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Abstract

Evidence-based medicine is the application of current
medical evidence to patient care and typically uses quan-
titative data from research studies. It is increasingly driven
by data on the efficacy of drug dosages and the correlations
between various medical factors that are assembled and in-
tegrated through meta–analyses (i.e., systematic reviews) of
data in tables from publications and clinical trial studies.
We describe a important component of a system to auto-
matically produce evidence reports that performs two key
functions: (i) understanding the meaning of data in medi-
cal tables and (ii) identifying and retrieving relevant tables
given a input query. We present modifications to our ex-
isting framework for inferring the semantics of tables and
an ontology developed to model and represent medical ta-
bles in RDF. Representing medical tables as RDF makes it
easier for the automatic extraction, integration and reuse of
data from multiple studies, which is essential for generating
meta–analyses reports. We show how relevant tables can be
identified by querying over their RDF representations and
describe two evaluation experiments: one on mapping med-
ical tables to linked data and another on identifying tables
relevant to a retrieval query.

1 Introduction

Evidence–based medicine (EBM) is commonly defined
as “the conscientious, explicit, and judicious use of current
best evidence in making decisions about the care of indi-
vidual patients” [19]. EBM analyzes questions such as effi-
cacy of drug dosages, correlation between various medical
factors or correlation between drugs by performing meta–
analyses (i.e., systematic reviews) over evidence and data
previously published in scientific literature and clinical trial
studies. The goal is to find, integrate and analyze available
high-quality quantitative data to inform clinical and health

Figure 1. Number of meta–analysis, clinical
trials, comparative studies, prospective stud-
ies and case–control studies published be-
tween 2005 and 2013.

care related decisions.
EBM has been gaining traction for the past several

years. A search on PubMed1 for publication type “Meta–
Analysis” shows, while only 272 meta–analyses reports
were published in 1990, more than 6600 meta–analyses re-
ports were published in 2013. Organizations such as The
Cochrane Collaboration2 have a dedicated set of medical re-
searchers whose primary goal is to perform and publish sys-
tematic reviews on a number of health care related issues
and to keep them updated as new medical research findings
become available.

The process of generating a meta–analysis report is still
largely manual. Medical researchers start with keyword
search on systems like MEDLINE3 which often lead to
thousands of initial set of studies. Researchers carefully an-
alyze each study reducing the result set to a few hundred
studies or less which are included in the final meta–anal-
ysis. Often a two stage filtering is done in which studies
are accepted or rejected first based on the title and abstract

1http://www.ncbi.nlm.nih.gov/pubmed
2http://www.cochrane.org/
3http://nlm.nih.gov/bsd/pmresources.html
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Figure 2. Table found in [18] is typical of those
found in medical research reports.

and then later filtered after a close examination. A meta–-
analysis of the correlation between cardiovascular risk fac-
tors and venous thromboembolism [1], for example, started
with an initial search yielding 1949 studies which were
downselected to just 22 for the final analysis and report.
Figure 1 gives insight into how tedious the process is. While
the number of meta-analysis reports published each year is
growing, they are out-paced by the number of clinical trials,
comparative studies, prospective studies and case–control
studies that potentially provide evidence.

Key information required to produce meta–analyses re-
ports is often obtained from tables like the one shown in
Figure 2. Consider an analysis of the correlation between
Obesity, a cardiovascular risk factor and venous throm-
boembolism. Conclusions about the correlation are derived
by first identifying relevant studies such as [18, 17] and then
by extracting and integrating results from these individual
studies. In this example, information such as number of in-
dividuals that suffer from obesity and venous thromboem-
bolism (23/299) and number of individuals that suffer only
from obesity (16/150) is of key interest. Such information,
as seen from Figure 2, is encoded in tables published in
medical studies.

The automatic discovery and interpretation of tables in
a medical research report gives strong evidence that (i) the
report includes empirical data and (ii) the degree of rele-
vance to the question. The tables themselves provide the
raw study data that will eventually be integrated. Inferring
the semantics of tables and producing a linked data repre-
sentation delivers the data in a form that facilitates aggrega-
tion, mapping and integration.

In the remainder of the paper we describe our frame-
work for inferring the semantics and meaning of tables
published in medical research studies and representing it
as RDF linked data. We discuss the changes we made to
our previous framework for inferring the semantics of gen-
eral tables [16] in order to deal with the challenges posed
by medical tables. The resulting system maps header cells
from medical tables to appropriate concepts from existing
ontologies and further represents the inferred semantics of
the data using a custom ontology for medical tables [13].
We demonstrate how structured SPARQL queries over this
representation of medical tables can improve and assist in
the process of identifying relevant studies, extracting key
data and integrating the data for meta–analyses reports.

