
An Ontology for Context-Aware Pervasive
Computing Environments∗

Harry Chen, Tim Finin, and Anupam Joshi
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County
{hchen4, finin, joshi}@cs.umbc.edu

Abstract

This document describes COBRA-ONT an ontology for supporting pervasive
context-aware systems. COBRA-ONT, expressed in the Web Ontology Language
OWL, is a collection of ontologies for describing places, agents, events and their
associated properties in an intelligent meeting room domain. This ontology is
developed as a part of the Context Broker Architecture (CoBrA), a broker-centric
agent architecture that provides knowledge sharing, context reasoning, and privacy
protection supports for pervasive context-aware systems. We also describe an in-
ference engine for reasoning with information expressed using the COBRA-ONT
ontology and the ongoing research in using the DAML-Time ontology for context
reasoning.

1 Introduction

Computing is moving toward pervasive, ubiquitous environments in which devices,
software agents, and services are all expected to seamlessly integrate and cooperate in
support of human objectives – anticipating needs, negotiating for service, acting on our
behalf, and delivering services in an anywhere, any-time fashion [12]. An important
next step for pervasive computing is the integration of intelligent agents that employing
knowledge and reasoning to understand the local context and share this information in
support of intelligent applications and interfaces. We are developing a new architecture
called Context Broker Architecture (CoBrA) to support context-aware systems in smart
spaces (e.g., intelligent meeting rooms, smart homes, and smart vehicles).

Context-aware systems are computer systems that can provide relevant services and
information to users by exploiting context [4]. By context, we mean information about
a location, its environmental attributes (e.g., noise level, light intensity, temperature,
and motion) and the people, devices, objects and software agents it contains. Context
may also include system capabilities, services offered and sought, the activities and

∗This work was partially supported by DARPA contract F30602-97-1-0215, NSF award 9875433, NSF
award 0209001, and Hewlett Packard.

1



tasks in which people and computing entities are engaged, and their situational roles,
beliefs, and intentions.

We believe ontologies are key requirements for building context-aware systems for
the following reasons: (i) a common ontology enables knowledge sharing in an open
and dynamic distributed systems [20], (ii) ontologies with well defined declarative se-
mantics provide a means for intelligent agents to reason about contextual information,
and (iii) explicitly represented ontologies allow devices and agents not expressly de-
signed to work together to interoperate, achieving “serendipitous interoperability” [15].

In CoBrA we have defined a collection of ontologies called COBRA-ONT for mod-
eling the context in an intelligent meeting room environment. COBRA-ONT expressed
in the Web Ontology Language OWL [1] defines typical concepts associated with
places, agents, and events. To reason over knowledge that is described in COBRA-
ONT and the OWL language, we have prototyped F-OWL an ontology inference en-
gine, using the Flora-2 system [25] in XSB [22].

The rest of this document is organized as the following: in the next section we
discuss the shortcomings of the previous pervasive context-aware systems that do not
make explicit representation of context. An overview of the CoBrA system is given in
the Section 3. In Section 4 we present COBRA-ONT and its associated use cases. An
overview of the F-OWL inference engine is described in the Section 5. Future work
and conclusions are given in the Section 6 and 7, respectively.

2 Shortcomings of the Previous Systems

A number of computing systems developed in the past aim to support pervasive com-
puting (e.g., the Intelligent Room [7, 6], Cooltown [16], and Context Toolkit [23]).
While these systems have made progress in various aspects of pervasive computing,
they offer only weak support for knowledge sharing and context reasoning. A signif-
icant source of this weakness is that they are not built on a foundation of common
ontologies with explicit semantic representation [5]. For example, in previous systems
[3, 8, 24], user location information is widely used for guiding the adaptive behavior of
the systems. However, none have taken advantage of the semantics of spatial relations
in reasoning about context (i.e., information that describes the whole physical space
that surrounds a particular location and its relationship to other locations).

Furthermore, previous systems often implemented context as simple programming
language objects (e.g., Java class objects) or informally described in documentation.
Because these representations require the establishment of a priori low-level imple-
mentation agreement between of the programs that wish to share information, they
cannot facilitate knowledge sharing in an open and dynamic environment. In order to
facilitate the sharing of contextual knowledge, we believe ontologies of context related
information must be defined in order to provide a set of common vocabularies with
shared semantics.

