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Abstract. We state the benefits of transitioning from taxonomies to ontologies
and ontology specification languages, which are able to simultaneously serve as
recognition, reporting and correlation languages. We have produced an ontology
specifying a model of computer attack using the DARPA Agent Markup Lan-
guage+Ontology Inference Layer, a descriptive logic language. The ontology’s
logic is implemented using DAMLJessKB. We compare and contrast the IETF’s
IDMEF, an emerging standard that uses XML to define its data model, with a data
model constructed using DAML+OIL. In our research we focus on low level kernel
attributes at the process, system and network levels, to serve as those taxonomic
characteristics. We illustrate the benefits of utilizing an ontology by presenting
use case scenarios within a distributed intrusion detection system.

1 Introduction

A central component of an IDS is the taxonomy employed to characterize and classify
the attack or intrusion, and a language that describes instances of that taxonomy. The
language is paramount to the effectiveness of the IDS because information regarding
an attack or intrusion needs to be intelligibly conveyed, especially in distributed en-
vironments, and acted upon. Several taxonomies have been proposed by the research
community. Some include a descriptive language; however, most do not. Likewise, sev-
eral attack languages have been proposed, but most are not grounded in any particular
taxonomy, hence their associated classification schemes are ad hoc and localized. The
inherent problem with this approach is threefold:

i. In order to operate over instances of the data model characterized by a particular
taxonomy, the data model must be encoded within a software system. Any changes
or updates to the data model necessitate a change to the software system.

ii. Taxonomies only provide schemata for classification. They lack the necessary and
sufficient constructs needed to enable a software system to reason over an instance
of the taxonomy, which is representative of the domain under observation.

iii. Most attack and signature languages are particular to specific domains, environments
and systems; consequently, they are not extensible, are not communicable between
non-homogeneous systems, and their semantics are often vague and lack grounding
in any formal logic.
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To mitigate the effects of theses problems, we suggest transitioning from taxonomies
to ontologies. We construct a data model that characterizes the domain of computer at-
tacks and intrusions as an ontology and implement that data model with an ontology
representation language. Ontologies, unlike taxonomies, provide powerful constructs
that include machine interpretable definitions of the concepts within a domain and the
relations between them. Ontologies, therefore, provide software systems with the ability
to share a common understanding of the information at issue, in turn empowering soft-
ware systems with a greater ability to reason over and analyze this information. Gruber
[17] defines an ontology as an explicit specification of a conceptualization. The term,
which is borrowed from philosophy, is used to provide a formal specification of the
concepts and relationships that can exist between entities within a domain. Accordingly,
ontologies are designed for the purpose of enabling knowledge sharing and reuse be-
tween the entities within a domain. In our case, those entities are Intrusion Detection
Systems (IDS) and IDS sensors.

Ontology representation languages may be mapped into first-order relational sen-
tences and a set of first-order logic axioms. This mapping restricts the allowable in-
terpretations of the non-logical symbols (i.e., relations, functions, and constants) [11],
enabling instances of the ontology to be operated over using formal and complete theo-
rem provers.

Commenting on the Internet Engineering Task Force’s emerging standard – the Intru-
sion Detection Message Exchange Format Data Model and Extensible Markup Language
(XML) Document Type Definition (IDMEF)[6], and its ability to enable interoperability
between non-homogeneous IDS sensors, Kemmerer and Vigna [25] state that the ID-
MEF is a first step and that additional effort is needed to provide a common ontology
that lets IDS sensors agree on what they observe.

We illustrate the benefits of using ontologies by presenting an implementation of one
being utilized by a distributed intrusion detection system. We have constructed our ontol-
ogy using the DarpaAgent Markup Language + Ontology Inference Layer (DAML+OIL)
[22] and have implemented its logic using DAMLJessKB [28], an extension to the Java
Expert System Shell [13].

Although our IDS model is not the focus of this paper, we briefly describe it in order to
provide context to the reader. Our IDS [23] is a two-phased, host based system. The first
phase is an anomaly detector which detects aberrant behavior at the system level. We have
instrumented the Linux kernel and gather 190 distinct attributes at the process, system
and network levels, several times per second. We use Principal Component Analysis
(PCA) [15] to reduce the dimensionality of the data set and then use Fuzzy Clustering
[29] on the reduced data set in order to obtain clusters that model the quiescent state of
the system. Once the baseline has been established, we use the Mahalanobis metric [5] as
a dissimilarity measure in order to determine if subsequent data samples fall within the
bounds of the normative state. The second phase of our IDS reasons over the subsequent
samples of the feature set that fall outside of the bounds of the normative state, and
possibly represent anomalous behavior. The sample, constrained by the ontology, is
asserted into a knowledge base which is continually queried for evidence of an intrusion
or an attack. Figure 1 illustrates a single component of our distributed system.
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Fig. 1. Distributed IDS Framework

The goal of this work is to demonstrate the utility of ontologies and the overwhelming
benefits that may be derived by the IDS research community by transitioning from
taxonomies and their linguistic and symbolic representations, to ontologies and ontology
representation languages.

The remainder of this paper is organized as follows: Section 2 presents related work
in the area of attack taxonomies, attack languages and ontologies for intrusion detection.
Section 3 details the motivation for transitioning from taxonomies to ontologies. Our
ontology is presented in Section 4. Section 5 details our implementation and Section
6 provides a use case scenario illustrating the utility of using an ontology in detecting
instances of a Denial of Service, Mitnick and Buffer Overflow attacks. We conclude with
Section 7.

2 Related Work

There is little, if any, published research formally defining ontologies for use in Intrusion
Detection. Raskin et al. [40] introduce and advocate the use of ontologies for information
security. In stating the case for using ontologies, they claim that an ontology organizes and
systematizes all of the phenomena (intrusive behavior) at any level of detail, consequently
reducing a large diversity of items to a smaller list of properties.

