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Abstract
We describe an approach for identifying fine-grained
entity types in heterogeneous data graphs that is effec-
tive for unstructured data or when the underlying on-
tologies or semantic schemas are unknown. Identifying
fine-grained entity types, rather than a few high-level
types, supports coreference resolution in heterogeneous
graphs by reducing the number of possible coreference
relations that must be considered. Big Data problems
that involve integrating data from multiple sources can
benefit from our approach when the datas ontologies are
unknown, inaccessible or semantically trivial. For such
cases, we use supervised machine learning to map en-
tity attributes and relations to a known set of attributes
and relations from appropriate background knowledge
bases to predict instance entity types. We evaluated this
approach in experiments on data from DBpedia, Free-
base and Arnetminer using DBpedia as the background
knowledge base.

Introduction
Big Data is often characterized as data exhibiting the four
Vs: Volume, Velocity, Variety and Veracity (McAfee, Bryn-
jolfsson, and others 2012). Annotating data elements with
semantic representations can help manage two of them: va-
riety and veracity. Often what this entails is the integration
of data from different sources whose schemas are unknown,
largely syntactic or very weak, are impossible or difficult to
integrate. Automatically linking data to common semantic
models supports integration and interoperability, especially
if the semantic models support reasoning. Semantic annota-
tions can also help ensure veracity by detecting violations of
semantic constraints and allow the application of semanti-
cally grounded statistical models.

Often attempts to solve Big Data integration problems are
addressed by means of schema mappings, record linkage
and data fusion (Dong and Srivastava 2013). In this regard,
coreference resolution becomes a necessity and often tradi-
tional approaches are not designed to solve these types of
integration problems because they do not account for inte-
grating data from multiple, and often schema-less sources.

Finding entity mentions and identifying their types are
important steps in many data analysis tasks including pro-
cessing structured tables and logs, semi-structured graphs
and unstructured text. The results directly support subse-
quent tasks, such as record linkage, question answering,

coreference resolution and ontology mapping. For exam-
ple, identifying medical conditions based on symptoms re-
quires integrating medical records from a particular medical
practice, known medical conditions from a trusted medical
knowledge base, and possibly results from a question an-
swering system, all of which may or may not have some
underlying ontological structure. Entity resolution can sup-
port the identification of medical conditions, by identifying
entities and matching entities that are likely to be coreferent.
In this example medical conditions are the entities and their
associated symptoms are properties. Identifying a match be-
tween a ’new instance’, i.e. the patient’s list of symptoms
and a ’known medical condition’ is an example of identify-
ing whether they corefer to each other.

Most natural language analysis systems use linguistic evi-
dence and context to identify entity mention strings and pre-
dict their type, typically chosen from a relatively small num-
ber of high-level possibilities, such as person, place and or-
ganization, perhaps augmented with additional application-
specific types. For many forms of structured and semi-
structured data (e.g., tables, logs, XML, JSON), schemas
may or may not be available and, if so, are likely to be
simple and semantically weak. When working with seman-
tic graphs, if an ontology is present, the ontology may ex-
plicitly define the entity types. However, in situations where
semantic graphs are not defined ontologically or when the
data itself does not sufficiently use the ontology, the types
are harder to identify. Linguistic analysis cannot be used in
this case since it relies upon the structure of the sentence
to understand the components of the sentence, which is not
present when data is represented as semantic graphs or a
similar representation.

When performing coreference resolution over RDF data
or a similar formalism, the entity types can be explicitly
given in a familiar ontology and their properties understood,
enabling systems to reason about instance equality (Ferrara
et al. 2008; Seddiqui and Aono 2010; Araujo et al. 2011).
When this is not the case, i.e., when the ontologies are not
accessible, not understood or several non-aligned ontologies
are used, direct reasoning about instance equality is difficult,
if not impossible. We believe that this situation will be com-
mon in many big data applications, where semantic annota-
tions may be relatively simple and where entities and there
schemas can have very different representations.
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Contribution
In this work we address identifying fine-grained entity types
as a pre-filter for algorithms that determine which entities
in a given heterogeneous data set coref. For example, in the
medical domain, for the condition cancer, we would not only
identify high level cancer types such as “carcinoma”, “sar-
coma”, “leukemia”, “lymphoma and myeloma”, and “cen-
tral nervous system cancers“ (Institute 2014). Rather we
would also identify more fine-grained types such as ’breast
cancer’ and ’bladder cancer’. Our preliminary experiments
show a one-level deep identification and our ongoing work
will include experiments that show identification of types at
various levels.