2



3 Context Broker Architecture

CoBrA is a broker-centric agent architecture for supporting context-aware systems in
smart spaces. Central to our architecture is the presence of an intelligent agent called
the context broker. The context broker is a specialized server entity that runs on a
resource-rich stationary computer in the space (e.g., on a Mocha PC1). In a smart space,
the context broker’s role is to maintain a shared model of context on the behalf of
a community of agents and devices in the space and to protect the privacy of users
by enforcing the user-defined policies when sharing information with agents in the
associated space.

Figure 1: An intelligent context broker acquires context information from devices,
agents and sensors in its environment and fuses it into a coherent model, which is then
shared with the devices and their agents.

Figure 1 shows the high-level design of the broker and its relationship with other
agents in a smart space. All computing entities in a smart space are presumed to have
priori knowledge about the presence of a context broker, and the high-level agents are
presumed to communicate with the broker using the standard FIPA Agent Communi-
cation Language [13]. The design of the context broker comprises the following four
functional components: (i)Context Knowledge Base: a persistent storage of the con-
text knowledge, (ii)Context Reasoning Engine: a reactive inference engine that rea-
sons over the stored context knowledge, (iii)Context Acquisition Module: a library

1http://www.cappuccinopc.com/mochap4.asp

3



of procedures that form a middle-ware abstraction for context acquisition, (iv)Policy
Management Module: a set of inference rules that deduce instructions for deciding
the right permissions for different computing entities to share a particular piece of con-
textual information and for selecting the recipients to receive notifications of context
changes.

Our centralized broker design addresses two important issues that are key to realiz-
ing the potential of pervasive computing:supporting resource-limited mobile comput-
ing devicesandaddressing the concerns for user privacy. With the introduction of a
context broker that operates on a stationary computer, the burdens of acquiring and rea-
soning over contextual information is shifted away from the resource-limited mobile
devices to the resource-rich broker; the complications inherent in establishing, moni-
toring and enforcing security, trust, and privacy polices are simplified in the presence
of a centralized manager.

Although the existence of a context broker brings about advantages, the centralized
design of a broker could create a “bottle neck” situation in a large scale intelligent space
such as a building or a university campus, hindering the overall system performance.
To address this problem, we propose a fault-tolerance approach, based on thepersis-
tent broker teamdesign described by Kumar and Cohen [18]. In our design, multiple
brokers are grouped together to form abroker federation. Each broker in the federation
is responsible for managing a part of the intelligent space (e.g., a particular room in
a building). In a federation, brokers are organized according to some communication
structure (e.g., peer-to-peer or hierarchical), and they periodically exchange and syn-
chronize contextual knowledge. A key advantage of this approach is that the access
to a shared model of context is no longer solely depend on the availability of a single
broker, and members of a broker federation share the repressibility of other members
to provide access to the shared model of context.

4 An Overview of COBRA-ONT

Ontologies play an important role in CoBrA, helping the context broker to share con-
textual knowledge with other agents and enabling it to reason about context. COBRA-
ONT is a collection of ontologies expressed in the Web Ontology Language OWL for
describing information in an intelligent meeting room environment.

The Web Ontology Language OWL, which is similar to the other Semantic Web
languages such RDF [19], RDFS [2], and DAML+OIL [9], is a language for pub-
lishing and sharing ontologies. We have chosen the OWL language to model context
ontologies for the following reasons:

• OWL is much more expressive than RDF or RDFS, allowing us to build more
knowledge into the ontology. For example, cardinality constraints can be im-
posed on the properties of an OWL class. In defining the location property of a
person class, cardinality constraints can be used to restrict the number of physical
location that a person can possibly be in at a given time instant (e.g., restricting
the maximum cardinality to one means only one physical location instance is
allowed to be associated with the location property of a person).

4



• OWL was expressly designed as an ”ontology language” and has many prede-
fined classes and properties useful for expressing information about ontologies.
For example, an ontologiy can import other ontogies, committing to all of their
classes, properties and constraints. There are properties for asserting or denying
the equivalence of individuals and classes, providing a way to relate information
expressed in one ontology to another. These features, along with many others,
are important for supporting ontology reuse, mapping and interoperability.