The preponderance of existing research in the area of the classification of computer
attacks is limited to taxonomies and the taxonomies that are implicit in attack languages.
The following subsections address taxonomies and attack languages.

2.1 Related Work: Taxonomies

There are numerous attack taxonomies proposed for use in intrusion detection research.
Landwehr et al. [31] present a taxonomy categorized according to genesis (how), time

of introduction (when) and location (where). They include sub-categories of: validation
errors, boundary condition errors and serialization errors, as a means of effecting an
intrusion. We have incorporated these sub-categories into our ontology.
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During the 1998 and 1999 DARPA Off Line Intrusion Detection System Evaluations
[20,26,35], Weber provided a taxonomy that defined the category consequence. This
includes the sub-categories of Denial of Service, Remote to Local, User to Root and
Probe. We have incorporated these classifications into our work.

In defining their taxonomy, Lindqvist and Jonsson [33] state that they “focus on the
external observations of attacks and breaches which the system owner can make”. Our
effort is consistent with their focus because we hold that, since IDSs are either adjacent
to or co-located with the target of an attack, it is imperative that any classification
scheme used to represent an attack be target-centric, where each taxonomic character is
comprised of properties and features that are observable by the target of the attack.

Ning et al.[37] propose a hierarchical model for attack specification and event ab-
straction using three concepts essential to their approach: System View, Misuse Signature
and View Definition. Their model is based upon a thorough examination of attack char-
acteristics and attributes and is encoded within the logic of their proposed system. We
include a global system view in our ontology.

As detailed by Allen et al. [1] and McHugh [36], the taxonomic characterization of
intrusive behavior has typically been from the attacker’s point of view, each suggesting
that alternative taxonomies need to be developed.Allen et al. state that intrusion detection
is an immature discipline and has yet to establish a commonly accepted framework.
McHugh suggests classifying attacks according to protocol layer or, as an alternative,
whether or not a completed protocol handshake is required. Likewise, Guha [18] suggests
an analysis of each layer of the TCP/IP protocol stack to serve as the foundation for an
attack taxonomy. Consequently, we have endeavored to make our ontology as target
centric as possible.

Aslam et al. [3] observe that many potential faults and vulnerabilities are intrinsic to
the software development process. Their observations are consistent with our own. Our
ontology defines the class “Means of Attack” and is comprised of many of the attributes
identified by Aslam et al.

Our intent is to not criticize the use of taxonomies. To the contrary, they have served
their purpose well, particularly in identifying and classifying the characteristics of com-
puter attacks and intrusions. We do, however, advocate leveraging their work by building
upon existing taxonomies and transitioning to ontologies. We feel that this is necessary
and warranted because, according to Staab and Maedche [43], taxonomies do not contain
the necessary meta-knowledge required to convey modeling primitives such as concepts,
relations and axioms that are required to make sense of and operate on specific objects.
Ontologies do. It should be pointed out that a complete and well formed ontology sub-
sumes a taxonomy.

2.2 Related Work: Attack Languages

There are several attack languages proposed in the literature. These languages are often
categorized as Event, Response, Reporting, Correlation, and Recognition Languages
[8,9]. We concentrate on correlation, reporting and recognition languages because an
ontology representation language is able to simultaneously provide the functionality of
all three.
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A. P-Best
The P-BEST Toolset [34] (Production-Based Expert System Toolset) is a correlation
language from which users may specify the inference formula for reasoning and act-
ing upon facts asserted into its fact base and from facts derived from external events.
P-BEST supports the writing of rules for signature detectors. According to Doyle
et al. [8], the P-BEST language lacks concepts that are specific to event recognition
and consists solely of a formalism for expressing probabilistic and linguistic rules.

B. STATL
STATL [9] is an extensible state/ transition-based attack detection language designed
to support intrusion detection. STATL allows one to describe computer penetrations
as sequences of actions that an attacker performs in order to compromise a computer
system. In STATL, scenarios are attacker centric. This language provides constructs
to represent an attack as a composition of states and transitions. The constructs are
similar to those used in programming languages, which describing conditional, se-
quential and iterative events. STATL lacks constructs for combining sub-events into
larger events. Reporting on the efficacy of various attack recognition languages,
Doyle et al. [8] state: “STATL constitutes the most clearly defined language for use
in attack recognition”.

C. LogWeaver
LogWeaver [16] is a log auditing tool that takes a system log as input and processes
it according to a signature (rule) file. The signature file defines the type of events that
are to be monitored and reported on. LogWeaver is able to match regular expressions
and make correlations between events, provided that they are executed by the same
user. LogWeaver employs logic that is based upon model checking [42]. Essentially,
LogWeaver is a specification for a detection language, which defines a syntax and
grammar for the end-user to use when writing signatures.

D. CISL
The Common Intrusion Detection Framework (CIDF) [24] started as a DARPA
initiative in 1998. CIDF was an effort to develop protocols and application pro-
gramming interfaces to give IDS research projects the ability to share information
and resources and to enable IDS component reuse by multiple systems. The CIDF
framework is comprised of components which exchange data in the form of a GIDO
(generalized intrusion detection object) which are represented in a standard format.
This standard format is specified in the Common Intrusion Specification Language
(CISL) [10], a reporting language. The CIDF effort appears to have lost inertia, with
many of its developers now working on the IETF’s IDMEF.

E. BRO
Bro [39] is a real-time, network based IDS that utilizes the specialized “Bro Lan-
guage”, a detection language. The goal of the “Bro Language” is to express security
policies in terms of scripts written within that language. In turn, the scripts consist of
event handlers that specify what to do whenever a particular event occurs.According
to Paxson, the scripts require environment specific tailoring.
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F. Snort Rules
SNORT [41] is a network intrusion detection system that performs real time analy-
sis and packet logging on IP networks. SNORT uses a detection language to define
rules. The rules are two part: header and options. The header contains the rule’s
action and addressing information. The options section contains the alert message
as well as specifying packet inspection criteria.