Among linguistic-based entity recognition approaches,
most of the research today does not address fine-grained en-
tity type identification. However, it is often useful to have
a more fine-grained understanding of entity types to support
efforts in heterogeneous data integration. We use a linear ap-
proach for compatibility with Big Data architectures. With
large knowledge bases there could exist thousands of entity
types, it would be inefficient and unnecessary to evaluate an
instance against each entity type. By means of information
theory and high potential predicate filtering, we associate
each new instance with a set of high potential candidate en-
tity types, resulting in a significant reduction in the number
of classifications. The results of our mapping approach from
a single instance to a set of entity types allows us to cluster
candidate coreferent instances by entity types.

Background
Semantic graphs are graph-based representations that typ-
ically are represented as triples. Resource Description
Framework (RDF) is commonly used to describe resources
on the Web and provides a graph-based representation
(Beckett 2004; Brickley and Guha 2004).

An RDF graph is a set of triples, each of which has a sub-
ject, predicate and object. For example, for the DBpedia re-
source Monaco, Monaco would be the subject, an attribute
such as areaTotal would be the predicate and a literal value
1.98 for areaTotal would be the object. A triple T is repre-
sented by a subject s, a predicate p, and an object o, such
that T (s, p, o), where o is a node, s is a node and p de-
fines the relationship between s and o by a URI. Given a
node can be a URI identifying the node, a literal, or blank,
the following definitions applies: s ∈ (URI ∪Blank),p ∈
(URI) and o ∈ (URI ∪Blank ∪ Literal) (Beckett 2004;
Brickley and Guha 2004).

Linked open data (LOD) (Bizer 2009) enables one to
make data publicly available and linked to known data sets.
The LOD attempts to address this problem of integrating
heterogeneous data which is an inherent problem for Big
Data (Bizer et al. 2012). However, linking to known data
sets is a challenge, particularly when the data is heteroge-
neous. For example, one data set could represent an attribute
using numeric values, whereas another data set could use
string representations. In work by Nikolov et. al (Nikolov et
al. 2009; Nikolov, Uren, and Motta 2010), they discuss the
heterogeneity problem, how it relates to coreference resolu-

tion and the need for LOD automatic entity linking. Araujo
et. al (Araujo et al. 2011) also references the need for an
entity mapping solution that is domain independent.

Ontologies. An ontology can be thought of as a schema
and provides a definition of the data, similar to an entity-
relationship model (Euzenat and Shvaiko 2007). It includes
a vocabulary of terms with specific meaning (Gomez-Perez,
Fernandez-Lopez, and Corcho 2004). Ontologies play a
critical role in the Semantic Web (Berners-Lee, Hendler,
and Lassila 2001) and can be used to describe a domain.
Typically ontologies use OWL (Bechhofer et al. 2004) or
other languages as a representation. They define classes, in-
stances, attributes and relations (Euzenat and Shvaiko 2007).
Often one will find instance data which is described by mul-
tiple ontologies in addition to RDF. Ontologies can be pri-
vately defined and not accessible to the general public or
publicly defined. It is common to be exposed to instances
described by ontologies that cannot be accessed and that re-
quire an alternative method to understand the data.