• OWL has been designed as a standard and has the backing of a well known
and regarded standard organization (i.e. W3C). For this reason, there is a wide
variety of development tools available for integrating the OWL ontologies into
the development of our software applications.

4.a COBRA-ONT Use Cases

The development of COBRA-ONT focuses on creating ontologies that are suitable for
building pragmatic context-aware systems. Some typical use cases of COBRA-ONT
are the following:

• A sensor agent detects the presence of a Bluetooth-enabled cellphone in Room
210. It composes a description of this sensed event using COBRA-ONT, which
then is sent to the context broker in the associated space. Without having any
evidence to the contrary, the broker asserts that the owner the device is also
in present in Room 210. Based on a physical location ontology predefined in
COBRA-ONT, knowing Room 210 is a part of the Computer Science Building
which in turn is a part of the UMBC campus, the context broker concludes the
device owner is in school today.

• After a speaker enters the meeting room, her mobile device sends the context
broker her predefined user policy, which describes the privacy rules that the bro-
ker should enforce while she is attending the meeting. Knowing the user does
not want to reveal her home address to services at the meeting, based on a pri-
vacy protection ontology predefined in COBRA-ONT, the broker reasons that it
should keep secret of her home phone number also since it’s relatively easy to
determine an address given a telephone number.

• After a talk given by a distinguished professor, a student from the audience takes
few pictures of the speaker. Before his digital camera sends the pictures to the
photo album agent at home, it checks with the broker to ensure that there are no
prohibitions on publishing photographs of the event, acquires the location and
event information from the context broker and embeds that information into the
pictures’ meta-data. Upon receiving the pictures, based on the shared location
and event ontologies, the photo album agent reason about the context in which
the pictures are taken and automatically archive them into the appropriate albums
in his photo library.

5



Figure 2: A complete list of the classes and properties in COBRA-ONT v0.2.

4.b Key Concepts in COBRA-ONT

We describe version 0.2 of the COBRA-ONT ontology2. Figure 2 shows a complete
list of the classes and properties in COBRA-ONT, which consists of 41 classes (i.e.,
RDF resources that are type ofowl:class ) and 36 properties (i.e., RDF resources
that are type of eitherowl:ObjectProperty or owl:DatatypeProperty ).

Our ontology is categorized into four distinctive but related themes: (i) ontologies
about physical places, (ii) ontologies about agents (both human and software agents),
(iii) ontologies about the location context of the agents, and (iv) ontologies about the
activity context of the agents.

4.b.1 Ontologies about Places

A top level class in COBRA-ONT isPlace , which represents the abstraction of a
physical location. It has a set of properties that are typically used to describe a lo-
cation (e.g., longitude, latitude, and string name). COBRA-ONT defines two special
subclasses calledAtomicPlace andCompoundPlace to represent two different
classes of the physical locations that have distinctive containment property (see Figure
3). The containment property of a physical location is defined as its model for being

2A complete version of the ontology is available athttp://daml.umbc.edu/ontologies/
cobra/0.2/cobra-ont . Future versions of the ontology can be accessed throughhttp://cobra.
umbc.edu

6



capable of spatially subsuming other physical locations. For example, in our ontol-
ogy, a campus spatially subsumes all buildings on the campus, and a building spatially
subsumes all rooms that are in it.

Figure 3: Partial definitions of theAtomicPlace andCompoundPlace classes.

The containment property in COBRA-ONT is represented by thespatially-
Subsumes and isSpatiallySubsumedBy class properties. These two class
properties are defined as the inverse property of each other (i.e., ifX spatially sub-
sumesY , thenY is spatially subsumed byX).

For the AtomicPlace class and its subclasses, the cardinality of their
spatiallySubsumes property is restricted to zero, and the range of theiris-
SpatiallySubsumedBy property isCompoundPlace . The function of these
constraints is to express the idea that all individuals of the typeAtomicPlace do
not spatially subsume other physical locations, and they can be spatially subsumed by
individuals of the typeCompoundPlace .

Like the AtomicPlace class, theCompoundPlace class is also defined with
special constraints on its containment properties. For this class and its subclasses,
the range of thespatiallySubsumes is Place , and the range of theis-
SpatiallySubsumedBy property isCompoundPlace . The function of these
constraints is to express the idea that all individuals of the typeCompoundPlace can
spatially subsume other individuals of the type eitherAtomicPlace or Compound-
Place , and they can be spatially subsumed by otherCompoundPlace individuals.