G. IDMEF
The Internet Engineering Task Force’s proposed Intrusion Detection Message Ex-
change Format Data Model and Extensible Markup Language (XML) Document
Type Definition [6] is a profound effort to establish an industry wide data model
which defines computer intrusions. It defines a data model that is representative of
data exported by an IDS. It also defines data formats and exchange procedures for
inter/intra IDS exchanges. The data model is defined in an XML Document Type
Definition and implemented in the Extensible Markup Language (XML) [47].
The IDMEF assumes a hierarchal configuration of three IDS components: sensors,
analyzers, and managers. Sensors are located at the bottom most level of the hierar-
chy. Sensors output data to analyzers, which in turn report up to a manager, located
at the topmost level of the hierarchy.

Because the IDMEF data model, encoded in XML, is an emerging standard, we
compare and contrast it to the notion of using ontologies to represent the data model and
the subsequent encoding of the data model in an ontology representation language.

2.3 XML in Comparison to DAML+OIL

The IDMEF’s principal shortcoming is its use of XML, which is limited to a syntactic
representation of the data model. This limitation requires that each individual IDS inter-
pret and implement the data model programmaticaly. This shortcoming may be mitigated
by using an ontology representation language such as DAML+OIL.

The ontology specification language DAML+OIL, is a descriptive logic language and
is grounded in both model-theoretic1 and axiomatic semantics2 and has been “cooked”
specifically for the Internet. Consequently it is able to:

i. Model the attributes and characteristics of a domain.
ii. Report the existence of an instance of the domain (model) in a manner that is

“comprehensible” by any entity that possess the specific ontology.
iii. Aggregate specific instances of the domain in a knowledge base and enable the

conclusion that some larger, or more comprehensive, instance of the ontology exists.

The following best explains the inadequacies of XML vis-á-vis DAML+OIL.
Humans are able to combine new facts with existing knowledge to derive new knowl-

edge, computers are not. When a computer acquires new data in XML, it may be able
1 model-theoretic semantics is the process of constructing mathematical models of logical con-

sequence and establishing when the model satisfies a formula
2 axiomatic semantics is the process of defining a language using axioms and proof rules
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Table 1. Language Feature Comparison: DAML+OIL versus XML

Feature Description DAML XML
+OIL

bounded Uses a first/rest structure to represent unordered bounded lists,
lists with nil representing the end of the list. Yes No
cardinality minCardinality and maxCardinality
constraints Yes Yes
class Wherever a Class is referenced allows an expression involving
expressions unionOf, disjointUnionOf,intersectionOf or complementOf. Yes No
data types e.g: numerical, temporal and string data types Yes Yes
defined Allows new classes to be defined based on property values
classes or other restrictions of an existing class. Yes No
enumerations Allows specification of a restricted set of values for

a given attribute to include oneOf Yes No
equivalence Supports equivalentTo for classes, properties, and instances

to support reasoning across ontologies and knowledge bases Yes No
extensibility Allows new properties to used with existing classes. Yes No
formal Semantics have been expressed in both model-theoretic
semantics and axiomatic forms. Yes No
inheritance Fully supports subClassOf and subPropertyOf Yes No
inference Has constructs such as TransitiveProperty, UnambiguousProperty,

inverseOf, and disjointWith for reasoning engines. Yes No
local Allows restrictions to be associated with a Class/Property pairs.
restrictions Yes No
qualified Allows expressions such as “all children of X are of type Y ”.
constraints Yes No
reification Provides a standard mechanism for recording data sources,

timestamps, etc., without intruding on the data model. Yes No

to respond, but only because of some other software which is not part of the XML
specification. Although conforming to the XML specification, different systems may
very well respond differently, given the same XML encoded data. If a computer ac-
quires new data in DAML+OIL, it can generate entirely new information, solely based
on the DAML+OIL standard. Given the same data, any system that conforms to the
DAML+OIL specification will generate the same new information and conclusions.
A set of DAML+OIL statements, in conjunction with the DAML+OIL specification,
enables the conclusion of yet another DAML+OIL statement, whereas a set of XML
statements, in conjunction with the XML specification, does not allow the conclusion of
any other XML statements. To employ XML to generate new data, knowledge needs to
be embedded in some procedural code, which is in stark contrast to DAML+OIL where
the knowledge is explicitly stated in DAML+OIL statements.

Although XML supports sub types which are restrictions of extensions on a type,
there are no classes. Consequently, there is no notion of inheritance. The following ex-
emplifies the benefits of inheritance. Suppose that you wished to define an event of type
X , that is an aggregation of two other events of types Y and Z. Furthermore, suppose
that Y and Z are comprised of subclasses Y1 and Y2 and Z1 and Z2, respectively. If
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this information were encoded in XML, we would need application logic that iteratively
checked for all possible combinations of Y and Z to satisfy a query. If the same informa-
tion were to be encoded in DAML+OIL, we would only need to query for the existence
of X . Table 1 provides a feature by feature comparison between DAML+OIL and XML.

3 From Taxonomies to Ontologies: The Case for Ontologies

An ontology subsumes a taxonomy, therefore, before explaining ontologies, a clear
understanding of the definition, purpose and objective of a taxonomy is in order.

3.1 Characteristics of a Sufficient Taxonomy

A taxonomy is a classification system where the classification scheme conforms to a
systematic arrangement into groups or categories according to established criteria [48].
Glass and Vessey [14] contend that taxonomies provide a set of unifying constructs so
that the area of interest can be systematically described and aspects of relevance may
be interpreted. The overarching goal of any taxonomy, therefore, is to supply some
predictive value during the analysis of an unknown specimen, while the classifications
within the taxonomy offer an explanatory value.