Comprehensive Knowledge bases. The development of a
comprehensive, general purpose knowledge base has been
a goal of AI researchers dating back to the CYC project
(Lenat, Prakash, and Shepherd 1985) in the early 1980s.
In the past five years, two important open knowledge bases
come close to realizing CYC’s vision: DBpedia and Free-
base. DBpedia is a structured representation of Wikipedia
(Auer et al. 2007). The DBpedia knowledge base provides
classification for 3.22 million objects which mainly con-
sists of people, locations, organizations, diseases, species
and creative works (DBpedia 2013). Freebase is also a large,
structured knowledge base (Bollacker et al. 2008) with con-
siderably larger number of topics than DBpedia.

Coreference Resolution. Coreference resolution is the
task of determining which instances in a collection rep-
resent the same real world entities. It tends to have an
O
(
n2
)

complexity since each instance needs to be eval-
uated with every other instance. Various techniques have
been developed to reduce the number of instances (McCal-
lum, Nigam, and Ungar 2000; Mayfield et al. 2009; Slee-
man and Finin 2010a; Rao, McNamee, and Dredze 2010;
Singh et al. 2011; Uryupina et al. 2011; Song and Heflin
2011). In our previous work (Sleeman and Finin 2010b;
2010a) we also used filtering to reduce the number of can-
didates for the coreference resolution algorithm. We often
processed data using ontologies that were not publicly avail-
able. Without an understanding of the ontologies used, it is
often challenging to process data which uses those ontolo-
gies and could negatively impact accuracy.

Problem Definition
Definition 1 Given a set of instances INST , extracted from
a set of heterogeneous sources SRC, that are not ontologi-
cally defined and not grammatically centered in a sentence,
for each instance inst1...instm ∈ INST , we wish to asso-
ciate a set of entity types ET1...ETm.



Recognizing semantic graph entities is related to informa-
tion extraction entity recognition, the process of recognizing
entities and their type (e.g., a person, location or organiza-
tion) (Ratinov and Roth 2009; Nadeau and Sekine 2007).
However, it does not require the entities to be grammatically
defined in a sentence structure and it entails the recognition
of fine-grained entities that would be harder to obtain from
a typical information extraction system.

Fundamental to our work is understanding the attributes
and relations defined by the instance data. By classifying the
attributes and relations, we relate unknown attributes and re-
lations to known attributes and relations. We use this as a
means for predicting entity types among heterogeneous se-
mantic graphs.

A similar problem arises in work related to database inter-
operability (Nottleman and Straccia 2007; Berlin and Motro
2002; Do, Melnik, and Rahm 2003) and ontology match-
ing (Albagli, Ben-Eliyahu-Zohary, and Shimony 2012; Mi-
tra, Noy, and Jaiswal 2005). In both, integrating heteroge-
neous data drawn from different repositories with different
schemas is difficult simply because it is hard to establish that
an attribute or relation in one schema is the same (or nearly
the same) as an attribute or relation in another (Jaiswal,
Miller, and Mitra 2010).

LOD (Bizer 2009) has specifically addressed the issue of
linking heterogeneous structured data in RDF to enable in-
teroperability. In order to add an RDF dataset to a LOD col-
lection, we represent the information as RDF and then link
its elements (classes, properties and individuals) to known
elements elsewhere in the collection. Though the “LOD
cloud” collection has grown significantly, the total number
of linked datasets is still relatively small (about 300) (Bizer,
Jentzsch, and Cyganiak 2011) and the degree of interlink-
ing often modest. Given the amount of data both available
online and not available online, this number indicates that
most repositories are still not linked to significant LOD col-
lections and it is likely that these repositories use custom
schemas.

Even among popular knowledge bases such as DBpedia,
entity types may not always be present in the data even with
a sufficiently define ontology present. Recent research by
Paulheim et al. (Paulheim and Bizer 2013) found DBpe-
dia types were only 63% complete with 2.7 million missing
types.

Shvaiko et al. (Shvaiko and Euzenat 2008) described
challenges in ontology matching where one such challenge
is missing context. Couple the absence of context with
opaquely defined attributes and often ontologies are hard to
align.

