
cMix: Anonymization
by High-Performance Scalable Mixing

David Chaum
Voting Systems Institute, USA

david@chaum.com

Farid Javani
Cyber Defense Lab, UMBC, USA

javani1@umbc.edu

Aniket Kate
Purdue University, USA

aniket@purdue.edu

Anna Krasnova
Radboud University, NL

anna@mechanical-mind.org

Joeri de Ruiter
University of Birmingham, UK

j.deruiter@cs.bham.ac.uk

Alan T. Sherman
Cyber Defense Lab, UMBC, USA

sherman@umbc.edu

Abstract—cMix is a cryptographic protocol for mix networks
that uses precomputations of a group-homomorphic encryption
function to avoid all real-time public-key operations by the
senders, mix nodes, and receivers. Like other mix network
protocols, cMix can enable an anonymity service that accepts
inputs from senders and delivers them to an output buffer, in a
way that the outputs are unlinkable to the inputs. cMix’s high-
performance scalable architecture, which results from its unique
pre-computation approach, makes it suitable for smartphone-to-
smartphone use while maintaining full anonymity sets indepen-
dently per round.

Each sender establishes a shared key separately with each
of the mix nodes, which is used as a seed to a cryptographic
pseudorandom number generator to generate a sequence of
message keys. Each sender encrypts its input to cMix with
modular multiplication by message keys. cMix works by replacing
the message keys, which are not known in the pre-computation,
in real time with a precomputed random value.

Our presentation includes a detailed specification of cMix and
simulation-based security arguments. We also give performance
analysis, both modelled and measured, of our working prototype
currently running in the cloud.

cMix is the core technology underlying our larger Pri-
vaTegrity system that allows smart devices to carry out a variety
of applications anonymously (including sending and receiving
chat messages), with little extra bandwidth or battery usage. This
paper focuses on cMix.

Keywords. Anonymous communications, mix networks, cMix,
group-homomorphic encryption, PrivaTegrity.

I. INTRODUCTION

Untraceable (anonymous) and unlinkable communication is
fundamental to freedom of inquiry, freedom of expression, and
increasingly to online privacy, including person-to-person com-
munication. Employing anonymous communication networks
has become increasingly popular across the world over the
last fifteen years. This popularity is exemplified by use of the
Tor [39] onion routing network.

The Tor network, however, is susceptible to a variety of
traffic-analysis attacks [16], [21], [30], [38], based in part on
Tor’s non-uniform message size and timing. Recent anonymity
analyses [4], [23] raise doubts on the quality of anonymity

possible using so-called onion routing. By contrast, mixing
networks (also called mixnets) [9], [13], [14], [19], [22], [37],
[41] are inherently less susceptible to these traffic-correlation
and network-level attacks. Existing mixnet designs, however,
introduce a significant performance overhead to users and mix
nodes.

In this paper, we present, implement, and analyze cMix, a
new fast cryptographic protocol for mix networks. cMix is an
enabling technology that can support a variety of anonymity
services, including sending and receiving anonymous chat
messages. Using precomputation, cMix avoids all expensive
real-time public-key operations by senders, mix nodes, and
receivers. cMix’s fast performance and key management makes
it highly scalable for deployment with large anonymity sets and
large numbers of mix nodes.

In cMix, each sender choosing to participate in a particular
round sends an input to the cMix system, which after passing
through a cascade of mix nodes, arrives in an output buffer.
Unless all mix nodes collude, the outputs are unlinkable to the
inputs.

The exact format of an input depends on the application.
For example, for some applications, each input might be an
ordered pair (B

i

,M

i

), where B

i

is the recipient and M

i

is the payload. The sender encrypts the entire input using
message keys shared by the sender and each mix node. Each
sender establishes a long-term shared key separately with each
cMix node. Each such shared key is used as a seed into
a cryptographic pseudorandom number generator to produce
a sequence of message keys, the next key in the sequence
being selected when the sender chooses to participate in a
particular round. Each sender encrypts its input with modular
multiplications by a message key for each cMix node.

During the real-time mixing of an input batch, each cMix
node replaces each of its message keys with a precomputed
random value. By freeing mix nodes from performing expen-
sive public-key operations in real time, real-time mixing is
much faster than in previous mix networks, and the nodes
can achieve a higher utilization of their hardware per message
batch. For users, the amount of computation on their smart
phones (and thus the corresponding power usage) is also
reduced.

cMix can be integrated in a variety of ways into a variety of

mechanisms for providing anonymity services. Typically, each
sender will send its input to a simple “network handler,” who
will arrange the arriving inputs into batches. As is typically
true for mix networks, receivers do not necessarily establish
shared keys with the mix nodes, when the network handler can
send the outputs from the output buffer to the final receivers.
The unlinkability of inputs to outputs does not depend on the
correct operation of the network handler, who does not know
any message key.

This paper focuses on the cMix protocol, which is the
core enabling technology of our larger PrivaTegrity system.
PrivaTegrity is an overlay system that allows smart phones,
laptops, and other devices to carry out a variety of applications
anonymously, with little extra bandwidth or battery usage. Use
cases include chat, photo/video sharing, feed following, search-
ing, posting, payments, each with various types of potentially
pseudonymous authentication. Rather than layering services
on top of mixing and allowing widely varying payload sizes,
PrivaTegrity’s novel approach integrates the services directly
into its mixing. It includes what aims to be a comprehensive
range of lightweight services efficiently supporting the afore-
mentioned use cases, bringing them into the same anonymity
sets as those for chat messages.

PrivaTegrity achieves anonymity among all messages sent
globally within each one-second time interval. To learn any-
thing about which inputs correspond to which outputs within
any such batch of messages, the entire cascade of ten mix
servers, each preferably operating independently in a different
country, would have to be compromised. By integrating these
use cases into the mixing with standardized formats and
uniform payload sizes, PrivaTegrity enjoys strong anonymity
properties and mitigates recent attacks on mix networks.

Our contributions include:

1) A new fast scalable cryptographic mixing protocol, cMix,
based on precomputation.

2) Simulation-based security arguments for cMix.
3) Performance analysis of the cMix protocol based on

modelling and on benchmarks from our implementation
running in the cloud.

4) A cryptographic commitment-based defense against ac-
tive tagging attacks, in which attacks the adversary modi-
fies messages at two different hops to extract information
about their receivers.

II. BACKGROUND AND RELATED WORK

Prior practical anonymity systems are based primarily on
mixnets or onion routing.

A. Mix Networks

In 1981, Chaum [9] introduced the concept of mixing
networks (or mixnets) and gave the basic cryptographic pro-
tocols whereby messages from a set of users are relayed
by a sequence of trusted intermediaries, called mix nodes or
mixes. A mix node is simply a message relay (or proxy) that
accepts a batch of encrypted messages, decrypts and randomly
permutes them, and sends them on their way forward. This
process makes the task of tracing individual message through
the network difficult. Chaum’s paper described both batched

and unbatched versions of mixing. In more than three decades
of research on mixnets, many mix network designs have been
proposed including [13], [14], [19], [22], [37], [41], and a few
have implemented [12], [29].

Anonymizing communication through a mix network
comes with computation and communication overheads: user
messages are batched to create an anonymity set (and therefore
delayed), and they are padded or truncated to a standard
length to prevent traffic analysis. Furthermore, in current mix
networks, multiple public-key encryption layers are used to
encapsulate the routing information necessary to relay the
message through a sequence of mixes. In this work, we
introduce a novel mixnet architecture, cMix, that allows us to
reduce the computation overhead by replacing real-time public-
key operations with symmetric-key operations.

Some early mixing protocols [9], [14] were based on
heuristic security arguments, and weaknesses have been dis-
covered with them [35], [37]. By contrast, most of the recent
mixing formats [8], [13], [28], [35] are designed with provable
security. We also achieve provable security for cMix: we define
a simple ideal functionality for cMix and prove simulation-
based security for the protocol. A key distinction of cMix is
its shifting of all public key operations to the precomputation
phase. Moreover, these public key operations are performed
only by the nodes, and no user needs to be involved. In
the literature, to the best of our knowledge, only Adida and
Wikström [1] have considered an offline/online approach to
mixing earlier; however, their scheme still requires several
public key operations in the online phase.

Another notable difference between cMix and most pre-
vious mixnets is that each mix node knows all senders. This
difference does not weaken the adversarial model because the
adversary is expected to know all participants of the mixing
round, and in cMix the unlinkability between a sender and
a receiver is still ensured, by even any one uncorrupted mix
node. On the other hand, this can empower cMix nodes to per-
form other tasks such as end-to-end secure messaging without
introducing a public-key infrastructure of the participants.

B. Onion Routing

Higher latency of traditional mix networks can be unsat-
isfactory for several communication scenarios such as web
search or instant messaging. Over the years, a significant
number of low-latency anonymity networks have been pro-
posed [2], [5], [8], [10], [17], [24], [25], [31], and some have
been extensively employed in practice [15], [39].