According to Simpson [44], classifications may be created either a priori or a pos-
teriori. An a priori classification is created non-empirically whereas an a posteriori
classification is created by empirical evidence derived from some data set. Simpson de-
fines a taxonomic character as a feature, attribute or characteristic that is divisible into
at least two contrasting states and used for constructing classifications. He further states
that taxonomic characters should be observable from the object in question.

Amoroso [2], Lindqvist et al. [33], Krusl [30] and others have identified what they
believe to be the requisite properties of a sufficient and acceptable taxonomy for computer
security. Collectively, they have identified the following properties as essential to a
taxonomy:

Mutually Exclusive. A classification in one category excludes all others because cate-
gories do not overlap.

Exhaustive. The categories, taken together, include all possibilities.
Unambiguous. The category is clear and precise so that classification is not uncertain,

regardless of who is classifying.
Repeatable. Repeated applications result in the same classification, regardless of who

is classifying.
Accepted. The taxonomy should be logical and intuitive so that it can become generally

approved.
Useful. The taxonomy can be used to gain insight into the field of inquiry.
Comprehensible. The taxonomy should be useful to those with less than expert knowl-

edge.
Conforming. The terminology of the taxonomy should comply with established secu-

rity terminology.
Objectivity. The features must be identified from the object under observation where

the attribute being measured should be clearly observable.
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Deterministic. There must be a clear procedure that can be followed to extract the
feature.

Specific. The value for the feature must be unique and unambiguous.

Upon review of the above list, we believe that, for our purposes, a sufficient and ac-
ceptable taxonomy must be: Mutually Exclusive, Exhaustive, Unambiguous, Useful,
Objective, Deterministic, Repeatable and Specific. Hence, these requirements form
the underpinnings of our ontology and were selected because they have been identified
by the IDS community as essential. We did not adopt the property “Comprehensible”
because the requirement that a taxonomic property be comprehensible dictates that those
with less than expert knowledge should find the ontology and its taxonomy useful. We
felt that this requirement has the potential to oversimplify and relax the structure of the
ontology. We did not adopt the property “Accepted”, due to the requirement that it be
intuitive. The knowledge engineering process employed to build a viable ontology is
often more than simple intuition and, at times, appears counter-intuitive.

3.2 Ontologies

According to Davis et al. [7], knowledge representation is a surrogate or substitute
for an object under study. In turn, the surrogate enables an entity, such as a software
system, to reason about the object. Knowledge representation is also a set of ontological
commitments specifying the terms that describe the essence of the object. In other words,
meta-data or data about data describing their relationships.

Frame Based Systems are an important thread in knowledge representation. Accord-
ing to Koller et al. [27], Frame Based Systems provide an excellent representation for
the organizational structure of complex domains. Frame Based Languages, which sup-
port Frame Based Systems, include RDF [32], and are used to represent ontologies.
According to Welty et al. [49], an ontology, at its deepest level, subsumes a taxonomy.
Similarly, Noy and McGuinness [38] state that the process of developing an ontology
includes arranging classes in a taxonomic hierarchy.

The relationship among data objects may be highly complex; however, at the the finest
level of granularity, the Knowledge Representation of any object may be represented by
an RDF-S (Resource Description Framework Schema) statement [4] which formally
defines the RDF model as:

i. A set called Resources.
ii. A set called Literals.

iii. A subset of Resources called Properties.
iv. A set called Statements, where each element is a triple of the form:{subject, predi-

cate, object }. Where predicate is a member of Properties, subject is a member of
Resources, and object is either a member of Resources or a member of Literals.

Primarily, RDF-S is about defining class hierarchies (i.e.: taxonomies) and introduces
the notions of Class, Property, Domain and Range. RDF and DAML+OIL extend RDF-
S with richer modeling primitives. Figure 2 graphically illustrates the basic RDF-S
model, where (subject, predicate, object), which is the same as (resource, property,
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Woman Child
Mother Of

Fig. 2. RDF-S Relationship Graph

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<!DOCTYPE rdf:RDF [

<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’>
<!ENTITY rdfs ’http://www.w3.org/TR/1999/PR-rdf-schema-19990303#’>
<!ENTITY daml_oil ’http://www.daml.org/2001/03/daml+oil#’>]>

<rdf:RDF
xmlns:rdf ="&rdf;"
xmlns:daml_oil ="&daml_oil;"
xmlns:rdfs ="&rdfs;">

<daml_oil:ObjectProperty rdf:ID="Mother_Of">
<daml_oil:range rdf:resource="#Child"/>
<daml_oil:domain rdf:resource="#Woman"/>

</daml_oil:ObjectProperty>

<daml_oil:Class rdf:ID="Woman">
<rdfs:subClassOf rdf:resource="&daml_oil;#Thing"/>

</daml_oil:Class>

<daml_oil:Class rdf:ID="Child">
<rdfs:subClassOf rdf:resource="&daml_oil;#Thing"/>

</daml_oil:Class>

</rdf:RDF>

Fig. 3. DAML+OIL Specification for the Mother Child Relationship

resource[or literal value]), is illustrated by the (Woman, Mother Of, Child) relationship,
where Mother is the subject, Child is the object and Mother Of is the predicate. Figure
3 illustrates the Mother Child relationship specified in DAML+OIL. It should be noted
that a set ofN-triples, an RDF-S graph, and a DAML+OIL specification are equivalent
if they each describe the same ontology.