Related Work
The recent work by Paulheim et al. (Paulheim and Bizer
2013) tackles the problem of identifying entity types absent
from the instance data by inferring types based on existing
type definitions. They assign type probabilities to indicate
the likelihood of the assertion and use these as weights to
establish which relations provide the best evidence for the
type assertion. Their approach differs from ours in that they

use link analysis to develop their model whereas we do con-
sider the links between graphs but we do not rely upon this
alone. Rather we build a dictionary like structure that we
then try to map to evaluated instances. Paulheim et al. as-
sumes awareness of the ontologies used, we specifically ad-
dress the issue of identifying types when the ontologies are
either not present or insufficiently defined.

Nikolov et al. (Nikolov, Uren, and Motta 2010) describe
the problem of mapping heterogeneous data where often
“existing repositories use their own schemas”. They dis-
cuss how this makes coreference resolution difficult, since
similarity evaluation is harder to perform when attribute
mappings are unclear. They take advantage of linked data
and knowledge of relationships between instances to sup-
port schema-level mappings. However, if a repository is not
linked to an appropriate LOD collection, then this method
is not feasible. We address this issue of custom schemas and
their impact on coreference resolution by mapping attributes
to a known set of attributes for various entity types.

Early work by Berlin et al. (Berlin and Motro 2002) ad-
dressed the problem of database mapping using machine
learning. Their Automatch system used machine learning to
build a classifier for schema-matching using domain experts
to map attributes to a common dictionary. The approach per-
formed well, achieving performance exceeding 70% mea-
sured as the harmonic mean of the soundness and the com-
pleteness of the matching process. We build on this idea, us-
ing the dictionary mapping concept which we generate from
DBpedia through a process guided by information gain.

Work by (Reeve and Han 2005) provides a survey related
to semantic annotation, which is more closely related to our
work. They describe and benchmark methods designed for
unstructured text complemented with the output of infor-
mation extraction tools to construct mappings. This differs
from our approach in that we start from the graphs them-
selves without the raw text and information extraction data
and metadata. This is a key distinction since using the graphs
alone is more limiting. The benchmark compared various
annotation tools using annotation recall and annotation pre-
cision, which we also will use to measure our entity typing
performance.

Recent research by Suchanek et al. (Suchanek, Abite-
boul, and Senellart 2012) describe their approach, PARIS,
for aligning ontologies. This work uses string equality and
normalization measures and also takes the approach of only
using positive evidence. Again our goal was to be domain-
independent, such that one could use a dataset to build the
dictionary of types they wish to recognize then apply our
mapping process to map to these dictionaries. We use tech-
niques more akin to traditional named entity recognition to
perform the task. This distinguishes our work from much of
the ontology mapping research.

Bootstrapping to a Well Defined KB
In order to assign entity types to new entity instances, we
use a known knowledge base and build a model of this in-
formation. By bootstrapping to a known knowledge base, we
ground unknown instance data to a known definition. For



Figure 1: Mapping entity types between data sources.

example, using the medical domain, if we wanted to iden-
tify different types of leukemia, our bootstrapping knowl-
edge would have entities, properties and relations defined
that represent leukemia. If we process data that entails med-
ical information regarding many types of cancers, we would
map to our leukemia knowledge base to try to identify spe-
cific leukemia cancers. Since there are different types of
leukemia, we would attempt to identify the unknown can-
cers with the types defined in our leukemia KB.

Definition 2 Unknown to Known Type Map - Given a set
of known entity types ET extracted from a well defined KB,
we create a bootstrapped system that looks to identify entity
types based on ET . Each type et1...etn ∈ ET is defined
based on a set of predicates EP1....EPn i.e. attributes and
relations.

We bootstrap to a large well defined knowledge base to
define our set of entity types. In our experiments we used
DBpedia but our approach is flexible enough to work with
any well defined knowledge base. We used the DBpedia
ontology itself to build a model of the entity types. The
model includes equivalence relationships, hierarchical rela-
tionships, and pattern similarity relationships. We use this
model during evaluation to expand the number of potential
entity types for a candidate and to aide in the prediction of
entity types when an entity is not classified as any of the
known types. Entities defined in DBpedia typically are asso-
ciated with a number of entity types. This information allows
us to infer types when information is not present.