2 Interpreting Medical Tables

A system producing meta–analyses reports benefits from
a deeper understanding of the semantics of medical tables
during the discovery phase as well as during extraction and
integration phases. Inferring the semantics of column and
row headers provides an idea of various medical factors
and patient groups compared in the table. Mapping header
cells to appropriate concepts from an ontology enhances
the process of discovery of relevant studies. For example,
mapping the string Obesity to appropriate concepts from
SNOMED CT[24] or UMLS[21], will not only allow struc-
tured queries during discovery, but will also allow to infer
additional knowledge that Obesity and other row headers
are also cardiovascular risk factors via relations in the ontol-
ogy. Inferring metadata encoded in column headers provide
information on the size of groups used in comparison which
is required during the integration process. Similarly, under-
standing the data cell values is critical for integration of data
from several medical studies. Data cells in medical tables as
seen in Figure 2 have complex representation, whose mean-
ing can be inferred by understanding the metadata encoded
in row headers (and sometimes column headers or even ta-
ble captions).

Automatically generating meta–analysis report would
involve three steps: Find – Extract – Integrate (FEI), fol-
lowed by an analysis which produces conclusions and rec-
ommendations. The Find step is the process of searching
for and identifying relevant studies to be included in the
meta–analysis; Extract the extraction of relevant data from
selected studies; and Integrate the integration of the ex-
tracted data to produce a dataset for analysis. Inferring the
semantics of medical tables is vital for all three steps. Pro-
ducing an overall interpretation of a medical table requires
(i) inferring the metadata encoded in the header cells as well
as inferring and normalizing data cells (ii) inferring the se-
mantics of header cells and mapping them to appropriate
concepts from an ontology and (iii) generating an appropri-



ate RDF representation of medical tables for easy discovery,
extraction and integration.

3 Approach

We extend our previous domain independent framework
[15] [16] to infer the semantics of medical tables and gen-
erate linked data representations, as shown in Figure 3. An
input table first goes through a pre-processing module Nor-
malize, which handles the idiomatic patterns typically found
in medical tables. It also infers header cell metadata as well
as normalizes the content in data cells. Once the table is nor-
malized, the Query and Rank (Q&R) module queries linked
open data sources and medical knowledge bases to gener-
ate an initial ranked list of concepts for each column and
row header. The Joint Inference module uses a probabilis-
tic graphical model to jointly infer the semantics and map
row and column headers to appropriate concepts from the
ranked list. A final step produces a linked data represen-
tation using our MTO ontology [13] and relevant domain
ontologies.

Normalization.

Figure 3. Our framework
for generating linked data
from a medical table has
four steps.

Medical tables do
not have the simple
structure of most
tables found on the
web (webtables),
i.e., a rectangular
array of data cells
(with optional
column headers)
where each cell
holds a single
value. Medical
tables often exhibit
of both column
and row headers,
between whom the
data is enclosed.
Non-header cells
are data cells that typically represent values for the rela-
tionship between the respective column and row headers.
For example, the value 46 from the column of Patients With
Spontaneous Thrombosis and row header Hypertension
in Figure 2 leads to the interpretation that 46 of the 153
patients with spontaneous thrombosis also suffer from
hypertension.

Typically, content in header and data cells in webtables is
simple in nature; it either consists of strings that can be di-
rectly mapped to a class or a entity or literal values such
as numbers that can be mapped as values of a property.
The content found in header and data cells in medical ta-

bles, however, are represented using idiomatic patterns of-
ten encoding additional metadata in header cells or repre-
senting the literals in data cells as “complex objects”. Con-
sider the column header Patients With Spontaneous Throm-
bosis (N=153); not only it represents a concept (Sponta-
neous Thrombosis), but also encodes additional metadata
(N=153) which is useful for interpreting the values in the
column. Similar encoding can be observed in row headers.
Data cells are also complex objects. Consider the data cell
46 (30.1) from the row with header Hypertension in Figure
2; from the metadata in its row header, one can interpret,
46 represents the raw number and 30 its percentage of the
total. Interpreting medical tables thus requires significant
pre–processing in which the content in the header cells have
to be normalized to extract strings to be mapped to concepts
and decompose and interpret data cells to generate an accu-
rate semantic representation.