Common to many of them is onion routing [18], [32], a
technique whereby a message is wrapped in multiple layers
of encryption, forming an onion. A common realization of an
onion routing system is to arrange a collection of onion routers
(abbreviated ORs, also called hops or nodes) that relay traffic
for users of the system. Users then randomly choose a small
path through the network of ORs and construct a circuit—a
sequence of nodes that will route traffic. After the OR circuit is
constructed, each of the nodes in the circuit shares a symmetric
key with the anonymous user, which key is used to encrypt the
layers of future onions. Upon receiving an onion, each node
decrypts one of the layers, and forwards the message to the

2

next node. Onion routing as it typically exists can be seen as
a form of three-node mixing.

Low-latency anonymous communication networks based
on onion routing [16], [21], [30], [38], such as Tor [39], are
susceptible to a variety of traffic-analysis attacks. By contrast,
mixnet methodology ensures that the anonymity set of a user
remains the same through the communication route and makes
our protocol resistant to these network-level attacks.

In practice, Tor fails to provide ironclad anonymity. A
recent blog [11] reports that criminal users of Tor have
been deanonymized, and that researchers at Carnegie Mellon
University were paid at least $1 million to assist the FBI in
this task.

There are similarities between our precomputation phase
which uses public-key operations and the circuit-construction
phase of onion routing. Similarly, there are similarities between
our real-time phase which uses symmetric-key operations and
the onion wrapping and unwrapping phases.

Unlike onion routing, however, our precomputation phase
requires no participation from the users—a major advantage.
Each of our users establishes a separate shared secret with each
mix node, but this key establishment is performed infrequently,
and unlike in onion routing, users do not perform anonymous
key agreement [5], [15], [17], [25] using a telescoping ap-
proach or layered public-key encryption. These differences
result in a significant reduction in the computation that the
users need to perform, and make our system more attractive
to energy-constrained devices such as smartphones.

III. OVERVIEW OF CMIX

cMix is a new mixnet protocol that provides anonymous
communications among users. As shown in Figure 1, the core
of the system comprises n mix nodes, which process discrete
batches of messages. A simple network handler arranges the
inputs into batches. The main goal is to ensure unlinkability
between messages entering and leaving the system, though
it is known which users are communicating in any batch.
cMix precomputes all slow public-key encryption operations,
enabling all real-time computations to be carried using only
fast multiplications.

A. Communication Model

Let m be the number of users of the cMix system, which
includes of a sequence of n mix nodes N1, N2, . . . , Nn

. Each
of the nodes can process � messages at a time, where � m.
During a precomputation phase, mix nodes fix a permutation of
future incoming � messages. In the real-time communication,
the nodes permute the messages using this permutation.

We split the real-time phase into rounds, where each round
applies one permutation used by the mix nodes to one batch of
messages. Each round can be divided into sub-rounds, which
can differ by application. Let us consider anonymous web-
browsing as an application of cMix (for more about cMix
applications, see Section VI). In that case a single round
is divided into two sub-rounds, one for the delivery of the
forward message (browsing request), one for the confirmation

Fig. 1: The cMix communication model.

message of the request delivery sent by the last mix node. All
the messages transmitted during one sub-round have the same
length and are processed simultaneously.

At the beginning of a round the first mix node accepts up
to � messages that require a similar sub-round structure to
be executed. For each round, the network handler arranges �

messages into the input buffer of the first mix node, sorting
the messages by lexicographical order. All other messages are
not accepted and are sent in a subsequent round.

B. Adversarial Model

We assume authenticated communication channels among
all mix nodes and between the network handler and any mix
node. Thus, an adversary can eavesdrop, forward and delete
messages, but not modify, replay, or inject new ones, without
detection. For any communication not among mix nodes or
the network handler, we assume the adversary can eavesdrop,
modify and inject messages at any point of the network.

The goal of the adversary is to compromise the anonymity
of the communication initiator, or to link inputs and outputs of
the system. We consider applications where initiators are users
of the cMix system. We do not consider adversaries who aim
to launch denial-of-service (DOS) attacks.

An adversary can also compromise users, however we
assume that at least two users are honest. Mix nodes can also
be compromised, but at least one of them needs to be honest
for the system to be secure. We assume compromised mix
nodes to be malicious but cautious: they aim not to get caught
violating the protocol.

C. Solution Overview

Before using the system, each sender must establish a
shared symmetric key separately with each of the mix nodes.
For each mix node N

i

and each user U

j

, let MK

i,j

denote
their shared key. This key establishment can be carried out,

3

for instance, using the Diffie-Hellman (DH) key agreement
protocol, with forward secrecy (compromise of a shared key
does not compromise any past shared key) and at least one-way
authentication (the sender is convinced she is communicating
with the true mix node).

When communicating with the mix network, user U

j

will
encrypt or decrypt each of her messages using message keys
derived from her keys shared with every node N

i

. Specif-
ically, the next message key ka

i,j

is the next output of a
pseudorandom number generator with seed MK

i,j

. To encrypt
a message, the user first computes a composite key using
the derived message keys: Ka

j

= ⇧n

i=1kai,j . Then she can
encrypt her first message M1 as M1 ⇥Ka

�1
j

.

cMix processes each batch of messages in two phases:
precomputation and real-time. During each of these phases,
cMix performs a forward and reverse path of computations,
each organized in steps. Each mix node organizes the messages
of the current batch in a buffer (also called a map). During one
step of each path, each node permutes the messages within the
buffer. The system achieves unlinkability of messages if at least
one node carries out its permutation honestly.

Each node associates each shared key with a slot in its
message buffer. During the forward path of the real-time
phase, each node replaces its shared key for each slot with
a randomly-generated value from the precomputation. During
the reverse path, each node multiplies back in the shared keys.
In doing so, the real-time phase avoids any expensive public-
key operations.

D. The Protocol Steps

Figure 2 summarizes the precomputation and real-time
phases of the forward paths in cMix. Each step is denoted
by a solid box. Related Figure 3 fills in many of the details
for each step.

Fig. 2: Overview of the cMix protocol (forward paths).

In the first step of the precomputation (forward path), each
node N

i

generates a random value r

i,j

for each slot j in its
message buffer. Each node encrypts its vector r

i

�1 of the
inverses of these values and sends the resulting vector E(r

i

�1)
to the network handler. The network handler, exploiting the
group homomorphic property of E , computes the (component-
wise) direct product E(R�1) of the encrypted vectors and
sends the result to the first mix node.

In the second step of the precomputation, each node N

i

in
order permutes the message buffer with its random permutation
p

i

. It also multiples in another vector of random values s

i

�1.
The result at the exit of the last node is E((P (R) ⇥ S)�1),
where P is the vector of component-wise compositions of the
p

i

’s, and S is the direct product of the s

i

’s. This result is sent
both to the network handler and to the first mix node.

In the third step of the precomputation, each node N

i

computes its decryption share D(i, r) of the result from Step 2.
Only with knowledge of all of these shares can one perform
the decryption. In the final step of the real-time phase, each
node will send these shares to the network handler, who will
decrypt the permuted messages. The purpose of this subtle
third step is to prevent certain “tagging” attacks, in which a
corrupt node marks an output. Each node sends a commitment
of its share to the other nodes, and each node verifies all of
these commitments. Alternatively, the correctness of the shares
can be established by a zero-knowledge proof.

We now explain the real-time phase. In the first step of the
real-time computation, each mix node i sends the product of its
vector of shared keys ka

i

with its vector of random values r

i

to the network handler. The network handler then multiplies all
these values together with the received messages. This action,
which uses only multiplications, transforms the encrypted input
M ⇥Ka

�1 to M ⇥R. Here, Ka is the direct product of the
ka

i

’s, and R is the direct product of the r

i

’s.

In the second step of the real-time phase, each node i in
order permutes its message buffer with its permutation p

i

and
multiples in its vector of random values s

i

. The result at the
exit of the last mix node is P (M ⇥ R) ⇥ S. The exit node
sends this result to the network handler.

In the final step of the real-time phase, each node sends
to the network handler its decryption share D(i, r), which it
computed from the last step of the precomputation. With all of
these shares, the network handler decrypts the message. The
network handler sees the unencrypted payloads but cannot link
them to the inputs.

IV. THE CMIX PROTOCOL

A. Preliminaries

Nodes in cMix are denoted as N

i

with i = 1, 2, . . . , n.
For simplicity we assume here that the system already knows
which user will use which slot. When implementing the system
this can, for example, be achieved by including the sender’s
identity when sending a message to the system.

All computation are performed in a prime-order cyclic
group G satisfying the decision Diffie-Hellman (DDH) as-
sumption. The order of the group is p and g is a generator
for this group. Let G⇤ be the set of non-identity elements of
G.

4

A multi-party group-homomorphic cryptographic scheme
based on ElGamal is used, which is also described in [6].
Every node N

i

in the scheme holds a share SK

i

2 Z⇤
p

of
the secret key. The public key PK of the scheme can be
computed using the secret shares: PK = ⇧

i

g

SKi . Encryp-
tion of message m using this scheme is done using regular
ElGamal: (gx,m ⇥ PK

x), for x 2
r

Z⇤
p

. We call g

x the
random component and m ⇥ PK

x the message component
of the ciphertext. To decrypt a ciphertext (gx,m ⇥ PK

x),
all parties need to cooperate. Every node N

i

computes a so-
called decryption share from the decryption component of the
ciphertext: (gx)�SKi . The original message is then retrieved
by multiplying all the decryption shares with the message
component: m = m⇥ PK

x ⇥⇧n

i=1(g
x)�SKi .

