phone numbers she calls), (ii) other
agents that the broker should inform about changes in her
contextual information (e.g., keeping Alice’s personal agent
at home informed about her location contexts), and (iii) the
permissions for other agents to access Alice’s context infor-
mation (e.g., all agents in the meeting room can access Al-
ice’s contexts while she is in the room).

After receiving Alice’s privacy policy, the broker creates a
profile for Alice that defines rules and constraints the broker
will follow when handling any context knowledge related to
Alice. For example, given the above policy, the profile for
Alice would direct the broker (i) to acquire and reason about
Alice’s location and activity contexts, (ii) to inform Alice’s
personal agent at home when Alice’s contexts change, and
(iii) to share her contexts with agents in the meeting room.

Knowing Alice’s cell phone is currently in R210 and hav-
ing no evidence to the contrary, the broker concludes Alice
is also there. Additionally, because R210 is a part of the
Engineering building, which in turn is a part of the UMBC
campus, the broker concludes Alice is located in Engineer-
ing building and on campus. These conclusions are asserted
into broker’s knowledge base.

Following the rules defined in the profile, the broker informs
Alice’s personal agent of her whereabouts. On receiving this

1RFID stands for Radio Frequency Identification (see alsohttp:
//www.rfid.org )



Figure 2: A context broker acquires contextual informa-
tion from heterogeneous sources and fuses it into a co-
herent model that is then shared with computing entities
in the space.

information about Alice, her personal agent attempts to de-
termine why Alice is there. Her Outlook calendar has an en-
try indicating that she is to give a presentation on the UMBC
campus about now, so the personal agent concludes that Al-
ice is in R210 to give her talk and informs the R210 broker
of it’s belief.

On receiving information about Alice’s intention, the R210
broker shares this information with the projector agent and
the lighting control agent in the ECS 210. Few minutes later,
the projector agent downloads the slides from Alice’s per-
sonal agent and sets up the projector, the lighting control
agent dims the room lights.

4.2 Context Broker
Figure 2 shows the design of a context broker. In smart
spaces, context brokers are assumed to be running on
resource-rich stationary computers that are embedded in the
environment (e.g., Mocha PC2). In our preliminary work, all
computing entities in a smart space are presumed to have
priori knowledge about the presence of a context broker. In
the future design, we will attempt to use one of the avail-
able service discovery infrastructure (e.g., Jini, UPnP) to
improve system flexibility. Our centralized design of the
context broker is motivated by the need to support small
devices that have relatively limited resources available for
context acquisition and reasoning. With the presence of a
broker, small devices such as cellphones, PDA and watches
can offload their burdens of managing context knowledge
onto a resource rich context broker, including reasoning with
context, detecting and resolving inconsistent context knowl-
edge. Furthermore, in an open and dynamic environment,
users may desire their personal contextual information to be
kept in private. A centralized management of context knowl-
edge makes easy to implement privacy protection and infor-
mation security.

A centralized broker can be the “bottle-neck” in a distributed
system, creating a single point of failure in the system. To

2http://www.cappuccinopc.com/mochap4.asp

address this problem, we plan to investigate and develop
a fault-tolerance approach based on the Persistent Broker
Team [14] approach. Our idea is to introduce a team of bro-
kers in that each member has the responsibility to ensure
at least one broker is available to provide services. In the
case when the number of available team members falls be-
low a predefined threshold (e.g., some broker becomes un-
reachable due to network failures), the remaining active team
members will attempt to recruit or instantiate new brokers.
In a broker team, the Joint Intention protocol [19] is used to
bring about the mutual beliefs of the team states and team
commitments.

A context broker has the following four functional compo-
nents:

1. Context Knowledge Base: a persistent storage of the
context knowledge. It provides a set of API’s for other
components in a broker to access the stored knowledge.
It also contains the ontologies of a specific smart space
(e.g., the ontologies of an intelligent meeting room) and
some heuristic knowledge associated with the space (e.g.,
a company’s daily operation hours are between 9:00 AM
to 5:00 PM; no person can be physically present at two
different meeting locations during the same time inter-
val).