The Normalize module first processes the header cells.
The content in column and row header cell can be parsed
into two distinct parts: a query string denoting a concept
such as a disease, drug, or patient characteristic and meta-
data that describes how the data in the column/row should
be interpreted, e.g., giving units of measure (kg), statisti-
cal properties (avg) or a schema for non-atomic values (no.
(%)). For example, the fourth row header Hypertension –
no. (%) would produce the query string Hypertension and
metadata no. (%). We develop a set of regular expression
patterns that cover the most common cases observed in pub-
lished medical data tables to extract query string and meta-
data. In most medical tables, the query string and meta-
data are either separated by a hyphen [query string - meta-
data], a comma [query string , metadata] or the metadata
follows the query string in parenthesis [query string (meta-
data)]. Every column and row header is matched against
these three patterns to extract query string and metadata. If
the header content does not match any of the patterns, the
content is treated as query string. In our current example,
the header Hypertension – no. (%) will match with [query
string - metadata] extracting Hypertension as query string
and no. (%) as metadata.

The extracted metadata can require further processing as
it encodes information regarding how values in the respec-
tive column or row should be interpreted. For example, the
metadata no. (%) conveys the message that values of the
form a (b) in the given row should be interpreted as a repre-
senting the raw number and b representing its percentage of
the total. While metadata in medical tables can encode vast
variety of information, they can be generalized to a limited
set of common patterns such as generalizing no. (%) to a
(b). The Normalize module further processes metadata by
mapping it to a pattern from a set of generalized metadata
patterns. We identify a set of common metadata patterns
which include: a (b) (c) (e.g. mean (standard deviation)



(range)); a (b) (e.g. no. (%)); a +/-b (e.g. mean standard
+/- deviation); a/b (e.g. Male/Female). Every metadata ex-
tracted from the content in header cells is mapped against
one of four metadata patterns. Thus, the extracted metadata
from the Hypertension row header, no. (%) is normalized
as a (b). The generalized metadata pattern is further used
to interpret the values in the respective columns and rows.
Header cells representing patient groups used in the study,
encode number of the patients in the group as part of the
header metadata. The Normalize module uses an additional
rule n = x pattern, where x represents the number of patients
in respective patient group.

The content in data cells is processed by the Normalize
module by using the generalized header cell metadata pat-
terns. The data cell content is also mapped against one of
the four metadata patterns. For example, the data cell con-
tent 46 (30.1) will get mapped to the pattern a (b). Once the
data cell is mapped, the Normalize module checks for the
same pattern in the respective column or row header. If the
same pattern is discovered, it is used to decompose the data
cell content. Again, in the case of 46 (30.1), its pattern a (b)
will match with its row header pattern a (b) , which is used
by the Normalize module to decompose and interpret 46 as
no. and 30.1 as %.

Query and Rank. The Query and Rank (Q&R) module
generates a ranked list of candidate classes for every query
string in row and column headers. We assess three different
knowledge bases (KBs), two domain specific ones, UMLS
Metathesaurus [21] and SNOMED CT [24], and one gen-
eral purpose one, DBpedia [2]. KBs in the health care do-
main are still maturing and our goal behind assessing differ-
ent KBs is to compare the coverage and strengths of each in
the context of medical tables.

SNOMED CT (Systematized Nomenclature of
Medicine–Clinical Terms) is a clinical terminology consist-
ing of more than 311,000 medical concepts organized in a
hierarchy with more than 1,360,000 links or semantic rela-
tionships between them. For every column and row header
query string, the Q&R module first executes an exact match
query against all concepts and their synonyms in SNOMED
CT. If no results are returned, Q&R executes a free text
search query over an index of SNOMED CT concepts. The
order in which the concepts are returned, both for exact
match and free text search queries, is retained by Q&R
to rank the concepts. For example, the query string Age
results in a direct match with two concepts Age (qualifier
value) and Current chronological age (observable entity)
as results; whereas the query string Diabetes leads to a text
search query with Diabetic cataract associated with type I
diabetes mellitus, Diabetic oculopathy associated with type
I diabetes mellitus, Diabetic retinopathy associated with
type I diabetes mellitus, etc. as results.

UMLS Metathesaurus (Unified Medical Language
System Metathesaurus) has of large number of concepts
related to clinical, health care, and biomedical domains
assembled by combining information from over 150 differ-
ent clinical, biomedical, health care related terminologies,
vocabularies and code–sets, including SNOMED CT. Like
SNOMED CT, concepts within the UMLS Metathesaurus
are connected via a set of relationships. We use the UMLS
API findConcept service to generate candidate concepts.
For every query string, Q&R module queries the API which
returns a ranked list of concepts matching the query string.
For example, for the input query Hypertension, the API
returns concepts such as Hypertensive disease, Hyperten-
sion Adverse Event, No hypertension, Hypertension with
complications, etc.