Within cMix we use the following notation for various
functions and variables:

• SK

i

: the share of node N

i

of the secret key SK.
• PK: the public key of the system is based on the nodes’

shares of the secret key.
• E(m): ElGamal encryption under the system’s public key.

When applying encryption on a vector of values, this
means every value in the vector is encrypted individually
and the result is a vector of ciphertexts.

• D(i, x): the decryption share for node N

i

using its share
of the secret key. x is the random component of a
ciphertext. As with encryption, applying this function
on a vector of random values results in a vector of
corresponding decryption shares.

• p

i

: a random permutation of the � slots used by node N

i

.
The inverse of the permutation is denoted by p

�1
i

.
• P

i

(a): the permutation performed by the mixnet up to
node N

i

, i.e., all individual permutations combined:

P
i

(a) =

⇢
p1(a) i = 1
p

i

(P
i�1(a)) 1 < i n.

• P 0
i

(a): the inverse permutation of slots performed by the
mixnet for the return path up to node N

i

:

P 0
i

(a) =

⇢
p

�1
n

(a) i = n

p

�1
i

(P 0
i�1(a)) 1 i < n.

• ka

i,j

, ka

0
i,j

2 G⇤: secret key shared between node N

i

and the sending user of slot j used to blind messages and
responses respectively. These keys are group elements.

• Ka

j

,Ka

0
j

2 G⇤: the product of all shared keys for the
sending user of slot j: Ka

j

= ⇧n

i=1kai,j and Ka

0
j

=
⇧n

i=1ka
0
i,j

. The user for this slot stores the inverse of these
keys, Ka

�1
j

and Ka

0�1
j

, to blind and unblind messages
and responses respectively.

• M

j

,M

0
j

2 G

⇤: the message and the response sent by
user U

j

in the forward and return phase respectively. Like
other values in the system this is a group element, but can
easily be converted from, for example, an ASCII encoded
string. The size of the group determines the length of the
individual messages that can be sent.

For the forward path we have the following values addi-
tional:

• r

i,a

, s

i,a

2 G⇤: random values of node N

i

for slots a.
Thus, r

i

= (r
i,1, ri,2, . . . , ri,�) is a vector of random

values for the � slots in the message map at node N
i

. Sim-
ilarly, s

i

is also a vector of random values for node N

i

.
• R: the (direct) product of all local random values, i.e.,
R

i

= ⇧i

j=1rj .
• S: the product and permutation of all local random s

values:

S

i

=

⇢
s

i

i = 1
p

i

(S
i�1)⇥ s

i

1 < i n.

For the return path we use the following corresponding
messages:

• s

0
i,a

2 G⇤: random value of node N

i

for slot a.
• S

0: the product and permutation of all local random s

0

values:

S

0
i

=

⇢
s

0
i

i = n

p

�1
i

(S0
i+1)⇥ s

0
i

1 i < n.

We introduce an additional entity called the network
handler that performs non-sensitive computations, such as
computing the product of values output by nodes. In practice
this network handler role can also be performed by any of
the nodes. The computations of the network handler can also
be replaced by a pass through the mixnet, where every node
multiplies its local value with the value it received from the
previous node. This would balance the computational load over
the nodes, but might increase the latency as the values need
to be forwarded after every local computation, whereas with
the network handler it can start computing when it receives
the first values and keep processing while the values from the
other nodes come in.

B. At a Glance

cMix comprises two phases: precomputation and real-time.
Only in the precomputation phase are public-key cryptographic
operations performed. For the real-time phase, only multipli-
cations need to be computed. Below we discuss the protocol
at a high level. In Section IV-C, we discuss the protocol in
more detail.

In the precomputation phase the nodes and the network
handler compute values together that are used in the real-time
phase for the forward and return paths. The values used in the
forward path are computed in three steps:

1) Preprocessing: Each node generates random values r for
each slot and encrypts their inverse using the group-
homomorphic encryption function E . The nodes send their
encrypted r

�1 values to the network handler, who com-
putes the product of these encryptions. This computation
yields the vector of encrypted values E(R�1

n

).
2) Mixing: The result from the previous step is permuted

by each node, which also multiplies in the inverse of its
random s values. This computation yields E(P

n

(R�1
n

)⇥
S

�1
n

).
3) Postprocessing: In the last step, each node computes

their respective decryption shares of the result from the
previous step.

For the return path, the values are computed in the reverse
order and without the first step: first E(S0�1

1) is computed using

5

the inverse permutations, after which the nodes compute their
decryption shares.

For the real-time phase, the forward path is again per-
formed in three steps:

1) Preprocessing: The network handler receives messages M
blinded by the inverse of the users’ keys: M ⇥Ka

�1. In
the first step, each node N

i

sends the values ka
i

⇥r
i

to the
network handler. The network handler uses these values
take out Ka

�1 from the blinded messages and replace it
by R

n

.
2) Mixing: Each node permutes the result of the previous

step and multiplies in its s value, computing P

n

(M ⇥
R

n

)⇥ S

n

.
3) Postprocessing: Finally, the nodes send their precomputed

decryption shares to the network handler who uses these
to retrieve the permuted original messages.

As with the precomputation, for the return path we follow
the steps in reverse and without the first step. This results in
the unpermuted responses, blinded with the users’ receiving
keys.

C. Detailed Description

Below we discuss the different phases of the protocol in
detail, including messages exchanged by the nodes.

1) Precomputation Phase: Here we discuss the precom-
putation phase to compute the values that are necessary for
one real-time phase. The final goal of this phase is for the
nodes together to compute the values E((P

n

(R
n

)⇥S
n

)�1) and
E(S0�1

1) that are used in the real-time phase for the forward
and return path respectively. Below we discuss how these
values are computed by the system.

Forward - Step 1 (preprocessing). The nodes start by
computing E(R�1

n

) by sending the encryption of their local
r

i

to the network handler. The network handler computes the
product of all the encryptions of the individual values to get
the output of this step: E(R�1

n

) = ⇧n

i=1E(r
�1
i

). This output is
then sent to the first node as input for the second step.

Forward - Step 2 (mixing). In this step, the nodes exchange
the following messages:

node N

i

�! node N

i+1 :

E(P
i

(R�1
n

)⇥ S

�1
i

)

=

⇢
p1(E(R�1

n

))⇥ E(s�1
1) i = 1

p

i

(E(P
i�1(R�1

n

)⇥ S

�1
i�1))⇥ E(s�1

i

) 1 < i < n.

The last node computes E((P
n

(R
n

) ⇥ S

n

)�1) =
p

n

(E(P
n�1(R�1

n

) ⇥ S

�1
n�1)) ⇥ E(s�1

n

). It sends the
vector of random components from the ciphertexts of
E((P

n

(R
n

) ⇥ S

n

)�1) to the nodes and stores the message
components of E((P

n

(R
n

) ⇥ S

n

)�1) locally for use in the
real-time phase.

Forward - Step 3 (postprocessing). Using the random
components received, all the nodes compute their individual

decryption shares for E((P
n

(R
n

) ⇥ S

n

)�1) and store them
locally for use in the real-time phase. They publish commit-
ments to their decryption shares, which is necessary to prevent
a tagging attack in the real-time phase as will be discussed in
Section IV-D.

The value needed for the return path is computed in a
similar way, though in the opposite direction and without R

values.

Return - Step 1 (mixing). The nodes compute E(S0�1
1) by

sending the following messages:

node N

i

�! node N

i�1 :

E(S0�1
i

) =

⇢
E(s0�1

n

) i = n

p

�1
i

(E(S0�1
i+1))⇥ E(s0�1

i

) 1 < i < n.

The first node now computes E(S0�1
1) = p

�1
1 (E(S0�1

2))⇥
E(s0�1

1). The random components are sent to the other nodes
and the message components stored locally for use in the real-
time phase.

Return - Step 2 (postprocessing). Like for the forward path
all the nodes compute their individual decryption shares for
E(S0�1

1) and store them locally for use in the real-time phase.

2) Real-time Phase: For the real-time phase the users
construct their message for slot j by taking their message M

j

and multiplying it with the inverse of their combined shared
key Ka

j

to compute the blinded message M

j

⇥Ka

�1
j

, which
they send to the network handler. The network handler collects
all the individual messages and combines these to get the
vector M ⇥Ka.

Forward - Step 1 (preprocessing). In the first step of the
forward path, the Ka

�1 values are replaced by the r values
of each node. Every node N

i

sends the values ka

i

⇥ r

i

to the
network handler. The network handler uses the these values to
compute M ⇥ R

n

= M ⇥Ka

�1 ⇥ ⇧n

i=1kai ⇥ r

i

. The result
is sent to the first node as input to the next step.