Predicate Filtering
Fundamental to our work is mapping predicates associated
with known types to predicates of unknown types. Figure 1
shows an example of mapping between video game defini-
tions. However, evaluating a set of instance predicates with
all possible predicates in the knowledge base is costly and

Figure 2: Mapping Instance Predicates.

unnecessary. Based on the model we define during boot-
strapping, when we process a new instance we evaluate the
instance predicates with ’high potential’ predicates in our
model.
Definition 3 High Potential Predicates - Given an entity
type knowledge base KB, with a set of entity types ET ,
where each type et1...etn ∈ ET is defined by EP1....EPn.
From this overall distribution of predicates, we define a sub-
set of predicates HPEP and link HPEP to ET .
Definition 4 Instance to High Potential Predicate Link
- Given a set of instances INST , each instance
inst1...instm ∈ INST is defined by a set of predicates
IP1...IPm which is then evaluated against HPEP . Each
inst1...instm ∈ INST is then linked with a set of high
potential candidate entity types CET1...CETm.
For example, a new instance with a set of predicates will
result in the mappings in Figure 2 based on predicate filter
and predicate mapping.

Entity types associated with the mapped predicates are
then candidates for type matching. We are able to evaluate
a smaller selection of entity types without evaluating each
new instance with every other instance. Ongoing work will
quantitatively show the impact of our method on computa-
tion time. We use this approach as a pre-filter to corefer-
ence resolution, reducing the number of instances that need
to be evaluated without incurring a cost that is equal to the
n2 computation time cost of the coreference resolution al-
gorithm. We can argue that this pre-filtering is beneficial to
the coreference resolution algorithm because it partitions the
instances into smaller clusters such that the instances within
a cluster have a higher likelihood of being coreferent.

The evaluation of each instances with each potential entity
type candidate results in the features used to build a super-
vised classification model. We perform the same mapping
approach for unlabeled test data and classify these instances
using the supervised model.

Feature Reduction and Information Gain
Information gain is one of the measures used to define the
HPEP . It is also used when evaluating an instance with



a candidate entity type. In order to create the mappings
defined in Figure 2, we start with a set of predicates that
have high information gain. Using information gain we filter
predicates that are to be mapped to instance attributes. On-
going research will evaluate the effects of information gain
thresholding as a means to filter predicates.

We calculate information gain, the reduction of entropy,
for the entity type predicates. Given our set of types S and
their set of predicates P , we calculate information gain and
associate a weight for each predicate ∈ P .

Gain(S, P ) = Entropy(S)−
∑

v∈V alues(P )

|Sv|
|S|

Entropy(Sv)

(1)
Where p is the probability of the value xi.

Entropy(S) = −
N∑
i

p(xi)log2p(xi) (2)

Mapping
The concept of mapping to a common set of attributes is sim-
ilar to database mapping and ontology alignment research
(Nottleman and Straccia 2007; Berlin and Motro 2002;
Mitra, Noy, and Jaiswal 2005; Albagli, Ben-Eliyahu-Zohary,
and Shimony 2012). A selection of this work is discussed in
more detail in Related Work.

Our work with mapping instances to types is ongoing and
critical to the accuracy of the classification. Our intent is to
allow for a pluggable representation whereby one can define
the set of mappers that would be most appropriate for the
data to be processed.

We use a distance mapper to measure the similarity of
predicate labels. We currently use a Levenshtein (Leven-
shtein 1966) distance measure. We use a synonym mapper
to measure similarity of predicate label synonyms. To ob-
tain synonyms we use WordNet (Miller 1995) and measure
similarity between sets of synonyms using Jaccard’s similar-
ity.

Jaccard(A,B) =
|A ∩B|
|A ∪B|

(3)

We measure similarity of predicate values by using Jac-
card’s similarity and measure their frequency of occurrence
and common occurrences. We also evaluate predicate values
by detecting known patterns using regular expressions. For
example, an email address is a commonly occurring pattern.