In applying ontologies to the problem of intrusion detection, the power and utility of
the ontology is not realized by the simple taxonomic representation of the attributes of
the attack. Instead, the power and utility of the ontology is realized by the fact that we
can express the relationships between collected data and use those relationships to
deduce that the particular data represents an attack of a particular type. Because
ontologies provide powerful constructs that include machine interpretable definitions
of the concepts within a specific domain and the relations between them, they may be
utilized not only to provide an IDS with the ability to share a common understanding of
the information at issue, but also to further enable the IDS, with an improved capacity,
to reason over and analyze instances of data representing an intrusion.
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Moreover, specifying an ontological representation decouples the data model from
the logic of the intrusion detection system. The decoupling of the data model enables
non-homogeneous IDSs to share data without a prior agreement as to the semantics of
the data. To effect this sharing, an instance of the ontology is shared between IDSs in the
form of a set of DAML+OIL statements. Non-homogeneous IDSs do not need to run the
same type of software and the sensors of a distributed IDS may monitor different aspects
of an enterprise. A shared ontology enables these disparate components to operate as a
coalition, sharing, correlating and aggregating each other’s data.

4 Our IDS Ontology: Attributes of the Class Intrusion
In constructing our ontology, we conducted an empirical analysis [46] of the features
and attributes, and their interrelationships, of over 4,000 classes of computer attacks and
intrusions that are contained in the CERT/CC Advisories and the “Internet Catalog of
Assailable Technologies” (ICAT) maintained by NIST. Our analysis indicates that the
overwhelming majority of attacks are the result of malformed input exploiting a software
vulnerability of a network attached process. According to CERT, root access is the most
common consequence, while according to ICAT, a denial of service is the most common
consequence.

Figure 4 presents a high level view of our ontology. The attributes of each class and
subclass are not depicted because it would make the illustration unwieldy. As stated in
Section 1, we have instrumented the Linux kernel, using it to gather 190 distinct attributes
(i.e.: address from which system calls are made, total virtual memory size, etc) at the
system, process and network levels. Consequently, our ontology, and the taxonomy that
it subsumes, is defined solely in terms of the causal relationships of the observables and
measurables at the target of the attack.

It should be noted that an RDF graph does not depict flow. In an RDF graph, ellipses
are used to denote a class, which may have several properties.When two vertices (classes)
are connected by a directed edge, the edge represents a property whose domain is denoted
by the start of the edge, and whose range is denoted by the end of the edge. An undirected
edge between two vertices (classes) indicates that one class is an instance of another class.

At the top most level of Figure 4 we define the class Host. Host has the predicates
Current State and Victim of. Current State ranges over System Component and Victim
of ranges over the class Attack. As earlier stated, the predicate defines the relationship
between a subject and an object.

The System Component class is comprised of the following subclasses:

i. Network. This class is inclusive of the network layers of the protocol stack. We
have focused on TCP/IP; therefore, we only consider the IP, TCP, and UDP sub-
classes. For example, and as will be later demonstrated, the TCP subclass includes
the properties TCP MAX, WAIT STATE, THRESHOLDand EXCEED T. TCP MAX
defines the maximum number of TCP connections. WAIT STATE defines the num-
ber of connections waiting on the final ack of the three-way handshake to establish
a TCP connection. THRESHOLD specifies the allowable ratio between maximum
connections and partially established connections. EXCEED T is a boolean value
indicating that the allowable ratio has been exceeded. It should be noted that these
are only four of several network properties.
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ii. System. This includes attributes representing the operating system of the host. It in-
cludes attributes representing overall memory usage (MEM TOTAL, MEM FREE,
MEM SWAP) and CPU usage (LOAD AVG). The class also contains attributes re-
flective of the number of current users, disk usage, the number of installed kernel
modules, and change in state of the interrupt descriptor and system call tables.

iii. Process. This class contains attributes representing particular processes that are to
be monitored. These attributes include the current value of the instruction pointer
(INS P), the current top of the stack (T STACK), a scalar value computed from the
stream of system calls (CALL V), and the number of child processes (N CHILD).

The class Attack has the properties Directed to, Effected by, and Resulting in. This
construction is predicated upon the notion that an attack consists of some input which is
directed to some system component and results in some consequence. Accordingly, the
classes System Component, Input, and Consequence are the corresponding objects. The
class Consequence is comprised of several subclasses which include:

i. Denial of Service. The attack results in a Denial of Service to the users of the system.
The denial of service may be because the system was placed into an unstable state
or all of the system resources may be consumed by meaningless functions.

ii. User Access. The attack results in the attacker having access to services on the target
system at an unprivileged level.

iii. Root Access. The attack results in the attacker being granted privileged access to
the system, consequently having complete control of the system.

iv. Probe. This type of an attack is the result of scanning or other activity wherein a
profile of the system is disclosed.
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Finally, the class Input has the predicates Received from and Causing where Causing
defines the relationship between the Means of attack and some input and Received from
defines the relationship between Input and Location. The class Location is an instance
of System Component and is restricted to instances of the Network and Process classes.

We define the following subclasses for Means of attack:

i. Input Validation Error. An input validation error exists if some malformed input
is received by a hardware or software component and is not properly bounded or
checked. This class is further sub-classed as:

(a) Buffer Overflow. The classic buffer overflow results from an overflow of a
static-sized data structure.

(b) Boundary Condition Error. A process attempts to read or write beyond a valid
address boundary or a system resource is exhausted.

(c) Malformed Input. A process accepts syntactically incorrect input, extraneous
input fields, or the process lacks the ability to handle field-value correlation
errors.

ii. Logic Exploits. Logic exploits are exploited software and hardware vulnerabilities
such as race conditions or undefined states that lead to performance degradation
and/or system compromise. Logic exploits are further subclasssed as follows:

(a) Exception Condition. An error resulting from the failure to handle an exception
condition generated by a functional module or device.

(b) Race Condition. An error occurring during a timing window between two op-
erations.

(c) Serialization Error. An error that results from the improper serialization of op-
erations.

(d) Atomicity Error. An error occurring when a partially-modified data structure is
used by another process; An error occurring because some process terminated
with partially modified data where the modification should have been atomic.