Forward - Step 2 (mixing). In the next step the messages
are mixed:

node N

i

�! node N

i+1 :

P
i

(M ⇥R

n

)⇥ S

i

=

⇢
p1(M ⇥R

n

)⇥ s1 i = 1
p

i

(P
i�1(M ⇥R

n

)⇥ S

i�1)⇥ s

i

1 < i < n

The last node computes P
n

(M ⇥R

n

)⇥S

n

= p

n

(P
n�1(M ⇥

R

n

)⇥ S

n�1)⇥ s

n

and computes a commitment to this value.
This commitment is then sent to all the other nodes.

Forward - Step 3 (postprocessing). Upon receiving the
commitment from the last node, every other node N

i

sends
its precomputed decryption share for (x, c) = E((P

n

(R
n

) ⇥
S

n

)�1) to the network handler. The last node n sends the
multiplication of the result from the previous step with its
decryption share and the message component from the precom-
putation phase: P

n

(M⇥R

n

)⇥S

n

⇥D(n, x)⇥c. The network

6

Fig. 3: The cMix protocol: precomputation and real-time computation (forward paths).

handler uses the decryption shares to decrypt the precomputed
E((P

n

(R
n

)⇥ S

n

)�1) and retrieves the permuted messages:

P
n

(M ⇥R

n

)⇥ S

n

⇥⇧n

i=1D(i, x)⇥ c

= P
n

(M ⇥R

n

)⇥ S

n

⇥ (P
n

(R
n

)⇥ S

n

)�1

= P
n

(M)

The messages are published or delivered and the responses
to these messages are collected in M

0.

Return - Step 1 (mixing). For the return path we start with

the reversed permutations:

node N

i

�! node N

i�1 :

P 0
i

(M 0)⇥ S

0
i

=

⇢
p

�1
n

(M 0)⇥ s

0
n

i = n

p

�1
i

(P 0
i+1(M

0)⇥ S

0
i�1)⇥ s

0
i

1 < i < n.

The first node P 0
1(M

0) ⇥ S

0
1 = p

�1
1 (P 0

2(M
0) ⇥ S

0
2) ⇥ s

0
1 and

commits to this value the same way as before. Again, the value
is sent to the network handler.

Return - Step 2 (postprocessing). In the last step, every
node N

i

retrieves its precomputed decryption share D(i, x)

7

for (x, c) = E(S0�1
1) and uses it to compute D(i, x) ⇥ ka

0
i

.
The first node 1 sends its decryption share multiplied with
the message component from the precomputation phase to
the network handler: D(1, x) ⇥ c. The other nodes send their
decryption shares to the network handler after receiving the
commitment from the first node. Finally the network handler
uses the decryption shares to retrieve the permuted messages
blinded with Ka

0:

P 0
1(M

0)⇥ S

0
1 ⇥⇧n

i=1(D(i, x)⇥ c⇥ ka

0
i

)

= P 0
1(M

0)⇥ S

0
1 ⇥ S

0�1
1 ⇥Ka

0

= P 0
1(M

0)⇥Ka

0

The messages are published or delivered and now each user
of slot j can unblind its respective response by multiplying it
with its shared key Ka

0�1
j

.

D. Detecting Tagging Attacks

If it is possible to determine whether an output message is
valid, for example because it is an English message, a tagging
attack can be performed by any of the nodes to determine
the output slot that corresponds with a specific input slot. In
the preprocessing step of the real-time phase, the compromised
node N

i

replaces one value in the vector it sends to the network
handler. The value for the slot j for which it wants to learn
the recipient is replaced by ka

i,j

⇥ r

i,j

⇥ t, where t can be a
random group element. In the postprocessing step, the node
waits for the other nodes to reveal their decryption shares
and the output of the mixing step. Using its own decryption
shares the compromised node retrieves the messages. It can
then determine for which slot the message looks odd, but it
is correct when divided by t. For this slot it multiplies its
decryption share with t

�1 and sends the decryption shares to
the network handler as usual. The output of the system is now
still the permuted original messages.

To prevent this attack, commitments on the values used
in the last step are included in the protocol. The nodes have
to commit to their decryption shares in order to prevent them
to change it during the real-time phase to cancel out any tag
added. The last node will have to commit to the output of the
mixing step in order to prevent cancelling out any tag using
these values. To detect whether any tagging took place, all the
values are compared to their commitments. This can be done
online, but also after the real-time phase as an audit. A later
audit could be possible if the nodes have enough incentive to
not be detected of acting malicious.

E. Including Recipient Keys

The system described above does not take confidentiality
of the messages into account: the messages are output and the
responses received in plaintext by the system. This might be
sufficient for some applications and when required confiden-
tiality could be added by encrypting messages before sending
them to the system. However, it is also possible to extend the
system such that the output messages and responses are also
blinded. This way the recipient only needs to perform a single
multiplication to retrieve the message and no computational
more expensive public key cryptography is needed for this.
Below we will describe what modifications would need to

be done to the system in order to allow for this. An added
advantage of this is that it is no longer possible to distinguish
correct message in the output, making it impossible to perform
the tagging attack described before.

For this new functionality we introduce the following
additional notation:

• kb

i,j

and kb

0
i,j

: secret key shared between node N

i

and
the receiving user of slot j used to blind messages and
responses respectively.

• Kb

j

and Kb

0
j

: the product of all shared keys for the
receiving user of slot j: Kb

j

= ⇧n

i=1kbi,j and Kb

0
j

=
⇧n

i=1kb
0
i,j

. The user for this slot stores the inverse of these
keys, Kb

�1
j

and Kb

0�1
j

, to blind and unblind messages
and response respectively.

For the forward path, the precomputation phase stays the
same. We only need to change Step 3 in the real-time phase:
instead of the nodes sending their decryption shares D(i, x),
they send D(i, x)⇥ kb

i

to the network handler. Similar as in
Step 2 of the return path the output of the system would then
be P

n

(M) ⇥ Kb. Unblinding the message is very efficient
as the recipient only needs to perform one multiplication to
retrieve the original message.

The return path will change in both the precomputation
and real-time phase. It will now be symmetric to the modified
forward path: all the random values and keys are fresh as
before and the reverse permutation is used.

We can use this modification directly in applications where
all the messages go to the same destination, for example, when
using it for anonymous search. However, in other applications
we would need to know which keys to use for the recipient. For
this we need to add additional functionality to the forward path.
Assuming the recipient also sends the response, no changes are
needed for the return path.

One way to add in the recipients is to add a parallel session
that uses fresh values for the random variables, but use the
same permutations. The output of this parallel session would
be the recipient identities. The first two steps in the real-time
phase can be performed concurrently, but the third step needs
to be done for the parallel session first to retrieve the recipient
identities. After the recipient identities are known, all nodes
know which kb value to use for every slot and they can perform
the third step for the actual messages. For more details, see
Section VI.

V. SECURITY ANALYSIS

In this section, we analyze our protocol using the ideal/real
world paradigm. We describe below the ideal world, which
models the intended behavior of the system, in terms of
functionality and privacy. We then provide a proof sketch to
argue that our cMix protocol from the previous section can be
securely abstracted by the ideal world, and informally show
that the ideal world does indeed capture the required privacy
properties.

A. Ideal World

In the ideal world we assume the existence of a trusted
third party (TTP). Each mix-node in the network is connected

8

upon An input(setup) :
B = Ju = C = ;,
Empty tables P and T

upon Receiving (send, Uj ,Mj) :
if j /2 Ju then .This user has not yet sent a message

Set Ju Ju [{j}
Append Mj to buffer B
if |B| = � then .the buffer is full

SENDMSG(F
cMix

, start)

upon Receiving(start) :
SENDMSG(F

cMix

, precomp)
Wait to receive(precomp finished)

.All nodes start (real-time) preprocessing simultaneously

.For forward direction dir = 1, and dir = �1 for backword
SENDMSG(Ni, real-time, 1) 8i 2 [1, n]
Wait to receive(real-time finished, 1) from Handler
SENDMSG(Handler, output, B)
Wait to receive(reply) B0 from Handler

.Reply messages have been collected at Handler

Replace the set B with the received set B0

SENDMSG(Nn, real-time, �1)
Wait to receive(real-time finished, �1) from Handler
Send replies from B to corresponding Uj

upon Receiving(precomp) :
SENDMSG(Ni, precomp, 1) 8i 2 [1, n]
Wait to receive(output precomp, 1) from Nn

SENDMSG(Nn, precomp, �1)
Wait to receive(output precomp, �1) from N1

SENDMSG(F
cMix

, precomp finished)

upon Receiving(compromise, Ni/Uj) from A :
Set C C [{Ni/Uj}

upon Receiving(corrupt, Ni,j) from A :
if Ni 2 C then

Attach a corrupt tag to jth message in B during the
next processing at Ni

function SENDMSG(Recipient , header, payload)
Send(Sender , Recepient , header, |payload|) to A
Wait to receive forward from A
Send message (header, payload) to Recipient

Fig. 4: Ideal Functionality for cMix network F
cMix

to every other mix-node as well as to the TTP via a private
authenticated channel. In our ideal functionality, we use the
message-based state transitions and consider sub-machines for
all n mix nodes. To communicate with each other through
messages and data structures, these sub-machines share a
memory space in the functionality. Messages are sent using
an instruction Send. An adversary can observe, delay, or stop
the messages going from one node to another, but it cannot
read the message contents.