The results of the mappers become the features we use for
classification. Ongoing work will measure statistical differ-
ences of predicate values and other properties.

Classifying Entity Types
We use a Support Vector Machine (SVM) (Joachims 2002)
to develop a model for each entity type. By using a classifier
per entity type, we address two important issues: we are able
to use a linear classifier for this problem and we are able
to horizontally scale using, for instance, a Hadoop cluster,
which is relevant to big data problems. The features from

the mappers are used to create a model and that model is
used to classify new instances.

Null Type and Predicting New Types
We maintain a single type which represents instances that
cannot be associated with any of the known types, we call
this ’unknown’ and is akin to a ’Null’ type. In terms of a pre-
filter, our goal is to reduce the number of evaluations, how-
ever, it is reasonable to assume that a group of instances will
be harder to associate with a type. We use our type model
to assist us with predicting a type, when one cannot be as-
signed.

Each predicate is mapped to an entity type and each en-
tity type is ontologically defined giving way to hierarchical
relationships, equivalent relations, and pattern similarity re-
lationships. We take an unfiltered approach for ’unknown’
instances and use the ontological definitions to then find can-
didate types. Future work will explore this method and will
aide in our work to predict new types from existing types.

Experimentation
With each experiment we randomly sampled data for train-
ing and testing and normalized the data. Our first experi-
ment consisted of using DBpedia to define our types, DB-
pedia data for training and Arnetminer data (Tang, Zhang,
and Yao 2007; Tang et al. 2008) for testing. Our second ex-
periment consisted of using DBpedia to define our types,
DBpedia data for training and Freebase data for testing. Our
third experiment consisted of using DBpedia to define our
types and DBpedia data for training and testing using two
non-overlapping samples.

Performance Metrics. We use the standard precision
and recall metrics for measuring performance where
TruePositive values are those which are expected to be
true and are predicted to be true, FalsePositive values
are those predicted to be true but are actually false and
FalseNegative are values that should be true but are pre-
dicted as false. We experimented with both stratified samples
and non-stratified samples for training and testing.

Precision =
TruePositive

TruePositive+ FalsePositive
(4)

Recall =
TruePositive

TruePositive+ FalseNegative
(5)

Evaluation
Our first experiment used 600 instances of the Arnetminer
data set randomly selected and all of the type Person with
each instance having an average of 11 predicates. We used
the DBpedia data to build a training data set of 2000 in-
stances with 240 entity types. When evaluating the filter
performance, which is shown in Table 1, we saw 100% ac-
curacy in its performance in designating a candidate that is
consistent with the known entity type. We also were able to
classify person types with close to 100% accuracy as shown
in Table 2. The Arnetminer data is a sparse data set with a



Table 1: Pre-Filtering for Candidate Entity Types

Test Found≥ 1 Type Found All Types
Arnetminer 100% 100%
DBpedia 99% 97%
Freebase 60% <10%

Table 2: Arnetminer Results

Type Precision Recall F-measure
person 1 .98 .99
place 1 .65 .79
organization 1 .49 .66
creativework 1 .85 .92
settlement 1 .98 .99

relatively small distribution of predicates across the data set.
As a sensitivity test, we wanted to see how other classifiers
classified the Person instances. We did find the Place and
Organization classifiers had slightly lower accuracies, how-
ever, we saw higher accuracies when testing others such as
CreativeWork and Settlement. There are on average only 11
attributes and there are null values for a large percentage, for
example 95% of the title attribute is null.

When we experimented with the Freebase data set we
used 2000 instances for training with 240 different en-
tity types and 1000 instances for testing with over 470
different entity types. In Table 1, we show filtering re-
sults for candidate selection. What we found is that we
could relax the filtering algorithm in order for us to rec-
ognize more of the potential entity types, however often
it was the case that the DBpedia data set just did not
contain the entity type represented in the Freebase data
set. For example, 70% of the instances contain the type
http://rdf.freebase.com/ns/common.topic. In Table 3 we
show a sample of classification results. As the granularity
between entity types in DBpedia is very different than Free-
base, we expected to see lower than average results. We
show an example of this difference in Figure 3 for entity
type Organization.