DBpedia is a general purpose KB whose classes and
properties are good for describing the semantics of general
tables. Unlike SNOMED CT and UMLS Metathesaurus,
the row and column headers from medical tables can be
mapped to DBpedia instances rather than classes. For ev-
ery query string, Q&R generates a ranked list of candi-
date instances by querying against Wikitology [27], a hy-
brid knowledge base that combines structured and unstruc-
tured information from Wikipedia, DBpedia, Freebase and
Yago. Q&R matches the input query against Wikipedia
article’s title, redirects, first sentence and contents(body).
The query for Hypertension, for example, returns ranked
list of instances Idiopathic intracranial hypertension, Pul-
monary hypertension and Hypertension. Q&R module
reranks the results returned by Wikitology using a previ-
ously developed entity ranker [16] trained on a set of string
similarity (Levenshtein distance, Dice score) and popularity
metrics (predicted google page rank, article length, Wikitol-
ogy score).

Joint Inference. A typical table provides a number of cor-
relations between its elements. Column headers often rep-
resents type or a class and values in that column represent
instances of that type. The class assigned to the column
header depends on instances linked in the column and vice–
versa. Column headers themselves are interrelated with
each other and so are values in a single row. These depen-
dencies between various elements in a table are captured by
modeling the assignment problem as a joint assignment or
a joint inference problem. We jointly infer the semantics
of tables by representing a table as a undirected Markov
network. The column headers and data cells represent vari-
ables in the graph and edges indicate dependencies between
the variables.

These dependencies, however, are less common in medi-
cal tables. Row headers are fairly independent of each other.



# Triples representing the sixth row related to Obesity
mto:Observation_6 mto:hasVariable umls:Obesity;

mto:hasPatientGroupObservation mto:PGroupObs_61;
mto:hasPatientGroupObservation mto:PGroupObs_62;
mto:hasPatientGroupObservation mto:PGroupObs_63.

mto:PGroupObs_61 mto:hasPatientGroup mto:PGroup_t11;
mto:hasObservationValue mto:Value_611 .
mto:hasObservationValue mto:Value_612 .

# Triples representing the first patient group (second column header)
mto:PGroup_t11 mto:numberOfIndividuals "153"ˆˆxsd:integer;

mto:hasGroupAttribute umls:Venous_Thrombosis.

# Triples representing the value in first cell of Hypertension row
mto:Value_611 mto:hasRawValue "11"ˆˆxsd:string;

mto:Type "no."ˆˆxsd:string.
mto:Value_612 mto:hasRawValue "7.2"ˆˆxsd:string;

mto:Type "%."ˆˆxsd:string.

Figure 4. Subset of RDF for data in Figure 2. The prefixes ‘mto’ is for our Medical Tables Ontology;
’umls’ is for UMLS Metathesaurus and ‘xsd’ is for XML schema. Complete representation can be
found at [14]

.

Correlation between column headers can be captured. Col-
umn headers in medical tables consists of patient groups and
statistical tests comparing the groups. Thus, if a header cell
in a medical table gets mapped to a statistical test, then it
is likely that other headers are various patient groups. This
correlation can be captured by inserting edges between col-
umn headers. Row headers, in certain cases, can be disam-
biguated with the help of values in the row. Consider the
values in the row Age: 67, 65.8, and 65.4. One can infer
from the range of the values alone, in the context of the
medical domain, that they represent age of people. Such
evidence can be captured by inserting edges between row
headers and values in the respective rows. For the purposes
of this paper, we do not implement the Joint Inference mod-
ule for medical tables. Column and row headers are mapped
to the top ranked concept from the list of each concepts gen-
erated by the Q&R module.

RDF Generation. Once data cells are normalized and in-
terpreted, and the column and row headers are mapped to
appropriate concepts, the Generate RDF module generates
a RDF linked data representation of the table. Unlike webta-
bles, medical tables have a complex representation with the
data cell values representing the relationship between the
row and column headers. We develop the MTO ontology
[13] to model and represent information encoded in such

medical tables.
A typical medical table represents information about a

set of observations related to the question analyzed in the
study. A study of the correlation between Atherosclerosis
and Venous Thrombosis will include medical tables report-
ing on observations that helps one analyze if the correlation
exists or not. Each row in such a table can be interpreted
as representing one observation. We add a class Observa-
tion to represent every row in a medical table. Every obser-
vation is typically associated with different aspects of the
study such as patient groups, characteristics associated with
patients in such groups and statistical analysis tests compar-
ing the groups.