As previously stated, the properties of Mutual Exclusion, Exhaustive, Non-ambiguity,
Usefulness, Objectivity, Determinism, Repeatability and Specificity are the overarching
requirements that determine the taxonomic characteristics of our ontology. We believe
that we have met these requirements predicated upon the following:

i. Mutual Exclusion. Each class in the ontology is disjoint from the other classes
because none share an identical set of properties.

ii. Exhaustive. Our analysis of the available data indicates that computer attacks and
intrusions are effected by some input, that is directed to some system component,
causing some heretofore unintended system response (means), and results in some
adverse system consequence. Our ontology captures these notions.

iii. Non-ambiguity. Each class in the ontology has a definite set of properties and
restrictions.

iv. Usefulness. As will be exemplified in Section 5, Implementation, our ontology en-
ables the conclusion (entailment) of new knowledge from seemingly disassociated
facts.
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v. Objectivity. The properties of the classes of our ontology are directly derivable
from 190 distinct system features. This feature set characterizes system state at any
particular time.

vi. Deterministic. The properties of each class obtainable from metrics associated with
the Linux kernel.

vii. Repeatability. An instantiated object within our ontology will always be evaluated
to the identical conclusion. Moreover, the same object will be evaluated to the same
conclusions by any entity using the ontology.

viii. Specific. The property values for classes that define aberrant system behavior are
unique and are limited to a set of 190 attributes.

5 Implementation

There are several reasoning systems that are compatible with DAML+OIL[12,19,28,21],
which according to their functionality, may be classified as backward-chaining or forward-
chaining. Backward-chaining reasoners process queries and return proofs for the answers
they provide. Forward-chaining reasoners process assertions substantiated by proofs, and
draw conclusions.

We have prototyped the logic portion of our system using the DAMLJessKB [28]
reasoning system. DAMLJessKB is employed to reason over instances of our data model
that are considered to be suspicious.These suspicious instances are constrained according
to our ontology and asserted into the knowledge base.

Upon initialization of DAMLJessKB, we parse the DAML+OIL statements repre-
senting the ontology, converting them into N-Triples, and assert them into a knowledge
base as rules. The assertions are of the form:

(assert
(PropertyValue (predicate) (subject) (object)))

Once asserted, DAMLJessKB generates additional rules which include all of the chains
of implication derived from the ontology.

As will be illustrated shortly, additional information in the form of instances of the
ontology is asserted into the knowledge base as facts.

5.1 Querying the Knowledge Base

Once the ontology is asserted into the knowledge base and all of the derived rules
resulting from the chains of implication are generated, the knowledge base is ready to
receive instances of the ontology. Instances are asserted and de-asserted into/from the
knowledge base as temporal events dictate. The query language is of the form ((predicate)
(subject) (object)) where at least one of the three elements of the triple must be contain a
value. The other one or two elements may be left uninstantiated (signified by prefacing
them with a “?”). If there are any triples in the knowledge base that match the query
either as the result of an assertion of a fact or derived rules resulting from the chain of
implication, the value of those triples will be returned.

To query the knowledge base for the existence of an attack or intrusion, the query
could be so granular that it requests an attack of a specific type, such as a Syn Flood:
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(defrule isSynFlood

(PropertyValue
(p http://www.w3.org/1999/02/22-rdf-syntax-ns#type)
(s ?var)
(o http://security.umbc.edu/IntrOnt#SynFlood))
=>
(printout t ‘‘A SynFlood attack has occurred.’’ crlf

‘‘with event number: ‘‘ ?var))

The query could be of a medium level of granularity, asking for all attacks of a specific
class, such as denial of service. Accordingly, the following query will return all instances
of an attack of the class Denial of Service.

(defrule isDOS

(PropertyValue
(p http://www.w3.org/1999/02/22-rdf-syntax-ns#type)
(s ?var)
(o http://security.umbc.edu/IntrOnt#DoS))
=>
(printout t ‘‘A DoS attack has occurred.’’ crlf

‘‘with ID number: ‘‘ ?var))

Finally, the following rule will return instances of any attack, where the event numbers
that are returned by the query need to be iterated over in order to discern the specific
type of attack:

(defrule isConseq

(PropertyValue
(p http://www.w3.org/1999/02/22-rdf-syntax-ns#type)
(s ?var)
(o http://security.umbc.edu/IntrOnt#Conseq))
=>
(printout t ‘‘An attack has occurred.’’ crlf

‘‘with ID number: ‘‘ ?var))

These varying levels of granularity are possible because of DAML+OIL’s notion of
classes, subclasses, and the relationships that hold between them. The query variable
?var, which corresponds to the subject, contained in each of the queries, is instantiated
with the subject whenever a predicate and object from a matching triple is located in the
knowledge base.

6 Using the Ontology to Detect Attacks: Use Case Scenarios

To test our implementation and experiment with it, we created instances of our ontology
in DAML+OIL notation, and asserted them into the knowledge base. We then ran our
queries against the knowledge base.

6.1 Denial of Service – Syn Flood

The DAML+OIL representation of an instance of a Syn Flood attack is illustrated in
Figure 5. The first statement indicates that an event numbered 00035 has occurred,
which has the resulting in property instantiated to an instance of a Syn Flood that is
uniquely identified as event number 00038.
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<Intrusion:Host rdf:about="&IntrOnt;00035"
Intrusion:IP_Address="130.85.112.231"
rdfs:label="00035">
<Intrusion:resulting_in rdf:resource=

"&IntrOnt;00038"/>
</Intrusion:Host>

<Intrusion:Syn_Flood rdf:about="&IntrOnt;00038"
Intrusion:Exceed_T="true"
Intrusion:time="15:43:12"
Intrusion:date="02/22/2003"
rdfs:label="00038"/>

Fig. 5. DAML+OIL Notation for an Instance of a Syn Flood Attack

When the knowledge base was queried for instances of Denial of Service (DoS)
attacks, the following was returned:

The event number of the intrusion is:
http://security.umbc.edu/Intrusion#00038
The type of intrusion is:
http://security.umbc.edu/Intrusion#Syn_Flood
The victim’s IP address is:
130.85.112.231
The time and date of the event:
15:43:12 hours on 02/22/2003

It is important to note that we only queried for the existence of a Denial of Service
attack, we did not specifically ask for Syn Flood attacks. The instance of the Syn Flood
attack was returned because it is a subclass of Denial of Service.