2. Context Reasoning Engine: a reactive inference engine
that reasons over the stored context knowledge. Two
types of inferences can take place in this engine: (i) infer-
ences that use ontologies to deduce context knowledge,
and (ii) inferences that use heuristic knowledge to detect
and resolve inconsistent knowledge.

3. Context Acquisition Module: a library of procedures
that forms a middle-ware abstraction for context acqui-
sition. The role of this component is similar to the role of
the Context Widgets in the Context Toolkit [8], which is
to shield the low-level sensing implementations from the
high-level applications.

4. Policy Management Module: a set of inference rules
that deduce instructions for enforing user policies. Some
rules are defined for deciding the right permissions for
different computing entities to share a particular piece of
context information, and some rules are defined for se-
lecting the recipients to receive notifications of context
changes.

5. PROTOTYPING AN INTELLIGENT MEETING ROOM
To demonstrate the feasibility of our Context Broker Ar-
chitecture, we are using CoBrA to prototype an intelligent
meeting room system calledEasyMeeting, which provides
assistants to meeting speakers, audiences, and organizers
based on their situational needs. EasyMeeting is an exten-
sion to Vigil, a smart space system that we have previously
developed [21]. Security is the main focus in Vigil. A role
based access control mechanism is implemented in Vigil to
allow users control to the permissions to access different ser-
vices using policies. Vigil differs from other frameworks in
using logic inference rules to reason about the rights of dif-
ferent users.



Vigil has shown great promises in building flexible and se-
cure smart spaces [21]. However, it lacks the necessary sup-
port for context-aware systems. To improve upon Vigil, in
EasyMeeting we use OWL to represent context ontologies,
and we exploit a context broker to support context reasoning.

In the rest of this section, first, we overview the ontologies
that we have developed to support EasyMeeting and their po-
tential role in the context reasoning, and second, we describe
a prototype implementation of the context broker.

5.1 Ontologies
We have developed a set of ontologies for modeling context
in an intelligent meeting room. This set of ontologies called
COBRA-ONT defines typical concepts and relations for de-
scribing physical locations, time, people, software agents,
mobile devices, meeting events.

5.1.1 Reasoning with the Physical Location Ontologies
Understanding the context associated with physical loca-
tions is extremely important in context-aware systems. An
ontology of physical locations in COBRA-ONT includes the
descriptions of places with identifiable geographic bound-
aries (e.g., rooms, buildings), places with spatial properties
(e.g., atomic places, compound places), and places with tem-
poral properties (e.g., meeting rooms during the working
hours, offices on a public holiday). An ontology of the phys-
ical location context include geographic attributes, typical
social norms of a particular place, objects that occupy or are
contained in a particular space, and events that occur at a
particular place.

In our ontology the classPlace is the parent class of
all represented place classes. Subclasses ofPlace are
Campus, Building , Room, Hallway , Parkinglot ,
Restroom , andConferenceRoom , which are concepts
of places with identifiable geographic boundaries.

COBRA-ONT divids subclasses ofPlace into types of
either atomic place or compound place, which are con-
cepts of places with spatial properties. Atomic places (e.g.,
ConferenceRoom , Hallway ) are places that cannot be
defined to spatially subsume other places. Compound places
(e.g., Campus, Building ) are places that can spatially
subsume other atomic or compound places3.

Spatial containment inference is a type of reasoning with lo-
cation context. Let us consider the scenario described in Sec-
tion 4.1. As Alice enters the conference room, information
acquired from the sensors in the room may lead the con-
text broker to conclude that Alice is in the room R230. Be-
cause the broker has an ontology of the associated location
(e.g., the Engineering building spatially subsumes the room
R230, and the UMBC main campus spatially subsumes the
Engineering building), the broker can draw new conclusions
about Alice’s location context, e.g., Alice is located in the
Engineering building, Alice is located on the UMBC main
campus.