For the DBpedia experiment we used 2000 instances for
training with 240 different types, and 1000 instances for test-
ing with 167 different entity types. There was no overlap be-
tween instances in the training and test data sets and data was
sampled randomly. There were 155 overlapping entity types
between the entity types in the test set and the entity types in
the training sets. Since the training data and test data were

Figure 3: Top Predicates for Organization

Table 3: Sample of Freebase Entity Type Classifications

Type Precision Recall F-Measure
place 0.6 0.576 0.562
person 0.635 0.629 0.625
athlete 0.336 0.376 0.337
organization 0.345 0.365 0.346
company 0.559 0.557 0.556
musical artist 0.495 0.494 0.49
architectural structure 0.478 0.477 0.473
film 0.444 0.444 0.444
building 0.612 0.61 0.609
book 0.661 0.659 0.658
soccer player 0.595 0.537 0.432
politician 0.6 0.6 0.598
event 0.361 0.371 0.356
body of water 0.446 0.444 0.444
school 0.6 0.6 0.589

Table 4: Sample of DBpedia Entity Type Classifications

Type Precision Recall F-Measure
agent 0.743 0.738 0.736
person 0.781 0.774 0.773
place 0.727 0.724 0.723
populated place 0.772 0.772 0.772
settlement 0.8 0.799 0.799
work 0.843 0.838 0.838
creative work 0.843 0.838 0.838
athlete 0.805 0.798 0.797
species 0.851 0.85 0.85
eukaryote 0.746 0.74 0.738
organization 0.689 0.688 0.687
soccer player 0.895 0.893 0.893
animal 0.943 0.94 0.94
architectural structure 0.667 0.625 0.6
film 0.743 0.735 0.733
artist 0.833 0.813 0.81
album 0.778 0.733 0.722

taken from the same data set, we expected to see reasonable
results. With regards to candidate filtering, as can be seen
in Table 1, we often found the types expected. However, the
classification results were slightly lower than our assump-
tions, this can be attributed to the information gain filtering
and also the need to optimize the mappers. In Table 4 and in
Figure 5, we show the precision, recall and f-measure scores.

What we found was when there was lower than expected
performance, often the entity types in the test set were not
sufficiently represented in the training set. We did not pur-
posely try to create overlap between the training and test
set. In the case of Arnetminer and the Freebase data set
we are training with a completely different data set with-
out any knowledge of type information, and therefore our
preliminary results are encouraging. Our ongoing work will
improve upon our existing preliminary implementation. For
instance, we are currently working on statistical methods to
measure the actual values of the relations and attributes since
often label names cannot be mapped. We are also introduc-
ing another level of classification that is contextual.



Figure 4: Freebase Precision & Recall

Figure 5: DBpedia Precision & Recall

Conclusions and Ongoing Work
Knowing the types of entities mentioned or referenced in
heterogeneous graph data is useful and important for record
linkage, coreference resolution and other tasks related to the
Big Data variety and veracity problem. In Big Data problems
we believe the absence of entity types is a real and continual
problem.

Ideally, the data being processed is annotated with type
information in an appropriate and rich semantic schema or
ontology. However in many cases, such type information is
absent or unavailable. This is especially common if the data
has been automatically generated from a table, spreadsheet,
log file or some other data format.

We have described our preliminary work for identifying
fine-grained entity types. Our ongoing work will perform
benchmark evaluations, will include experiments that use
other data sources for bootstrapping, will include experi-

ments that show how performance is affected by relation
size, and will apply our approach to a particular domain,
such as the medical domain. Our ongoing work will also in-
clude adding an additional level of contextual classification,
such that given a context, a certain set or entity types would
become candidates for entity type recognition.
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