The characteristics associated with patients in the group
can vary from information about demographics and habits
such as gender, age and smoking habits to information about
the diseases patients may or may not be suffering to data on
vitals such as blood pressure, sugar level and hemoglobin.
We combine all of these into a single group and refer to it as
Variables associated with the observation. Typically, such
variables appear in the row headers of the table. The asso-
ciation between an observation and its variable is captured
by the property hasVariable.

Patient groups refer to group of individuals with differ-
ent characteristics used for comparisons in the study. For
example, a study comparing the correlation between venous



thrombosis and obesity will consist of group of individuals
that suffer from both the diseases and a control group which
includes individuals that suffer only from obesity. Another
study might include patient groups, each on a different drug
dosage to study the effect of dosages on a particular disease.
The relation between a observation and a patient group is
captured via the hasPatientGroupObservation property.

Finally, the table often reports statistical analysis per-
formed to compare different groups using tests such as Odds
ratio, Hazard Ratio, and p-value. The correlation between
an observation and a statistical test is captured via the has-
StatisticalTestObservation property.

Instances of the class StatisticalTestObservation cap-
ture test information with two key components: the type of
statistical test (e.g., odds ratio, hazard ratio) via the property
hasStatisticalTest and an associated result or value via the
hasObservationValue property. The domain of the prop-
erty hasObservationValue is StatisticalTestObservation or
PatientGroupObservation and its range is the class Value,
whose instances are used to capture the normalized and
decomposed content from data cells. The property has-
RawValue captures the actual value from the table cell and
hasType captures its interpretation, with both having do-
main Value and range string.

Similarly, instances of the class PatientGroupObser-
vation are used to capture observation value associated
with the patient group. We define a property hasPatient-
Group to associate patient group observation with a pa-
tient group; and use previously hasObservationValue to as-
sociate the actual observation value. The domain of has-
PatientGroup is the class PatientGroupObservation and its
range is the class PatientGroup. The class PatientGroup is
used to capture information related to the group. Depend-
ing upon the study, this information can vary from a disease
from which individuals suffer (e.g., Venous Thrombosis) to
drugs that individuals are taking. We define the property
hasGroupAttribute to capture this information. The do-
main of this property is the class PatientGroup. Additional
metadata related the group such as number of individuals in
the group is also captured via the instances of class Patient-
Group. We define the property numberOfIndividuals to
capture this metadata, with domain PatientGroup and range
xsd:integer.

Observation instances are associated with a Table
through the property tableObservation. Tables are linked
to a study using the property hasTable. We also record ad-
ditional metadata associated with the study such as name of
the study, publication information associated with the study
such as authors, date of publication and journal. We use the
properties studyTitle, studyAuthor, publicationDate and
publicationJournal.

The Generate RDF module uses the MTO ontology
to represent inferred semantics of medical tables as RDF

(a) Find studies correlating venous thrombosis and obesity.

SELECT ?study WHERE {
?patGroup mto:hasGroupAttribute

umls:Venous Thrombosis.
?patObsGroup mto:hasPatientGroup ?patGroup.
?obs mto:hasPatientGroupObservation ?patObsGroup;

mto:hasVariable umls:Obesity;
mto:observationInTable ?table.

?table mto:tableInStudy ?study.}

(b) Get all observations for a given study.

SELECT ?obs WHERE {
mto:study3 hasTable ?table.
?table mto:tableObservation ?obs.}

Figure 5. Example SPARQL queries demon-
strating how FEI process can be enhanced.

linked data. A subset of RDF linked data generated from the
table in Figure 2 is shown in Figure 4. Every row in the table
is represented as instance of the Observation class. Link-
ing the row header string Hypertenion to umls:Hypertension
provides additional information that the header type is dis-
ease. Concepts such as diseases are often characteristics
or attributes of a patient group and are linked with a ob-
servation using the hasVariable property. The identified
patient groups in column headers are linked with the ob-
servation using the hasPatientGroup property. Instances of
the PatientGroup represent additional information about the
group. The data cells are linked with the observation us-
ing hasPatientGroupObservation property. Every data cell
is linked to the observation using instances of the Patient-
GroupObservation. The normalized data cells are repre-
sented using instances of the Value class and linked to pa-
tient group observations using hasObservationValue prop-
erty.