3Note that present ontology do permit the definition of some illog-
ical statements, e.g., a building spatially subsumes a campus (since
they both are type of compound place). We are developing solu-
tions to resolve this problem in the next version of the ontology

Reasoning with the spatial containment relation can also
help the broker to detect errors in sensing. Let us assume in
addition to the location ontology, the broker also has some
heuristic knowledge about the associated location, for exam-
ple, ”no person can be physically present at more than one
atomic place during the same time interval”. When cou-
pled with the location ontology, this knowledge can help the
broker to detect if there is any inconsistency about a user’s
location context. Imagine that due to sensing errors, some
sensors falsely detect the present of Alice and informs the
broker that she is located in the parking lot A. Since Alice
is known to be located in the room R230, and both the park-
ing lot A and the room R230 are atomic places, the broker
can immediately conclude the location context of Alice is
inconsistent with the known heuristic knowledge.

5.1.2 Reasoning with the Device Ontologies
In a pervasive computing environment, devices in the imme-
diate vicinity of a user are also part of the user’s context.
Device context can include basic knowledge about the de-
vice profiles (e.g., does a particular device support color dis-
play?), the device ownership relation (e.g., who is the owner
of a particular device?), temporal properties associated with
a device (e.g., when was the last time a particular device has
been used?), and spatial properties associated with a device
(e.g., what is the distance between a particular device and
the room in which its owner is currently in?).

To support reasoning with device profiles, COBRA-ONT in-
cludes an ontology of device hardware and software profiles.
Parts of this ontology are adopted from the FIPA device on-
tology specification [9]. The hardware profile ontology in-
cludes concepts of screen displays (e.g., screen width and
length, display color profile), device memory (e.g., amount
of memory, memory size unit, and memory usage type),
device network capability (e.g., support for wireless/wired
communications, supported network interfaces). The soft-
ware profile ontology includes concepts of device operating
systems and supported computing platforms.

By extending the device profile ontology, COBRA-ONT
provides an ontology of mobile devices. The goal is to de-
fine specific ontology classes that represent different types of
mobile devices and properties that are associated with these
devices. Represented types of mobile devices are SonyEr-
icsson T68i, SonyEricsson T800, and Palm TungstenT. De-
fined properties include the hardware and software profiles
of these devices and additional relations that associate the
devices with people. For example, theownedBy property
expresses the relation between a device and its owner, and
the usedBy property expresses the relation between a de-
vice and its user. Both of these properties have inverse prop-
erties (i.e., theowns anduses properties).

To illustrate how reasoning with device ontologies can play
a role in context-aware systems, let us consider the follow-
ing use case: after Alice enters the meeting room R230, her
cellphone presents Alice’s policy to the context broker in the
room. Assuming the context broker has an ontology of the
device that sends the policy, it reasons about the profile of the
device, e.g., the sender is a type of SonyEricssonT68i cell-
phone, and its Bluetooth communication supports the OBEX



object push service for exchanging vCard contacts. Know-
ing the device profile, the context broker informs all meeting
services that could take advantage of this information, e.g.,
a contact exchange service that can automatically push new
contact information into the mobile devices that a meeting
participant carries. Additionally, the context broker reasons
about the person who owns and uses the device (e.g., the per-
son Alice is the owner of this device, and no evidence shows
the device is used by other people). Since Alice’s SonyEr-
icsson T68i cellphone is the room R230 and no evidence to
the contrary, the context broker concludes Alice is also in the
room R230.

5.1.3 Reasoning with the Temporal Ontologies
Aspects of context can also include temporal relations.
To support reasoning with time and temporal relations,
COBRA-ONT adopts the DAML-time ontology, which is
a temporal ontology for expressing temporal aspects of the
contents of web resource and for express time-related prop-
erties of web services [11]. The DAML-time ontology in
COBRA-ONT is an OWL version of the original DAML-
time ontology that is expressed in the DAML+OIL lan-
guage4.

The DAML-time ontology builds around a set of abstract
temporal entities and temporal relation axioms. Our OWL
representation of the ontology defines the vocabularies of
the abstract temporal entities. However, it does not include
a representation of the temporal relation axioms because the
present OWL language does not have direct support for ex-
pressing axiomatic rules. Research in developing language
constructs for representing rules in Semantic Web languages
is underway [10].