As in the rest of the paper, we denote a user as U

j

, (1
j m), cMix-nodes as N

i

, (1 i n), and M

j

denotes
a message of the user U

j

. An adversary is denoted as A. To
obtain a value v stored in a table T under key k, we use the
notation v query(T, key = k), while Update T (t)
describes storing a tuple t in a table T .

upon Receiving(phase, dir) :
.phase is equal to either real-time or precomp

if Ni 2 C then
COMPROMISEDNODE(Ni, phase, dir)
return

if dir = 1 then
SENDMSG(Handler, phase, preproc, dir)
Wait to receive (phase, dir , mixing)

if (dir = 1) AND (phase = precomp) then
Create a random permutation pi
Update P (Ni, pi)

else if phase = real-time then
pi query(P, key = Ni)
B pdiri (B)

if (i+ dir = n+ 1) OR (i+ dir = 0) then .If Ni = Nn

and dir = 1 or Ni = N1 and dir = �1
SENDMSG(Ni, phase , postproc, dir), 8i 2 [1, n]
SENDMSG(Handler , phase , postproc, dir)

else
SENDMSG(N(i+dir), phase , dir)

upon Receiving(phase , postproc, dir) from Ni :
Update T (Ni, phase, dir , Ni)
if phase = real-time then

v query(T, key = (Ni, precomp, dir , Ni))
if v 6=? then

SENDMSG(Handler , decrypt share, dir)
else

SENDMSG(F
cMix

, output precomp, dir)

function COMPROMISEDNODE(M)
Send M to A
Wait to receive (N 0

i ,M
0) from A

Send message M 0 to N 0
i

Fig. 5: Subroutines of F
cMix

for node N

i

upon Receiving(phase , postproc, dir) :
Update T (Ni, phase, dir ,Handler)

upon Receiving(phase preproc, dir) :
.In the preprocess phase all nodes send messages to the handler

Wait to receive(phase preproc, dir) from Ni, 8i 2 [1, n]
SENDMSG(N1, phase, dir, mixing)

upon Receiving(decrypt share, dir) :
Wait to receive(decrypt share, dir) from Ni, 8i 2 [1, n]
SENDMSG(F

cMix

, real-time finished, dir)
.Messages are retrieved and are ready to be delivered to recipients

upon Receiving(output, B) from F
cMix

:
Forward messages in B to A

upon Receiving(return, B0) from A :
SENDMSG(F

cMix

, return, B0)

Fig. 6: Subroutines of F
cMix

for Handler

Internal data structures. The ideal functionality maintains
the following data structures. A list of incoming messages is
stored in B. A list of compromised nodes is maintained in C.

9

The adversary may corrupt some message, while it is getting
processed at the compromised nodes by attaching a corrupt
tag to the message; however, he cannot check or remove the
tag until the message is output by the network handler. A
table of intermediate values stored by nodes and Handler:
T with tuples (N

i

, phase, direction, party), where party in-
dicates who stores the given record. A table P with tuples
(N

i

, permutation) containing the precomputed permutation of
the node with ID N

i

.

Ideal functionality. All cMix nodes are a part of the ideal
functionality, and thus they have access to appropriate internal
data structures of the ideal functionality. Nodes communicate
with each other using these data structures and the function
SENDMSG(·,·), using which triggers the ideal functionality to
send messages with the help of communication model. For
simplicity the ideal functionality accepts only one input from
each user, and encompasses only one round of communication.
The pseudocode of the general ideal functionality is presented
in Figure 4 and the pseudocode for cMix node subroutines is
presented in Figure 5. Subroutines for Network Handler are
depicted in the Figure 6. Unlike the cMix algorithm, F

cMix

does not have any cryptographic operations such as encryption,
decryption or commitments; the required security properties
are instead insured by the the TTP.

As it was discussed in III-B, we assume secure authenti-
cated channel between cMix nodes. Thus the only influence an
attacker has on the messages sent between nodes is to delay or
completely drop them, this is reflected in the SENDMSG(·,·)
function. The only information an attacker learns is the sender
and recipient of the message, as well as its length. To learn the
messages sent and received by nodes, an attacker compromises
them. When a node is compromised, it invokes compromised
node function that forwards all the messages the node receives
to A and waits for instructions from him.

We define below the concept of simulation security, which
intuitively captures under which conditions a cryptographic
protocol constitutes a secure realization of the ideal world
defined above.

Definition 1 (Simulation Security). A cryptographic protocol
is simulation secure if for all PPT adversaries A in the real
world who actively corrupt any arbitrary subset of users and
mix-nodes in the anonymous communication network, there
exists a simulator S in the ideal world execution, which
corrupts the same set of parties and produces an output
computationally indistinguishable to the output of A in the
real world.

B. Simulation Security

Here, we perform an informal security analysis of the cMix
protocol. In particular, we present a proof sketch to demon-
strate that the cMix protocol with a CPA-secure threshold
group-homomorphic encryption scheme and a perfectly hiding
commitment scheme, securely realize the ideal world presented
in the previous subsection. More formally,

Theorem 1 (Simulation Security). If E is a secure threshold
group-homomorphic encryption scheme and (Commit,Open)
is a non-Interactive Commitment Scheme, and assuming that
every pair of user and mix-node have agreed upon a longer

term master key, then the cMix protocol is simulation secure
as defined in Definition 1 in the random oracle model.

Proof: The general idea of the proof is to provide a set
of efficient simulators that run the corrupted instances of the
network in the ideal world and simulates the inputs that those
would expect in the real protocol execution.

For every execution, our real as well as ideal worlds are
divided in two phases: precomputation phase and real-time
phase. Both worlds also match in terms of communication
flows, and the simulators are only left with the task of correctly
realizing the cryptographic messages.

For the precomputation phase, the core step of the proof
is to simulate the homomorphic encryption of random R

and K, chose random permutations for the corrupted mix-
node, and then commit the decryption shares. Notice that
the users are not involved in this step. The main observation
here is that all the elements exchanged by the nodes are
either commitments, encryptions of random messages. As we
require all of these outputs to hide statistically the inputs of
the respective protocols, it is easy for a simulator S

pre

to
simulate the correct distribution of the input that the adversary
is expecting with random values in the appropriate domain.

Simulating the real-time phase requires a more sophisti-
cated analysis. Here, a simulator S

real

need to simulate the
protocols for the corrupted users along with corrupted mix-
nodes. Messages from honest users remain perfectly hidden
from the adversary at all parts of the networks except when
they get released to the network handler in the forward
direction, and when the responses from the network handler
are collected by the exit node. There are two key challenges.
The first challenge is that S

real

needs to output the adversaries
inputs (i.e., receive-message pairs input by the corrupted users)
correctly in the end of the forward as well as backward phase.
The second challenge is that the adversary may try to tag
the simulated messages from the honest users, when they are
getting permuted at a corrupted node. In that case, it should
not be possible for the adversary to remove the tag at some
later stage at another corrupted node.

We solve the first challenge as follows:

• In the forward direction, we employ open the commit-
ments to the shares such that they match the adversary
messages.

• In the backward direction, we achieve this by changing
the quotients of S and Ka

0 values for the honest nodes.
As the expected adversary response messages are already
known to S

real

, it can create the respective versions
for those to collected by the adversary initiator users by
manipulating its quotient values.

The second challenge is easy to solve as the adversary as
the message remain perfectly hidden from the adversary until
they are decrypted during open algorithm of the decryption
step.

Therefore, using S
pre

and S
real

, it is possible to simulate
the responses expected by the adversary. It is also easy to see
that both S

pre

and S
real

are efficient as they can complete their
tasks by simulating decryption with help of commitments in

10

the forward direction and re-randomization (i.e., quotients of
S and Ka

0) in the backward direction.

C. Anonymity analysis

The cMix protocol ensures sender anonymity of its users.
Sender anonymity holds if any sender in the cMix network
is indistinguishable from all other potential senders. More
precisely, all senders of a single round form an anonymity
set within which they are indistinguishable. This holds for
both forward and return messages - cMix ensures that the
user who initiated communication will remain anonymous. The
notion of sender anonymity was initially formulated in [34] and
formalized in [3].

We use this framework to define sender anonymity. Let the
Challenger Ch(b) define inputs from an adversary specified by
the function ↵

SA

(see Fig. 7) as input to the cMix protocol
except for the challenge bit b. The message that Ch receives
from the adversary is forwarded to F

cmix

instead of the user
defined by the challenge bit b. Another user, selected by
the adversary for Ch, sends a random message. Senders and
recipients are simulated by the environment, which lets them
pick communication partners and messages at random. Let the
event that an adversary compromised n nodes be denoted as
E

↵

. The goal of this section is to demonstrate that an adversary
can only break sender anonymity of at least two honest users
if he compromised all nodes in cMix.