4 Find–Extract–Integrate

Once medical tables are represented as RDF linked data,
we can execute SPARQL queries over the data to automate
the process of discovery, extraction and integration of data
from multiple studies. One of the most common queries
of interest for meta–analysis reports is finding comparative
studies for pairs of factors, e.g., correlation between obesity
and venous thrombosis or drug interaction between clopido-
grel and proton pump inhibitors. With available semantics,
studies for abstract queries such as correlation between car-
diovascular risk factors and venous thrombosis can be eas-



(c) Find studies in which hypertension is one of the patient
group characteristics.

SELECT ?study WHERE {
?obs mto:hasVariable umls:Hypertension .
?table mto:tableObservation ?obs .
?study mto:hasTable ?table . }

(d) Find studies correlating venous thrombosis and
obesity published after May 2013.

SELECT ?study WHERE {
?patGroup mto:hasGroupAttribute

umls:Venous Thrombosis .
?patObsGroup mto:hasPatientGroup ?patGroup .
?obs mto:hasPatientGroupObservation ?patObsGroup;

mto:hasVariable umls:Obesity .
?table mto:tableObservation ?obs .
?study mto:hasTable ?table;

mto:publicationDate ?date .
FILTER (?date >= “20130501”ˆxsd:date) }

Figure 6. Results can be filtered on number of
parameters such as publication date, medical
factors and diseases.

ily discovered. It is also possible to extract tables or parts of
data in tables for a given study. Meta–analyses reports are
often updated as new literature and evidence is published,
requiring researchers to periodically search for relevant new
studies. Results can be restricted based on a range of prop-
erties, including publication date and venues, size of the pa-
tient groups, etc. Figures 5, 6 show SPARQL queries for
the some of the mentioned use–cases.

Automating the process of generating meta–analyses
reports involves building and executing the right set of
SPAQRL queries based parameters of the study. Consider
the use-case of generating a meta–analysis report that stud-
ies the correlation between cardiovascular risk factors and
venous thrombosis. An automated system first would find
Find all relevant previous studies that compared various car-
diovascular risk factors and venous thrombosis. This task
can be achieved by constructing and executing a query like
(a) in Figure 5. Once all the relevant studies are retrieved,
the system extracts relevant data from tables associated with
studies. Data Extraction again can be done via SPARQL
query like the one shown in (b) in Figure 5. After data is
extracted, this system can run defined statistical tests and
Integrate the results. These results would be key to produce
the final meta–analysis report.

While we presented a system that attempts to automat-

ically generate meta–analyses reports, a sensitive domain
such as healthcare which demands highest levels of accu-
racy would benefit from a person-in-the-loop approach. An
interactive framework will allow medical researchers to in-
spect and correct inferred semantics of medical tables and
allow to perform structured search over data inferred from
tables. Systems such as Graph of Relations [8] can be used
to allow users to construct SPARQL queries using natural
language terms and graphical interfaces.

5 Evaluation

We present preliminary evaluations of how well our pro-
totype framework (described in section 3) performs in in-
ferring the semantics of medical tables and its utility in dis-
covering relevant studies associated with a meta–analysis
report.

Evaluating inferred semantics of medical tables. We be-
gin by collecting two datasets: one of meta–analysis reports
and associated studies used to generate them and another of
the medical tables extracted from these studies. A dataset
of six different meta–analyses reports was provided to us
by our collaborators at the University of Maryland, School
of Medicine. We further obtained publicly available medi-
cal studies used to generate each meta–analysis report and
manually extracted tables embedded in these documents.

The extracted medical tables go through the Normalize,
Query and Rank and Generate RDF modules finally leading
to RDF linked data as output. In this section, we specifi-
cally focus on the evaluation of Query and Rank step which
is crucial in inferring the semantics of tables. In the absence
of the Joint Inference step, the top ranked class (or instance)
from the ranked list of candidates is assigned to the column
and row headers. Thus, instead of evaluating Q&R on query
strings parsed by Normalize, we randomly choose 25 query
string terms4 from our dataset. For each query string, we
obtain ground truth by mapping5 it to an appropriate con-
cept (or instance) for each of the three sources – SNOMED
CT, UMLS Metathesaurus, and DBpedia.