In DAML-time the abstract temporal entity classes are
Instant and Interval . Both are subclasses of the
TemporalEntity class. A member of theInstant
class represents an instant of time, which has associated tem-
poral description properties that represent the concepts of
second, minute, hour, day, month, year, and time zone. A
member of theInterval class represents a time interval
between two different time instants. Properties of this class
includebeginOf andendOf , which define the beginning
time (a time instant) and the ending time (a time instant) of
a time interval.

A type of relation between the individuals of the
TemporalEntity class is temporal ordering. The tem-
poral ordering relation can be expressed in thebefore and
the after properties, i.e., an individual of theInstant
or Interval class can have abefore or after prop-
erty value of another individual ofInstant or Interval
class. The temporal ordering relation can also be expressed
using theinside andtime-between properties, which
describes a time instant isinside of a particular time in-
terval, and a time interval is inbetween of two different
time instants, respectively.

4To convert DAML-time from DAML+OIL to OWL, we have used
the OWL Coverter, a tool for automating ontology conversion from
DAML+OIL to OWL ( http://www.mindswap.org/2002/
owl.html )

The DAML-time ontology defines a number of predicates
(properties) for linking time entities to events in the real
world5, which includeatTime , expressing an event occurs
at a particular time instant,during , express an event occurs
during a particular time interval, andholds , expressing an
event holds at a particular time instant or during a particular
time interval.

To illustrate the use of temporal ontology, let us consider
the following the use case: while Alice is in the room R230,
different sensors notify the context broker of her presence.
Each notification is linked to a particular time instant, e.g.,
an RFID sensor reportsatTime(locatedIn(Alice,
R230), clockTime("13:04")) and a facial recog-
nition sensor reportsatTime(locatedIn(Alice,
R230), clockTime("13:45")) . As the pred-
icate clockTime represents a time instant, the
context broker can deduce the temporal ordering of
the time during which Alice is located in the room
R230, e.g., during(locatedIn(Alice, R230),
timeInterval("13:04-13:45")) .

Knowing Alice is in the room R230 during a partic-
ular interval, the context broker can reason about her
relation to the events in the room. For example, at
clockTime("13:55") , the context broker learns that
the room R230 is hosting a meeting which begins at
clockTime("13:00") . From its knowledge about
Alice’s location (i.e., during(locatedIn(Alice,
R230), timeInterval("13:04-13:45")) ), the
broker concludes that Alice is probably attending the
meeting becausetimeInterval("13:04-13:45") is
in between of the time instantsclockTime("13:00")
andclockTime("13:55") .

5.2 A Context Broker Prototype
We have implemented a context broker prototype to demon-
strate its role in the EasyMeeting system. Our objective is
to show the Semantic Web languages are adequate for dy-
namically constructing representations of context informa-
tion acquired from sensors, and how this information then
can be used to infer additional context knowledge. In our
present implementation, a context broker can reason about
the presence of people and device in an intelligent meeting
room.

Figure 3 shows the design layout of our prototype system.
Central to the system is a context broker. This broker is im-
plemented as a FIPA compliant agent that runs on the JADE
platform (a Java library for building FIPA compliant agents)
[2]. The broker uses the Jena Semantic Web Toolkit6 for
managing and manipulating ontologies (e.g., dynamically
constructing OWL ontology statements for agent communi-
cations, manipulating ontology knowledge that is stored in a
persistent knowledge base).

RDQL (RDF Data Query Language) is used in the broker’s
reasoning engine to access the stored ontology knowledge.
Using RDQL, the reasoning engine periodically queries the

5Descriptions of events are assumed to be defined by ontologies
that are outside of the DAML-time ontology
6http://www.hpl.hp.com/semweb/jena.htm



Figure 3: In our prototype system, the broker attempts
to infer the location context of devices and users. An user
model is dynamically acquired from an URL specified in
the received user policy.

knowledge base for the presence of certain context knowl-
edge (e.g., has any device been detected in the room, who
is the owner of a particular device?). When queries return
matched results, the broker automatically inserts new asser-
tions about the local context into its knowledge base. For
example, if queries return information about the presence of
a new device and the person who owns the device, then the
broker asserts the owner of the device is also present in the
room.