Definition 2. The cMix protocol provides (�)-sender
anonymity if for the function ↵

SA

as defined in Fig. 7 for
any adversary A with 0 � 1 if

Pr[0 = hA|Ch(0)i] � Pr[0 = hA|Ch(1)i] + �,

where � = Pr[E
↵

]

function ↵SA(s, (Sender
0

,Recipient ,M), (Sender
1

, ,),
b)

if s 6= fresh challenge then
output ?

else
output (Sender

b

,Recipient ,M , challenge over)

Fig. 7: Sender anonymity function (A simplified form) [3]

Assume E

↵

did not happen, but an adversary compromised
the maximum number of n � 1 nodes. Let us consider the
forward round.

From a message M sent from sender to F
cmix

A learns
only the sender identity as defined in C

I

and the position of the
message. From messages send between any of the submachines
in the IF, A learns both the sender and recipient. By invoking
Receiving(corrupt, N

i

), A compromises nodes. From any
compromised node, A learns the permutation he applies to the
incoming messages, but not the messages themselves. When
corrupted nodes perform a precomputation or real-time phase,
invoked with the message (precomp, flag , r), they forward
all the messages they receive to A. However, the content of
messages sent by users is never forwarded to A and is accessed
by nodes using shared memory. For any message sent from the

IF to the recipient A learns the recipient identity, as well as
the content of the message.

A can see that both users he selected for Ch are sending.
He can also see that Recipient

0

is receiving the message M0.
Since A compromised n�1 nodes, he gets to know all but one
of the permutations applied on the messages. A can calculate
which output slot of the honest node contains the message M0.
He can also calculate which input slots of the honest node
contain the (unknown) messages of Sender

0

and Sender

1

.

Since the permutation is random, A has probability of 1/2
to chose one the two senders correctly regardless of the value
of b. Thus,

Pr[0 = hA|Ch(0)i|¬Pr[E
↵

]] = Pr[0 = hA|Ch(1)i|¬Pr[E
↵

]].

The argument for the return round is similar. During the
return round, Recipient

0

is sending a random message M

r

back to Sender

b

. Message M

r

is forwarded by F
cmix

to A.
From messages send between any of the submachines in the IF,
A learns the same information as in the forward round. From
messages sent by F

cmix

to users, A learns only the identities
of the users who receive the messages.

Again, since A compromised n�1 nodes, he gets to know
all but one of the permutations applied on the messages. He
can determine the slot of the input message M

r

and the two
slots containing the output messages sent to Sender

0

and
Sender

1

. Since the permutation is random, A has a probability
of 1/2 for choosing one the two senders correctly regardless
of the value of b. Thus, Pr[0 = hA|Ch(0)i|¬Pr[E

↵

]] =
Pr[0 = hA|Ch(1)i|¬Pr[E

↵

]]. This equation holds for both
the forward and return round.

Now it can be shown that the equation Pr[0 =
hA|Ch(0)i] � Pr[0 = hA|Ch(1)i] + Pr[E

↵

] holds using the
same approach as in [3, p.30].

Pr[0 = hA|Ch(0)i]
= Pr[0 = hA|Ch(0)i|Pr[E

↵

]]⇥ Pr[E
↵

]
+ Pr[0 = hA|Ch(0)i|¬Pr[E

↵

]]⇥ Pr[¬E
↵

]
= Pr[0 = hA|Ch(0)i|Pr[E

↵

]]⇥ Pr[E
↵

]
+ Pr[0 = hA|Ch(1)i|¬Pr[E

↵

]]⇥ Pr[¬E
↵

]
 Pr[E

↵

] + Pr[0 = hA|Ch(1)i|¬Pr[E
↵

]]⇥ Pr[¬E
↵

]
 Pr[E

↵

] + Pr[0 = hA|Ch(1)i|¬Pr[E
↵

]]⇥ Pr[¬E
↵

]
+ Pr[0 = hA|Ch(1)i|Pr[E

↵

]]⇥ Pr[E
↵

]
= Pr[E

↵

] + Pr[0 = hA|Ch(1)i]]

Although similar to other mix-net designs, cMix provides
a good protection against several standard traffic analysis
techniques, we still need to study the applicability of the
specialized mixing analyses such as [33], [36], [40].

D. Protocol integrity

The integrity property of cMix holds only if one of the two
conditions holds:

1) the unmodified message M is forwarded to the recipient;
2) all the nodes learn that the protocol was not performed

successfully.

11

In this work, we focus on the latter condition. We propose
to use one of the existing mechanisms to achieve integrity. It is
called Randomized Partial Checking (RPC) and is introduced
in 2002 in [20]. This technique allows to perform a proba-
bilistic verification if the outputs of the mix-net correspond to
it’s permuted inputs. Thus, it verifies not only the integrity of
messages, but also if the permutations were applied correctly.
Additionally, RPC allows to achieve probabilistic account-
ability [27]. It ensures that if the protocol run is performed
incorrectly, at least some of the attackers are revealed with
sufficiently large probability, at the same time honest parties
are never blamed.

In RPC, nodes reveal certain information about a (large)
part of their input/output pairs selected by either other nodes
or by a random oracle. Revealed pairs are verified against
previously made commitments. To maintain privacy of users,
adjustment nodes are paired with each node belonging to only
one such pair. Nodes in a pair reveal their input such, that none
of the messages can be followed as an input of one server and
an output of the second one. RPC achieves a more relaxed
(compared to the original mix protocol as described in [9])
level of anonymity under assumption of at least one pair of
adjustment mix-nodes behaves according to the protocol as
proven in [27]. When implementing RPC technique one has
perform additional verifications to tackle issues in the original
protocol described in [26].

VI. APPLICATIONS

The cMix protocol serves well as a building block for
a range of applications. Examples include private message
delivery without use of public key and including confidential
authentication of the sender to the recipient. Furthermore, so-
called “untraceable return addresses” (URAs) can be realized
and allow establishing a group to which all members of the
group can send. In our work on PrivaTegrity, a number of
additional applications are being developed using cMix as a
primitive, including payments, photo sharing, anonymous feed
following, and general credential mechanisms. Other possible
applications include voting and anonymous surveys. These take
advantage of the pre-arranged relationship of each user with
each node, a new and promising security model.

In the remainder of this section, without going into formal
detail or security arguments, we briefly abstract how the basic
message delivery features and URAs can be realized using
cMix. We plan to provide more details about these applications
in subsequent writings.

Consider the delivery of a message sent anonymously
through cMix to a user of cMix who is known to the sender, but
where the payload is to remain confidential to the two users. In
the absence of the additional use of public key or pre-arranged
keys, we design a method in which message confidentiality will
depend on non-collusion of the mix nodes.

The notion of a “parallel components” yields a solution.
Two cMix batches can be processed using the same permu-
tations but independent keys. Each user sends two inputs,
each assigned the same slot position in its respective batch.
In the two batches, because the same permutation is used
for each batch, the corresponding inputs are linked, and the
corresponding outputs are linked. The pair of user inputs, and

the pair of outputs, may be called “coordinated components”
and comprise what might be thought of as a “meta-message.”

Private delivery of a message can be accomplished using
parallel components as follows: The sender includes in the pay-
load of the first of the two components in cleartext the identifier
of the recipient within the cMix system along with the delivery
address, if that is not implicit in the participant identification.
The second parallel component of the meta message, as formed
by the sender, has the cleartext message content to be delivered
as its payload. In a first phase, the output of the first batch
is posted, revealing the respective delivery address for each
component of the second batch. In the second phase, the nodes
choose the message key values “k-values”) for the intended
recipients (so that only the intended recipient can decrypt the
message payload sent by the sender) and leave them in the
respective components of the second output batch and allow
that batch to be known to the network handler. In the third
phase, the network handler delivers the messages in the second
batch using the corresponding addresses posted in the first
batch. This action allows the recipient to use the k-values
it knows to recover the cleartext payload from the message
received.

Along similar lines, a further extension allows for authen-
tication of the sender of a meta-message. In this example
a third batch of parallel components is used to provide the
recipient of each message with the identifier of the sender
of that message. To achieve this objective, the input to the
third batch is provided entirely by the network handler and
not by the sender; its payload is an identifier of the sender
within cMix, which may be assumed known in such examples
safely on the input side of the mixing. The output of the
third batch is treated just as the output of the second batch:
each cMix sender identifier is delivered confidentially to the
corresponding recipient of the message.

Chaum [9] introduced the notion of untraceable return
address (URA). While rarely implemented, it is believed to
have significant utility. For instance, providing delivery of
replies to advertisements or postings of whatever type, while
keeping the identity of the person placing the advertisement
or making the posting otherwise anonymous. One way to
incorporate URAs into cMix is to allow the user wishing to
create a URA to create a “virtual user” with the nodes. This
method entails setting up keys with each node for the virtual
user. This setup, however, would preferably be done using an
anonymous channel, such as possibly cMix itself, to maintain
unlinkability between URA and the user who created it.