For each query string, a ranked list of candidate concepts
(or instances in case of DBpedia) are generated as described
in section 3. The number of candidates in the ranked list was
restricted to 25 for UMLS and DBpedia and 100 in the case
of SNOMED. The module was able to correctly link (i.e.,
correct concept at rank 1) 14 out of 25 for SNOMED CT; 12
out of 25 for UMLS and 7 out of 25 for DBpedia. In cases
where it was not able to link to the right concept, a majority
appeared between the ranks 2 and 5 (7 for SNOMED CT;
5 for UMLS and 5 for DBpedia). Q&R failed to discover
the correct concept in its ranked list only three times for

4A list of the query terms is available online at [14].
5The mapping was performed by authors of the paper



SNOMED, but eight times for UMLS and eleven times for
DBpedia.

The UMLS API failed to find the right concepts in its
ranked list largely in cases where query string consisted of
a modifier (e.g., no diabetes, treatment with statins, active
cancer) or query string that used abbreviations (e.g., recur-
rent VTE). In addition to the cases where query string in-
cluded modifiers, mapping concepts to DBpedia often failed
because of its broad coverage. For example, query terms
such as age and race were mapped to a number of instances
in DBpedia and the limited context provided by the table
made disambiguation challenging. If we increase the num-
ber of candidates in the ranked list for DBpedia from 25 to
100, the number of concepts not found is reduced from 11
to 7, with the correct concepts appearing at ranks 19, 23, 76
and 98.

Restricting or filtering the set of DBpedia instances that
Q&R queries against will improve accuracy. For example, it
might be useful to query for instances under Wikipedia cat-
egories such as Human Anatomy, Medicine, Demographics.
In the case of the SNOMED CT knowledge base, the exact
match query was invoked 17 times, whereas a text search
query was required only eight times, indicating large over-
lap between terms used in medical research literature and
ones used in the medical knowledge sources. In our limited
dataset, we also noticed cases where SNOMED failed to
find the right concept, but UMLS succeeded. For example,
terms such as control groups or statistical tests such as odds
ratio, p–value are present in UMLS but not in SNOMED.
The broad coverage of UMLS, which draws on a combi-
nation of 150 different datasets, is both boon and a bane.
UMLS often contains slight variations for the same concept
extracted from different sources, which makes disambigua-
tion more challenging.

Evaluating Find. We selected a meta–analysis report and
identified individual studies used to generate the report. Our
selected meta–analysis report analyzed correlation between
various cardiovascular risk factors such obesity, diabetes,
hypertension and venous thrombosis [1]. For each risk fac-
tor, different set of studies were used to produce a conclu-
sion on whether correlation exists or not. We extract tables
from these studies and represent them as RDF Linked Data
using our framework. We start with the assumption that ta-
bles were normalized; thus framework skips Normalize and
begins with the Q&R module.

Retrieval queries were executed against a set of triples
generated from the following tables: Table 1 from [17] (t1-
Paganin), Table 1 from [18] (t1-Prandoni), Table 2 from [7]
(t2-Frederiksen), and Table 1 from [6] (t1-Deguchi). Fig-
ure 7 lists out the medical factors used in the evaluation.
The query column lists the UMLS concept associated with
the factor used in a SPARQL query to retrieve the tables,

Factor Query Expected,Retrieved
Obesity Obesity 2, 2
Hypertension Hypertensive disease 2, 2
Diabetes Diabetes Mellitus 2, 1
Smoking Smoking 2,1

Figure 7. Find performance for different car-
diovascular risk factors. Last column indi-
cates number of expected and retrieved ta-
bles.

with the last column showing the number of expected and
retrieved tables. In the context of the evaluation, SPARQL
query of the form (c) in Figure 6 was executed. This eval-
uation is promising: relevant observations were retrieved
for both obesity and hypertension and in no cases irrele-
vant sets of observations retrieved. However, in the case
of diabetes and smoking, the query failed to retrieve all
relevant observations due to errors in linking in the Q&R
module. In the case of diabetes and smoking, the relevant
query strings were mapped to concepts smoker and diabetes
in t1-Prandoni whereas the concept used in retrieval query
were diabetes mellitus and smoking. The case of smoker
vs. smoking is interesting: the latter is represented as an
individual behavior in UMLS whereas the former is rep-
resented as a finding. However both concepts seem accu-
rate to describe whether a person is a smoker. Similar am-
biguity arises in the cases like triglyceride: is the correct
concept for triglyceride, Triglyceride – Biologically Active
Substance or Triglyceride level – finding. These challenges
will have to be either tackled in Q&R by disambiguating to
similar type of entity (i.e., always prefer type Finding) or
in retrieval phase by executing multiple queries for related
concepts.