In our ontology, predefined subclasses ofAtomicPlace areRoom, Hallway ,
Stairway , Restroom , and ParkingLot , and predefined subclasses of
CompoundPlace areCampus andBuilding . Notice that some of theAtomic-
Place subclasses could have been modeled as subclasses ofCompoundPlace (e.g.,
Roomcan be thought as a compound place that spatially subsumes four corners of a

7



room). The choice that we have made in categorizing these ontological concepts is
purely based on the type of context-aware applications that we need to support in pro-
totyping CoBrA. It may be necessary to re-organize the class hierarchy if the ontology
is reused to support a different context-aware application.

To help to describe a place is hosting an event (e.g., a meeting), we define thehas-
Event property. This property has domainPlace and rangeEvent . Instances of
theEvent class are associated with time intervals.

4.b.2 Ontologies about Agents

The top level agent class in COBRA-ONT isAgent . This class has two predefined
subclasses, namelyPerson andSoftwareAgent . The former represents the class
of all human agents, and the latter represents the class of all software agents. These
two classes are defined to be disjoint. We have defined a number of properties for

Figure 4: Partial definitions of the classes related roles, intentions and desires

describing the profile of an agent (e.g., names, home pages, and email addresses). Each
agent in our ontology can have associated roles in an event (e.g., during a presentation
event, the role of a person is a speaker, and after the presentation event, the role of the
same person changes to a meeting participant). The role of an agent is defined by the
fillsRole property, which has rangeRole . For convenience, we predefined two
subclasses ofRole , SpeakerRole andAudienceRole . They represent different
roles of a human agent in a meeting.

In our ontology, the role of an agent can be used to characterize the intention of the
agent. This allows the system to reason about the possible actions that a user intends

8



to take after knowing the role of the user. To describe a user’s intended action, we
have defined the propertyintendsToPerform for the Role class. The range of
this property isIntentionalAction .

Sometimes an agent may desire other agents to achieve certain objectives on its
behalf. For example, a speaker may desire services to set up the presentation slides be-
fore the meeting starts. To define what actions an agent desires other agents to take, we
define a property calleddesiresSomeoneToAchieve . The range of this property
is IntentionalAction 3.

4.b.3 Ontologies about an Agent’s Location Context

By location context, we mean a collection of dynamic knowledge that describes the
location of an agent. The location property of an agent is represented by the prop-
erty locatedIn . As the physical locations are categorized intoAtomicPlace and
CompoundPlace , it is possible to define the following context reasoning:

1. No agent can be physically present in two different atomic places during the
same time interval.

2. An agent can be physically present in two different compound places during the
same time interval just in case one spatially subsumes the other.

This type of reasoning is important because they can help the broker to detect incon-
sistent knowledge about the current location of an agent. For example, if two different
sensor agents report a person is currently located in the Parking Lot A and is located
in the Room 210, respectively, then based on the first rule, the broker can conclude
the information about the person’s location is inconsistent because both instances that
represent the Parking Lot A and the Room 210 are type of the atomic place.

To describe an agent is physically present in an atomic or a compound place, from
thelocatedIn property we define two sub-properties calledlocatedInAtomic-
Place and locatedInCompoundPlace . The former is defined with the range
restricted toAtomicPlace , and the latter is defined with the range restricted to
CompoundPlace . From these two properties, we define additional properties that
further restricts the type of the physical place that an agent can have physical pres-
ence in. For example,locatedInRoom , locatedInRestroom andlocated-
InParkingLot are sub-properties oflocatedInAtomicPlace ; locatedIn-
CampusandlocatedInBuiding are sub-properties oflocatedInCompound-
Place .

For agents that are located in different places, we can categorize them according
to their location properties. For example, we definePersonInBuilding to rep-
resent a set of all people who are located in a building, andSoftwareAgentIn-
Building to represent a set of all software agents that are located in a building. The
complement of these classes arePersonNotInBuilding andSoftwareAgent-
NotInBuilding .

3The semantic of an action is not formal defined in v0.2 of the ontology. At present all action instances
are assumed to be atomic actions.