6.2 The Classic Mitnick Type Attack

This subsection provides an example of using our ontology as it operates within a coali-
tion of distributed IDSs to detect the Mitnick attack. This particular attack is a distributed
attack consisting of a Denial of Service attack, TCP sequence number prediction and IP
spoofing.

The following example of a distributed attack illustrates the utility of our ontology.
The Mitnick attack is multi-phased; consisting of a Denial of Service attack, TCP

sequence number prediction and IP spoofing. When this attack first occurred in 1994, a
Syn Flood was used to effect the denial of service; however, any denial of service attack
would have sufficed.

In the following example, which is illustrated in figure 6, Host B is the ultimate
target and Host A is trusted by Host B.

The attack is structured as follows:

i. The attacker initiates a Syn/Flood attack against Host A to prevent Host A from
responding to Host B.

ii. The attacker sends multiple TCP packets to the target, Host B, in order to be able
to predict the values of TCP sequence numbers generated by Host B.
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iii. The attacker then pretends to be Host A by spoofing Host A’s IP address, and sends
a Syn packet to Host B in order to establish a TCP session between Host A and
Host B.

iv. Host B responds with a SYN/ACK to Host A. The attacker does not see this packet.
Host A, since its input queue is full due to number of half open connections caused
by the Syn/Flood attack, cannot send a RST message to Host B in response to the
spurious Syn message.

v. Using the calculated TCP sequence number of Host B (recall that the attacker did
not see the Syn/ACK message sent from Host B to Host A) the attacker sends an Ack
with the predicted TCP sequence number packet in response to the Syn/Ack packet
sent to Host A.

vi. Host B is now in a state of belief that a TCP session has been established with a
trusted host Host A. The attacker now has a one way session with the target, Host
B, and can issue commands to the target.
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Fig. 6. Illustration of the Mitnick Attack

It should be noted that an intrusion detection system running exclusively at either
host will not detect this multi-phased and distributed attack. At best, Host A’s IDS would
see a relatively short lived Syn Flood attack, and Host B’s IDS might observe an attempt
to infer TCP sequence numbers, although this may not stand out from other non-intrusive
but ill-formed TCP connection attempts.

The following example illustrates the utility of our ontology, as well as the importance
of forming coalitions of IDSs. In our model, all of the IDSs share a common ontology
and utilize a secure communications infrastructure that has been optimized for IDSs. We
present such a communications infrastructure in [45].

Consider the case of the instance of the Syn Flood attack presented in Section 6.1, and
that it was directed against Host A in our example scenario. Since the IDS responsible for
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Host A is continually monitoring for anomalous behavior, asserting and de-asserting data
as necessary, it detects the occurrence of an inordinate number of partially established
TCP connections, and transmits the instance of the Syn Flood illustrated in Figure 5 to
the other IDSs in its coalition.

This instance is converted into a set of N-Triples and asserted into the knowledge
base of each IDS in the coalition. (Note: those same N-Triples will be de-asserted when
the responsible IDS transmits a message stating that the particular host is no longer
the victim of a Syn Flood attack.) Since this situation, especially in conjunction with
Host B being subjected to a series of probes meant to determine its TCP sequencing,
is anomalous and may be the prelude to a distributed attack the, current and pending
connections are also asserted into the knowledge base.

Figure 7 lists the set of DAML+OIL statements describing those connections that
were used in our experiments:

<IntrOnt:Connection rdf:about="&IntrOnt;00043"
IntrOnt:IP_Address="130.85.112.231"
IntrOnt:conn_time="15:42:59"
IntrOnt:conn_date="02/22/2003"
rdfs:label="00041"/>

<IntrOnt:Connection rdf:about="&IntrOnt;00043"
IntrOnt:IP_Address="130.85.112.231"
IntrOnt:conn_time="15:44:17"
IntrOnt:conn_date="02/22/2003"
rdfs:label="00043"/>

Fig. 7. DAML+OIL Notation for an Instances of Connections

Figure 8 illustrates the DAML+OIL notation specifying the Mitnick attack. Notice
that it is a subclass of both the class defining a Denial of Service attack and the TCP
subclass, with a restriction on the property indicating that the target of the attack has
established a connection with the victim of the Denial of Service Attack.

DAML+OIL, like any other notation language, does not have the functionality to
perform mathematical operations. Consequently, when querying for the existence of a
Mitnick type of attack, we must define a rule that tests for concomitance between the
DoS attack and the establishment of the connection with the target of the DoS attack.
The following query performs that test:

(defrule isMitnick

(PropertyValue
(p http://security.umbc.edu/IntrOnt#Mitnick )(s ?eventNumber)(o "true"))

(PropertyValue
(p http://security.umbc.edu/IntrOnt#Int_time)(s ?eventNumber)(o ?Int_Time))

(PropertyValue
(p http://security.umbc.edu/IntrOnt#Conn_time)(s ?eventNumber)(o ?Conn_Time))
=>
(if (>= ?Conn_Time ?Int_Time) then
(printout t ‘‘event number: ‘‘ ?eventnumber ‘‘ is a Mitnick Attack: crlf)))
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<daml:Class rdf:about="&Intrusion;Mitnick"
rdfs:label="P\_Mitnick">
<rdfs:subClassOf>
<daml:Restriction>
<daml:onProperty rdf:resource=