Group messaging can be achieved using URAs. Each group
member publishes, anonymously through cMix, a URA it
has created for this purpose along with the shared unique
group identifier. When a message is to be sent to the whole
group, its payload in the first parallel component is the group
identifier. The second parallel component contains the message
to be sent to the group as its payload. This second message
component is replicated by the network handler and is used
to create a separate message for each group member. Each of
these messages is sent through a subsequent final cMix. The
decryption with the virtual user’s k is accomplished on the
input to the final cMix by the nodes using the group’s k, but
then includes the URA creator’s k to protect its privacy in
transit to the anonymous group member.

12

Immediate replies from the receiver are handled in the
following way. In the considered example of web-browsing,
these are the delivery confirmations. For the confirmation
messages, the last mix node waits for a notification from the
receivers for a fixed amount of time to generate a batch of
� responses. After the waiting time expires, the last node
generates any sending-failure notifications and adds them to
the batch. All messages from that batch are sent within one
sub-round, and thus have the same length.

Replies that are not delivered immediately are handled in
a separate round, using URAs. Longer replies are split into
several messages that are transferred in separate rounds.

VII. IMPLEMENTATION AND BENCHMARKS

We implemented our prototype system in Python, support-
ing forward and return paths. Fig. 8 shows the system architec-
ture, which includes users, nodes, and a network handler. Each
node includes a keyserver (to establish shared keys with the
users) and a mixnet server (to carry out the precomputations
and real-time computations). Currently the prototype supports
anonymous search and the publishing of plaintext messages
that are automatically acknowledged. The commitments are
at the moment simulated by computing a SHA-256 hash. For
the precomputation, the computation of the encryptions and
decryption shares is performed by a parallel process on the
nodes.

We ran experiments by installing the prototype on Amazon
Web Services (AWS) instances, with each node comprising a
c3.large with two virtual processors and 3.75GB of RAM. For
encryption, including of messages and random values, we used
a group with a prime-order of 1024 bits.

On the AWS instances, each 1024-bit ElGamal encryp-
tion took approximately 10 milliseconds on average, and the
computation of a decryption share took about 5 milliseconds.
Multiplications of group elements took only a fraction of a
millisecond.

For our experiments we performed 100 precomputations
and real-time phases for different batch sizes up to 1000.
We measured elapsed time on the network handler from the
time it instructed the nodes to start until it either received a
message from all nodes indicating the precomputation finished
successfully or it computed the final responses to be sent to the
users in the real-time phase. During the precomputation, the
network handler does not receive a message at the end of the
forward phase, making it hard to measure exact timings about
the forward and return path separately. Because the encryptions
are computed in a parallel thread, there is also not a clear
distinction between the two paths on the individual nodes.

Table I gives timings for selected batch sizes. The means
of the different phases are quite a bit higher than typical due
to a few executions with very high timings, probably due
to external influences such as background processes running
on the instances or delays in network traffic. To illustrate
typical observed timings, we also include the medians timings.
Still, the mean timings show the high performance of the
system in the real-time phase. The precomputation can easily
be accelerated by performing more computations in parallel.
Additional processors would significantly improve the time

it takes to compute all necessary encryptions and decryption
shares.

VIII. PERFORMANCE ANALYSIS

In this section we analyze the performance of cMix for the
forward path. We will express running times in terms of the
time ⌧E to perform one public-key encryption, the time ⌧D to
compute one public-key decryption share, and the time ⌧M to
perform one group multiplication. For our encryption function,
⌧D = ⌧E/2. Let � be the number of messages processed per
batch, and let n be the number of mix nodes. We do not
consider any parallel computations.

For each precomputation phase for the forward path, cMix
performs 2n� encryptions and computes n� decryption shares,
two encryptions and one decryption share per slot. Thus, this
phase takes (5/2)n�⌧E time for the public-key operations.

In the real-time phase for the forward path, cMix performs
4�(n + 1) group multiplications. For every slot, three multi-
plications are used to remove the shared keys, and to add the
r and s values. In addition, cMix performs n multiplications
per slot to combine the decryption shares and to decrypt the
precomputed value, and one to take out the precomputed value
from the result. Thus, the real-time phase takes 4�(n+ 1)⌧M
time for all multiplications.

It follows that the computations in the real-time phase are
approximately (5/8)(⌧E/⌧M) faster than the precomputation
phase when performed in a single thread. Therefore, if the real-
time phase processes, for example, ↵ messages per second,
the system needs to be able to perform (5/8)(⌧E/⌧M)↵
precomputations per second. It could do so, for example, with
dedicated machines.

The messages that pass through the network either contain
2� group elements for the encrypted values or � group
elements for the other messages. Assuming a group element
can be represented in � bits on average, the messages have
average sizes of 2�� and �� respectively.

IX. DISCUSSION

We discuss our major design decisions, PrivaTegrity’s
authentication and accountability model, and future work.

A. Major Engineering Design Decisions

cMix is not just another mixnet; it is fundamentally dif-
ferent. Our design motivation is to enable large anonymity
sets (large batch sizes) and many mix nodes. This design
motivation implies the need for a highly scalable architecture
with fast real-time computations. To achieve this goal, we must
depart from two limiting practices of traditional anonymity
systems: real-time public-key operations, and the involvement
of the user in establishing routing paths through the mix nodes.
By contrast, as a result of these limiting practices, current
implementations of anonymity systems use small batch sizes
and a small number of mix nodes.

To achieve the aforementioned goals, our first major design
decision was to replace all real-time public-key operations with
fast symmetric-key operations, by using precomputed group-
homomorphic encryptions of random values. Our second major

13

Precomputation - Total (s) Real-time - Forward (s) Real-time - Return (s) Real-time - Total (s)
Batch size Mean Median Mean Median Mean Median Mean Median
50 1.56 1.51 0.15 0.10 0.06 0.04 0.20 0.14
100 3.02 2.94 0.24 0.18 0.09 0.08 0.33 0.25
200 5.87 5.84 0.47 0.32 0.18 0.15 0.64 0.47
300 8.85 8.79 0.68 0.48 0.26 0.22 0.70 0.94
500 14.59 14.56 1.06 0.81 0.44 0.37 1.51 1.18
1000 28.87 28.86 2.19 2.04 0.90 0.85 3.09 2.95

TABLE I: Mean and median of the timings in seconds (s) of 100 runs of the precomputation and real-time phases for different
batch sizes.

Fig. 8: Architecture for our prototype.

decision was for each sender to establish a shared key sepa-
rately with each of the mix nodes, thus avoiding the need to
involve the sender in the establishment of routing paths. These
design choices avoided the two limiting practices mentioned
above and achieved our design goals.

The use and identification of a network handler was a
minor design decision. All mixnets must provide some similar
functionality, though not necessarily through such a named
entity. For example, some of this functionality might be carried
out by the first mix node. We find it conceptually helpful to
abstract the functions of the network handler in a separate
named entity.

B. Anonymity and Accountability in PrivaTegrity

Independent from cMix, PrivaTegrity addresses potential
abuse of anonymity services by establishing a trust model
that offers a balance of anonymity and accountability. On the
one hand, PrivaTegrity aims to provide privacy at a technical
level that is not penetrable by nation states. On the other
hand, PrivaTegrity aims to provide integrity, both prior restraint
and accountability after the fact, that is inescapably tied to
individuals. Only if all of the mixing nodes cooperate, can the
senders and receivers of messages be linked or identified.

PrivaTegrity implements a new approach to user identifica-
tion requiring each user to provide a small but different type
of identifying information to each mix node. Some nodes may
require photos or answers to personal history questions; others
may request mobile phone numbers or email addresses. A user
reveals comparatively little to any single node, but collectively
the nodes possess significant identifying information. Each

node can obligate itself contractually to trace and aggregate
identifying information only according to a published policy,
resulting in accountability and effective identification of users
who violate the policy.

C. Future Work

Three tasks we plan to work on in the future include
the following: First, we would like to deploy PrivaTegrity,
including implementing and refining applications described in
Section VI.

Second, we plan to explore different approaches for en-
forcing integrity of the mix nodes, to ensure that they cannot
modify any message without detection.

Third, currently, message length is restricted by the group
modulus. We would like to investigate if it is possible to allow
any length message, for example, by using key-homomorphic
pseudorandom functions [7].

X. CONCLUSION

The extraordinary speedup in real-time computation offered
by cMix is a game changer. Unlike previous mixnets, cMix en-
ables smartphones to communicate anonymously without slow-
ing computations, draining batteries, and burning up network
bandwidth. By replacing real-time public-key operations with
precomputations, and by avoiding the user’s direct involvement
with the construction of the path through the mix nodes, cMix
scales well for deployment with large anonymity sets and large
numbers of mix nodes. PrivaTegrity’s unique security model,
coupled with its wide range of applications being pursued,
holds promise for a new day in anonymous social interaction.

14

ACKNOWLEDGMENTS

We thank the following people for helpful comments:
David Delatte and Dhananjay Phatak.

Sherman was supported in part by the National Sci-
ence Foundation under SFS grant 1241576 and a subcon-
tract of INSuRE grant 1344369, and by the Department of
Defense under CAE-R grant H98230-15-10294. Anna was
conducting this research within the Privacy and Identity Lab
(PI.lab, http://www.pilab.nl) and funded by SIDN.nl
(http://www.sidn.nl/).