9



4.b.4 Ontologies about an Agent’s Activity Context

The activity context of an agent, similar to the location context, is a collection of dy-
namic knowledge that describes the events in which an agent participates. Events are
assumed have schedules. In our ontology, the classPresentationSchedule rep-
resents the schedule of a presentation event. This class has associated properties that
describe the start time, the end time, the presentation title, the presentation abstract,
and the location of a presentation event. Additionally, in COBRA-ONT we also pro-
vided a set of constructs for describing the audiences and speakers of a presentation
event. We assume in each presentation, there is at least one invited speaker and one
or many audiences. To describe a presentation that has a speaker or an audience, one
can use the propertyinvitedSpeaker andexpectedAudience . Both of these
properties have domainPresentationSchedule and rangePerson .

To describe an event that is currently happening, we define a class called
PresentationEventHappeningNow . The individuals of this class are assumed
to have implicit association with the temporal predicate “now”.

Sometimes it is useful to reason about the temporal property of the people and
places that are associated a presentation event. For example, the broker might want
to reason who is currently participating in a meeting, or what room is currently host-
ing a meeting. To support this type of reasoning, we defined the classRoomHas-
PresentationEventHappeningNow to represent the rooms that are currently
hosting meetings, the classSpeakerOfPresentationHappeningNow to rep-
resent the speakers of the presentations that are currently happening, and the class
AudienceOfPresentationHappeningNow to represent the audiences of the
presentations that are currently happening.

5 An OWL Inference Engine in Flora-2

In order to support ontology reasoning in CoBrA, we have prototyped an OWL infer-
ence engine called F-OWL. This inference engine is implemented using Flora-2, an
object-oriented knowledge base language and application development platform that
translates a unified language of F-logic, HiLog, and Transaction Logic into the XSB
deductive engine [25]. Key features of F-OWL include the ability to reason with the
ontology model defined by the latest standard OWL language recommended by W3C,
the ability to support knowledge consistency checking using axiomatic rules defined
in Flora-2, and an open application programming interface (API) for Java application
integrations.

The use of an object-oriented rule based language (i.e., Flora-2) in an advanced Pro-
log logic programming system (i.e., XSB) differentiates the implementation of F-OWL
from other ontology inference engines such as JTP [11], RACER [14] and DAML-
JessKB [17]. First, F-OWL exploits a special rule evaluation mechanism called tabling,
provided by the underlying XSB system. This mechanism implements result caching
in the backward chaining reasoning, which is beyond the capability of a traditional Pro-
log system. As ontology reasoning often involves repetitive evaluation of some closed-
world domain knowledge, the tabling mechanism can help to avoid repetitive ontology

10



inference calculations, improving the overall system performance. Second, in contrast
to the use of conventional logic languages in other ontology inference engines (e.g.,
KIF in JTP and CLIPS in DAMLJessKB), F-OWL adopts an object-oriented language
Flora-2 that has a closer language constructs to the OWL language (e.g., both Flora-2
and OWL support the representations of classes, properties, restrictions, and instances).
Third, building F-OWL on an advanced logic programming system creates opportuni-
ties for applications to be integrated into and interoperate with other intelligent systems
(e.g., integrating an existing planning system to exploit knowledge inferred from an ex-
isting ontology model).

F-OWL is a rule-driven logic inference engine, which consists of the following
four components: (i) assertions for the triple representation of the RDF and RDFS
data models, (ii) assertions for the triple representation of the OWL data model, (iii)
rules for reasoning with the RDF and RDFS data model, and (iv) rules for reasoning
with the OWL data model. The latest version (v0.3)4 of F-OWL supports the ontology
reasoning over the RDFS and the OWL-Lite sub-language constructs.

To use F-OWL in context reasoning, the implementation of the context broker will
provide additional rules to reason over the domain-specific knowledge. Rules of this
type are the rules for detecting and resolving knowledge inconsistency and the rules for
interpreting sensing inputs. In our prototype implementation, we have developed rules
that reason about the location of a person in UMBC and the roles that are associated
different participants in a scheduled meeting.