"&IntrOnt;Victim"/>
<daml:hasValue rdf:resource="#true"/>
<daml:toClass rdf:resource=

"&IntrOnt;DoS"/>
</daml:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>
<daml:Restriction>
<daml:onProperty rdf:resource=

"&IntrOnt;est_connections"/>
<daml:hasValue rdf:resource=

"#IP_Address"/>
<daml:toClass rdf:resource=

"&IntrOnt;TCP"/>
</daml:Restriction>

</rdfs:subClassOf>
</daml:Class>

Fig. 8. DAML+OIL Specification of the Mitnick Attack

This query makes the correlation between event Number 00043, the connection occurring
at 15:44:17, with the host at IP address 130.85.112.23, and event number 00038, the
Denial of Service attack. The query, in conjunction with the other queries, produced the
following response:

The synflood attack is:
http://security.umbc.edu/Intrusion#00038
The dos attack is:
http://security.umbc.edu/Intrusion#00038
The event number of the connection is:
http://security.umbc.edu/Intrusion#00043
The mitnick attack is:
http://security.umbc.edu/Intrusion#genid21
A connection with 130.85.112.231 was
made at 15:44:17 on 02/22/2003

where event number genid21 was generated through a chain of implication based upon
events 00038 and 00043 and the specification of the Mitnick attack in the ontology.

At this point, it is important to review the sequence of events leading up to the
discovery of the Mitnick attack. Recall that the IDS responsible for the victim of the
Syn Flood attack queried its knowledge base for an instance of a DoS denial of service
attack. The query returned an instance of a Syn Flood, which was instantiated solely
on the condition that a Syn Flood is a subclass of both the DoS and Network classes
restricted to the value of Exced T being true.

The instance (its properties) of the Syn Flood attack was transmitted in the form
of a set of DAML+OIL statements to the other IDSs in the coalition. In turn, these
IDSs converted the DAML+OIL notated instance into a set of N-Triples and asserted
them into their respective knowledge bases. As a Syn Flood is a precursor to a more
insidious attack, instances of established and pending connections were asserted into
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the knowledge base. As the state of the knowledge base is dynamic, due to the assertions
and de-assertions, the rule set of each IDS is continually applied to the knowledge base.

Finally, the instance of the Mitnick attack was instantiated by the knowledge base,
based upon the existence of both the instance of the TCP connection and the instance of
the DoS attack.

6.3 Buffer Overflow Attack

The “C” strcpy() function is one of several functions that needs to be bounded in order
to prevent a buffer overflow attack. A buffer overflow attack occurs when deliberately
constructed code is placed onto the stack frame, overwriting the return address from
the current function. When a function is called, input parameters to the function, the
frame pointer(ebp register) and the return address (the current eip + the length of the
call instruction) are pushed onto the stack. Like all instructions, they are located in the
Text address space of memory.

As previously stated, we have instrumented the Linux kernel and are able to intercept
any given process at each system call, and examine the contents of its registers and stack
frame. Consequently, we are able to define the characteristics of a buffer overflow attack
such that the instruction pointer references a memory location that is outside of the
boundaries of the Text segment. Figure 9 presents the DAML+OIL notation for the class
Buffer Overflow and one of its properties.

<daml:Class rdf:about="&IntrOnt;Buff_OF"
rdfs:label="Buff_OF">
<rdfs:subClassOf rdf:resource=

"&IntrOnt;R_to_L"/>
<rdfs:subClassOf rdf:resource=

"&IntrOnt;U_to_R">
<rdfs:subClassOf rdf:resource=

"&IntrOnt;Process">
<daml:Restriction>
<daml:onProperty rdf:resource=

"&IntrOnt;EIP_out_Txt"/>
<daml:hasValue rdf:resource="#true"/>

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

<rdf:Property rdf:about="&IntrOnt;EIP_out_Txt"
rdfs:label="EIP_out_Txt">
<rdfs:domain rdf:resource="&IntrOnt;

Buff_OF"/>
<rdfs:range rdf:resource="&IntrOnt;

BooleanValue"/>
</rdf:Property>

Fig. 9. DAML+OIL Notation Specifying the Buffer Overflow SubClass

Similar to the previous two examples, querying the knowledge base with the follow-
ing will yield all instances of a buffer overflow.
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(defrule isBufferOverflow

(PropertyValue
(p http://www.w3.org/1999/02/22-rdf-syntax-ns#type)
(s ?var)
(o http://security.umbc.edu/IntrOnt#Buff_OF))
=>
(printout t ‘‘A Buffer Overflow has occurred.’’ crlf

‘‘with ID number: ‘‘ ?var))

7 Conclusion and Future Work

We have stated the case for transitioning from taxonomies and the languages (event,
correlation and recognition) employed by them to ontologies and ontology representa-
tion languages for use in Intrusion Detection Systems. We have constructed and have
presented an initial ontology, which is available at: http://security.cs.umbc.edu/Intrusion
.daml.

We have used the ontology specification language DAML+OIL to implement our
ontology and to distribute information regarding system state within a distributed coali-
tion. In the Mitnick example, the ontology (DAML+OIL) and an inference engine was
initially employed as an event recognition language, by discerning that a type of Denial
of Service attack was taking place. Secondly, DAML+OIL was used as a reporting lan-
guage to communicate that fact to other systems. Finally, the ontology (DAML+OIL)
and the inference engine were used as an event aggregation language to fuse the exis-
tence of the Denial of Service attack, a network connection, and session establishment
to deduce that a Mitnick type attack had occurred.

Moreover, the only prerequisite for the disparate systems with the distributed coali-
tion is that they share the same ontology.

We are continuing our research, initiating attacks in a controlled environment in order
to capture their low level kernel attributes at the system, process and network levels in
order to further specify our ontology.
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