For context sensing, the context broker delegates the tasks to
other sensing agents in the environment. When the broker
starts on a hosting JADE platform, it finds all sensing agents
that are registered with the local yellow page service (FIPA
Directory Facilitator) and sends a FIPA subscribe message to
these agents, requesting to be notified about context changes.
In our prototype system, we have implemented a sensing
agent called BT Sensor, which is responsible for detecting
Bluetooth OBEX object push events that are initiated by the
mobile devices. As a mobile device sends an OBEX ob-
ject to the BT Sensor (e.g., a SonyEricsson T68i cellphone
sends a vNote object to the BT Sensor), the BT Sensor agent
concludes the presence of the device and notifies the context
broker.

Messages sent from a Bluetooth device to the BT Sensor
agent contains a FIPA ACL message that informs the context
broker of a user’s background information (or user model).
A user model includes a privacy policy that a user defines
to control the use and the sharing of his/her context infor-
mation. Due to the message size limitations in our Blue-
tooth devices, messages sent by the devices contain the URL
of the web documents that have complete descriptions of
the user models. The representation of this URL informa-
tion is expressed in a RDF statement which is encoded in
N3 [3], for example,"agt:HarryChen agt:aboutMe
http://umbc.edu/hchen4/aboutMe." . The first
termagt:HarryChen is a subject RDF resource that de-
fines this statement is about the user Harry Chen. The sec-
ond termagt:aboutMe is a property of the subject. The
last term is the value of the property, which is an URL
from which the user model ofagt:HarryChen can be re-
trieved.

To show the underlying ontology reasoning in the broker,
we have developed a web application, backed by the Apache
Tomcat Server, for viewing the internal knowledge base of
the context broker. In future, this web application will in-
clude administrator functions for manging a context broker
(start, shutdown etc.).

6. RELATED WORK
In the past, a number of system architectures have been de-
veloped to support pervasive computing such as the Con-
text Toolkit framework [17], Schilit’s context-aware archi-
tecture [18], Cooltown [13], and Intelligent Room [7]. These
systems have made progress in various aspects of pervasive
computing but are weak in supporting knowledge sharing
and context reasoning. A significant source of this weak-
ness is their lack a common ontology with explicit semantic
representation [6, 5].

Key differences between our architecture and the previous
systems are the following:

• We use Semantic Web languages (i.e., RDF and OWL) to
define ontologies of contexts, providing an explicit repre-
sentation of contexts for reasoning and knowledge shar-
ing. In the previous systems, contexts are often imple-
mented as programming objects (e.g., Java class objects)
or informally described in documentations.

• In CoBrA a resource-rich agent (i.e., the context broker)
is provided to manage and maintain a shared model of
context for all devices, services and agents in an associ-
ated space. In the previous systems, individual entities
are required to manage and maintain their own context
knowledge.

• The context reasoning in CoBrA gives context brokers
the ability to infer new context knowledge (e.g., spatial
relations, device profiles) that cannot be easily acquired
from the physical sensors. In the previous systems, con-
texts acquired from sensors are presumed to be accurate
and consistent.

• The use of policies in CoBrA allow users to control their
contextual information, specifying the granularity of in-
formation that is shared by the systems and choosing re-
cipients to receive notifications of their context changes.
In preivous systems, acquired contextual information is
allowed to be freely share by all computing entities in the
environment, which could potentially jeopardize user pri-
vacy.

7. CONCLUSION & FUTURE WORK
The use of ontology is a key requirement for realizing perva-
sive context-aware systems. Our preliminary research in the
Context Broker Architecture shows the Web Ontology Lan-
guage OWL is adequate for defining ontologies for support-
ing context reasoning and knowledge sharing. As Semantic
Web technologies and tools (i.e., programming libraries for
manipulating ontologies and logic inference engines for on-
tology reasoning), we believe the Semantic Web will create
new research opportunities for building pervasive context-
aware systems.



At present the development of CoBrA and the EasyMeeting
system is still in the early stage of research. Our short-term
objective is to define an ontology for expressing privacy pol-
icy and to enhance a broker’s reasoning with users and ac-
tivities by including temporal and spatial relations. A part of
our long-term objective is to deploy an intelligent meeting
room in the newly constructed Information Technology and
Engineering Building on the UMBC main campus.
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