6 Future Work

An important next step of our work is to revise COBRA-ONT to use, if possible, or
at least to map to, if feasible, the emerging consensus ontologies that are relevant to
the development of smart spaces. These include the ontology for describing people
on the Web (e.g., the Friends-Of-A-Friend Vocabulary Specification [2]), the ontology
for describing time (e.g., the DAML-Time ontology) and space (e.g., the Relation Con-
nection Calculus [21] and the DAML-Space ontology), and the ontology for describing
talks (e.g., the ITTalks ontology [10]).

Modeling time is important in CoBrA. We currently have an implicit representation
of time and temporal relations. In the next version, we plan on using the DAML-Time
ontology, which is an ontology for expressing temporal aspects of the contents of web
resources and for expressing time-related properties of web services (unpub. A DAML
Ontology of Time. Nov. 2002). In DAML-Time, interval algebra is used to define
temporal relationship axioms (after, before, inside, time-between, proper-interval, etc.)
and representations for clock and calendar units (i.e., year, month, day of week, etc.).

We plan to use this ontology to model the temporal relations of different events in
an intelligent meeting room. We will also develop rules that implement interval alge-
bra to reason over the temporal relations of the described events. For example, using
the at-time(e,t) and inside(t,T) predicates in the interval algebra, we can
create rules to determine if a person is attending a meeting at a given time interval. In

4http://umbc.edu/˜hchen4/fowl

11



this example, the lower casee represents an event instance, the lower caset repre-
sents a time instance and the upper caseT represents a time interval. In an intelligent
meeting room, sensors periodically reports the presence of a person to the broker and
describe this information using theat-time predicate – e.g., at 1:05 PM, they report
at-time(located(harry,room201), t instant("1:05PM"))

Knowing there is a meeting scheduled in the Room 201 during the time interval
1:00PM-2:00PM, using theinside(t,T) axiom (see Figure 5), the broker con-
cludes that Harry is located in the Room 201 during the meeting. Not knowing any
evidence to the contrary, the broker may also conclude that Harry is attending the meet-
ing.

inside(t,T)⇐ begins(t1,T) & ends(t2,T) & before(t1,t) & before(t,t2)

Figure 5: An instant is inside a proper interval if the beginning of the interval is before
the instant, and the instant is before the end of the interval.

7 Conclusion

Ontologies are key requirements for building pervasive context-aware systems, in
which independently developed sensors, devices, and agents are expected to share con-
textual knowledge and to provide relevant services and information to users based on
their situational needs. We have described COBRA-ONT an ontology that we have
developed for the Context Broker Architecture.

Our work shows that the newly emerged Web Ontology Language OWL is suitable
for building a common knowledge representation for context-aware systems to share
and reason with contextual knowledge. However, we also realize that a major short-
comings of our current design is in the inability to reuse other consensus ontologies.
The disadvantages of building a complete ontology from the scratch are the follow-
ing: (i) it potentially requires a larger amount of overhead in the ontology design and
engineering, and (ii) it could decrease the interoperability between independently de-
veloped ontologies.

As a part of our long term research plan, we are prototyping an intelligent meeting
room called EasyMeeting to demonstrate the feasibility of our Context Broker Archi-
tecture. Our goal is to deploy a pervasive context-aware meeting room in the newly
constructed Information Technology and Engineering Building on the UMBC main
campus.

References

[1] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.OWL Web Ontol-
ogy Language Reference, w3c candidate recommendation 18 august 2003 edition,
August 2003.

12



[2] Dan Brickley and Libby Miller. FOAF Vocabulary Specification, revision 1.47
edition, Sept 2003.

[3] Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern, and Steven A. Shafer.
Easyliving: Technologies for intelligent environments. InProceedings of Second
International Symposium on Handheld and Ubiquitous Computing, pages 12–29,
2000.

[4] Guanling Chen and David Kotz. A survey of context-aware mobile computing
research. Technical Report TR2000-381, Dartmouth College, Computer Science,
Hanover, NH, Nov 2000.

[5] Harry Chen, Sovrin Tolia, Craig Sayers, Tim Finin, and Anupam Joshi. Creating
context-aware software agents. InProceedings of the First GSFC/JPL Workshop
on Radical Agent Concepts, 2001.