REFERENCES

[1] B. Adida and D. Wikström, “Offline/online mixing,” in ICALP 2007,
2007, pp. 484–495.

[2] M. Backes, I. Goldberg, A. Kate, and E. Mohammadi, “Provably
secure and practical onion routing,” in Proc. 25th IEEE Computer
Security Foundations Symposium (CSF), 2012.

[3] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Mohammadi,
“AnoA: A framework for analyzing anonymous communication
protocols,” in 26th Computer Security Foundations Symposium (CSF),
2013, pp. 163–178, http://eprint.iacr.org/2014/087.

[4] M. Backes, A. Kate, S. Meiser, and E. Mohammadi, “(nothing else)
MATor(s): Monitoring the anonymity of Tor’s path selection,” in
Proceedings of the 21th ACM conference on Computer and
Communications Security (CCS 2014), November 2014.

[5] M. Backes, A. Kate, and E. Mohammadi, “Ace: an efficient
key-exchange protocol for onion routing,” in Proc. WPES’12, 2012,
pp. 55–64.

[6] J. Benaloh, “Simple verifiable elections,” in Proceedings of the
USENIX/Accurate Electronic Voting Technology Workshop 2006 on
Electronic Voting Technology Workshop. USENIX Association, 2006.

[7] D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan, “Key
homomorphic PRFs and their applications,” in Advances in
Cryptology - CRYPTO 2013, 2013, pp. 410–428.

[8] J. Camenisch and A. Lysyanskaya, “A formal treatment of onion
routing,” in Advances in Cryptology — CRYPTO, 2005, pp. 169–187.

[9] D. Chaum, “Untraceable electronic mail, return addresses, and digital
pseudonyms,” Communications of the ACM, vol. 4, no. 2, pp. 84–88,
1981.

[10] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig,
“HORNET: high-speed onion routing at the network layer,” in Proc.
22nd ACM Conference on Computer and Communications Security,
2015, pp. 1441–1454.

[11] J. Cox, “Court docs show a university helped FBI bust Silk Road 2,
child porn suspects,” Motherboard, November 2015,
http://motherboard.vice.com/read/court-docs-show-a-university-
helped-fbi-bust-silk-road-2-child-porn-suspects?gbwlbe.

[12] G. Danezis, R. Dingledine, and N. Mathewson, “Mixminion: Design
of a Type III anonymous remailer protocol,” in Proc. 24th IEEE
Symposium on Security & Privacy, 2003, pp. 2–15.

[13] G. Danezis and I. Goldberg, “Sphinx: A compact and provably secure
mix format,” in Proc. 30th IEEE Symposium on Security & Privacy,
2009, pp. 269–282.

[14] G. Danezis and B. Laurie, “Minx: A simple and efficient anonymous
packet format,” in Proc. 3rd ACM Workshop on Privacy in the
Electronic Society (WPES), 2004, pp. 59–65.

[15] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
second-generation onion router,” in Proc. 13th USENIX Security
Symposium (USENIX), 2004, pp. 303–320.

[16] N. S. Evans, R. Dingledine, and C. Grothoff, “A practical congestion
attack on tor using long paths,” in Proc. 18th USENIX Security
Symposium, 2009, pp. 33–50.

[17] I. Goldberg, D. Stebila, and B. Ustaoglu, “Anonymity and one-way
authentication in key exchange protocols,” Designs, Codes and
Cryptography, pp. 1–25, 2012.

[18] D. M. Goldschlag, M. G. Reed, and P. F. Syverson, “Onion routing,”
Commun. ACM, vol. 42, no. 2, pp. 39–41, 1999.

[19] C. Gulcu and G. Tsudik, “Mixing email with Babel,” in Proc. of the
Network and Distributed System Security Symposium (NDSS ’96),
1996, pp. 2–16.

[20] M. Jakobsson, A. Juels, and R. L. Rivest, “Making mix nets robust
for electronic voting by randomized partial checking,” in 11th
USENIX Security Symposium, 2002, pp. 339–353.

[21] R. Jansen, F. Tschorsch, A. Johnson, and B. Scheuermann, “The
sniper attack: Anonymously deanonymizing and disabling the Tor
network,” in (NDSS’14), 2014.

[22] A. Jerichow, J. Mller, A. Pfitzmann, B. Pfitzmann, and M. Waidner,
“Real-time mixes: A bandwidth-efficient anonymity protocol,” IEEE
Journal on Selected Areas in Communications, vol. 16, no. 4, pp.
495–509, 1998.

[23] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson, “Users
get routed: Traffic correlation on tor by realistic adversaries,” in
Proceedings of the 20th ACM conference on Computer and
Communications Security (CCS 2013), November 2013.

[24] A. Kate and I. Goldberg, “Using Sphinx to improve onion routing
circuit construction,” in Proc. 14th Conference on Financial
Cryptography and Data Security (FC), 2010, pp. 359–366.

[25] A. Kate, G. M. Zaverucha, and I. Goldberg, “Pairing-based onion
routing with improved forward secrecy,” ACM Trans. Inf. Syst. Secur.,
vol. 13, no. 4, p. 29, 2010.

[26] S. Khazaei and D. Wikstrm, “Randomized partial checking revisited,”
in Topics in Cryptology: CT-RSA 2013, 2013, pp. 115–128.

[27] R. Kuesters, T. Truderung, and A. Vogt, “Formal analysis of
Chaumian mix nets with randomized partial checking,” Cryptology
ePrint Archive, Report 2014/341, 2014, http://eprint.iacr.org/.

[28] B. Möller, “Provably secure public-key encryption for
length-preserving Chaumian mixes,” in Proc. CT-RSA, 2003, pp.
244–262.

[29] U. Möller, L. Cottrell, P. Palfrader, and L. Sassaman, “Mixmaster
protocol – Version 2,” IETF Internet Draft, 2003.

[30] S. J. Murdoch and G. Danezis, “Low-cost traffic analysis of Tor,” in
IEEE Symposium on Security and Privacy, 2005, pp. 183–195.

[31] L. Øverlier and P. Syverson, “Improving efficiency and simplicity of
Tor circuit establishment and hidden services,” in Proc. 7th Privacy
Enhancing Technologies Symposium (PETS), 2007, pp. 134–152.

[32] L. Øverlier and P. F. Syverson, “Locating hidden servers,” in IEEE
Symposium on Security and Privacy, 2006, pp. 100–114.

[33] F. Pérez-González and C. Troncoso, “A least squares approach to user
profiling in pool mix-based anonymous communication systems,” in
IEEE WIFS 2012, 2012, pp. 115–120.

[34] A. Pfitzmann and M. Hansen, “A terminology for talking about
privacy by data minimization: Anonymity, unlinkability,
undetectability, unobservability, pseudonymity, and identity
management,” Aug. 2010, v0.34.

[35] B. Pfitzmann and A. Pfizmann, “How to break the direct
RSA-implementation of mixes,” in Advances in Cryptology —
EUROCRYPT ’89, 1990, pp. 373–381.

[36] D. Rebollo-Monedero, J. Parra-Arnau, J. Forné, and C. Dı́az,
“Optimizing the design parameters of threshold pool mixes for
anonymity and delay,” Computer Networks, vol. 67, pp. 180–200,
2014.

[37] E. Shimshock, M. Staats, and N. Hopper, “Breaking and provably
fixing Minx,” in Proc. 8th Privacy Enhancing Technologies
Symposium (PETS), 2008, pp. 99–114.

[38] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang,
and P. Mittal, “Raptor: Routing attacks on privacy in Tor,” in 24th
USENIX Security Symposium (USENIX Security 15), 2015, pp.
271–286.

[39] “The Tor project,” https://www.torproject.org/, 2003, accessed Nov
2015.

[40] C. Troncoso and G. Danezis, “The bayesian traffic analysis of mix
networks,” in ACM CCS 2009, 2009, pp. 369–379.

[41] D. Wikström, “A universally composable mix-net,” in Proc. of the 1st
Theory of Cryptography Conference (TCC), 2004, pp. 317–335.

15

http://eprint.iacr.org/2014/087
http://motherboard.vice.com/read/court-docs-show-a-university-helped-fbi-bust-silk-road-2-child-porn-suspects?gbwlbe
http://motherboard.vice.com/read/court-docs-show-a-university-helped-fbi-bust-silk-road-2-child-porn-suspects?gbwlbe
http://eprint.iacr.org/
https://www.torproject.org/

	Introduction
	Background and Related Work
	Mix Networks
	Onion Routing

	Overview of cMix
	Communication Model
	Adversarial Model
	Solution Overview
	The Protocol Steps

	The cMix Protocol
	Preliminaries
	At a Glance
	Detailed Description
	Precomputation Phase
	Real-time Phase

	Detecting Tagging Attacks
	Including Recipient Keys

	Security Analysis
	Ideal World
	Simulation Security
	Anonymity analysis
	Protocol integrity

	Applications
	Implementation and Benchmarks
	Performance Analysis
	Discussion
	Major Engineering Design Decisions
	Anonymity and Accountability in PrivaTegrity
	Future Work

	Conclusion
	References