[6] Michael Coen, Brenton Phillips, Nimrod Warshawsky, Luke Weisman, Stephen
Peters, and Peter Finin. Meeting the computational needs of intelligent environ-
ments: The metaglue system. InProceedings of In 1st International Workshop
on Managing Interactions in Smart Environments (MANSE’99), Dublin, Ireland,
1999.

[7] Michael H. Coen. Building brains for rooms: Designing distributed software
agents. InProceedings of Ninth Conference on Innovative Applications of Artifi-
cial Intelligence, pages 971–977, 1997.

[8] Michael H. Coen. Design principles for intelligent environments. InProceedings
of AAAI/IAAI 1998, pages 547–554, 1998.

[9] Dan Connolly, Frank van Harmelen, Ian Horrocks, Deb McGuinness, Peter F.
Patel-Schneider, and Lynn Andrea Stein.DAML+OIL Reference Description,
march 2001 edition, 2001.

[10] R. Scott Cost, Tim Finin, Anupam Joshi, Yun Peng, Charles Nicholas, Harry
Chen, Lalana, Filip Perich, Youyong Zou, Sovrin Tolia, and Ian Soboroff. Ittalks:
A case study in the semantic web and daml. InProceedings of the International
Semantic Web Working Symposium, July 2002.

[11] Richard Fikes, Jessica Jenkins, and Gleb Frank. Jtp: A system architecture and
component library for hybrid reasoning. InProceedings of the Seventh World
Multiconference on Systemics, Cybernetics, and Informatics, July 2003.

[12] Tim Finin, Anupam Joshi, Lalana Kagal, Olga Ratsimore, Vlad Korolev, and
Harry Chen. Information agents for mobile and embedded devices.Lecture Notes
in Computer Science, 2182:264–??, 2001.

[13] The Foundations for Intelligent Physical Agents.FIPA Abstract Architecture
Specification, sc00001l edition, December 2002.

13



[14] Volker Haarslev and Ralf M̈oller. Racer system description. InProceedings of
the International Joint Conference on Automated Reasoning 2001, 2001.

[15] Jeff Heflin. Web Ontology Language (OWL) Use Cases and Requirements, w3c
candidate recommendation 18 august 2003 edition, 2003.

[16] Tim Kindberg and John Barton. A web-based nomadic computing system.Com-
puter Networks, 35(4):443–456, 2001.

[17] Joe Kopena and William C. Regli. Damljesskb: A tool for reasoning with seman-
tic web. IEEE Intelligent Systems, 18(3):74–77, May/June 2003.

[18] Sanjeev Kumar, Philip R. Cohen, and Hector J. Levesque. The adaptive agent
architecture: Achieving fault-tolerance using persistent broker teams. InPro-
ceedings of the Fourth International Conference on Multi-Agent Systems, pages
159–166, 2000.

[19] Ora Lassila and Ralph R. Swick.Resource Description Framework (RDF) Model
and Syntax Specification. W3C, w3c recommendation 22 february 1999 edition,
Feb 1999.

[20] Stephen Peters and Howie Shrobe. Using semantic networks for knowledge repre-
sentation in an intelligent environment. In1st Annual IEEE International Confer-
ence on Pervasive Computing and Proceedings of the 1st Annual IEEE Interna-
tional Conference on Pervasive Computing and Communications (PerCom’03),
March 2003.

[21] David A. Randell, Zhan Cui, and Anthony G. Cohn. A spatial logic based on
regions and connection. InProceedings of the 3rd International Conference on
Knowledge Representation and Reasoning, 1992.

[22] Konstantinos Sagonas, Terrance Swift, David S. Warren, Juliana Freire, Prasad
Rao, Baoqiu Cui, and Ernie Johnson.The XSB Programmers’ Manual, version
2.6 edition, June 2003.

[23] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The context toolkit: Aid-
ing the development of context-enabled applications. InProceedings of CHI’99,
pages 434–441, 1999.

[24] Roy Want, Andy Hopper, Veronica Falcao, and Jon Gibbons. The active badge
location system. Technical Report 92.1, Olivetti Research Ltd., ORL, 24a Trump-
ington Street, Cambridge CB2 1QA, 1992.

[25] Guizhen Yang and Michael Kifer.Flora-2: User’s Manual. Department of Com-
puter Science, Stony Brook University, Stony Brook, release 0.92 edition, 2002.

14