6 Related Work

We present related work from three different threads of
research. The first focused on inferring the semantics of
data found in tables, the second on automating the genera-
tion meta–analysis reports and third on using ontologies to
model clinical trials and other medical research studies.

Recent research has focused on inferring the semantics
of tables, but most, including our own [16] has focused on
inferring the semantics of tables found on the web (webta-
bles). Wang et al. [31] begin by identifying a single ‘en-
tity column’ in a table and, based on its values and rest of
the column headers, associate a concept from the Probase
knowledge base with the table. Ventis et al. [30] assign mul-
tiple class labels (or concepts) to table columns and identify
relations between the ‘subject’ column and the rest of the



columns in the table. Limaye et al. [12] use a graphical
model which maps every column header to a class from a
known ontology, links table cell values to entities from a
knowledge-base and identifies relations between columns.
Szekely et al. [28] present an interactive tool to convert tab-
ular data into RDF. The tool uses a conditional random field
model to suggest initial mappings to users; if they wish to,
users are allowed to change the mapping by selecting an-
other suggestion or picking a new term directly from the
ontology.

Webtables typically contain column headers and their
data cells contain strings, many of which refer to entities
in a knowledge base. Medical tables present unique chal-
lenges not present in webtables, thus making it necessary
to modify and adapt existing techniques. Medical tables
have a unique structure with header cells in both row and
columns and data cells consisting almost exclusively of nu-
merical data, often with several numbers per cell. Our mod-
ified framework is able to normalize medical tables, query
different sources and model and represent them in RDF.

Research has also focused on taking steps towards au-
tomating evidence–based medicine and generating meta–
analysis reports. Cohen et al. [3] present a design for end-
to-end text-mining pipeline to automate the process of gen-
erating and updating meta–analysis report. Their pipeline
consists of searching, classifying, grouping and ranking
medical research papers to produce systematic reviews. Ex-
aCT [11] is a information extraction system that searches
and extracts sentences from clinical trials and other related
studies that best match the clinical trial characteristics pro-
vided by the user. It aims to facilitate in the process of iden-
tifying relevant studies for producing evidence reports.

Researchers have produced systems to create summaries
of medical papers [20] and also from medical paper ab-
stracts [26] to be used in meta–analysis studies. Others
have have applied machine learning techniques to reduce
the number of search query results a medical researcher
must analyze to collect relevant studies [10, 4]. However,
this entire body of work has focused on analyzing free text;
to the best of our knowledge no work has focused on analyz-
ing and inferring information encoded in tables in medical
research literature. Our approach can not only find relevant
studies, but can also extract and integrate the data to pro-
duce meta–analysis reports.

Related work has also focused on using ontologies and
other Semantic Web technologies in assisting clinical trial
management. Frameworks such as the ObTiMA System
[25] and Epoch [22] allow management of ongoing clinical
trial by providing tools to researchers to capture data and
represent data as RDF. Both provide ontologies useful for
representing data of ongoing clinical trials as RDF. ORCe
[23] is a general purpose ontology allowing users to model
various aspects related to clinical trials such as study design,

study protocol, statistical concepts related to the study anal-
ysis. ADDIS [29] presents an ontology to ground various
clinical trials in a common data schema, facilitating search
and integration. ADDIS further provides users a semi-
automatic decision support software that allows importing
studies, representing them in RDF and producing evidence
reports. LinkedCT [9] triplifies data sources such as Clini-
calTrials.gov and Dameron et al. [5] designed an ontology
to model and reason about patient eligibility in clinical tri-
als. While existing work has covered the breadth in clini-
cal trial management using Semantic Web technologies, our
ontology has focused on a very specific task – modeling and
representing medical tables published in medical research
papers.

7 Conclusions

Evidence-based medicine is increasingly vital in health
care decision making. Producing evidence reports and
meta–analysis reports in still largely manual and can benefit
from better tools that can assist in the process of generating
these reports. Existing work has focused on automatically
analyzing free text, largely ignoring tables which encode
key information required to identify relevant studies as well
as generate meta–analysis reports.

We presented a framework for inferring the semantics
of tables published in medical research papers and model-
ing and representing them as RDF linked data. We demon-
strated the benefits RDF medical tables provide in the pro-
cess of finding, extracting and integrating data from individ-
ual studies to produce meta–analysis reports. A preliminary
evaluation showed promising results, but leaves room for
extension and improvement. We believe our framework can
address the challenges in inferring the semantics of medical
tables and it is a step in the direction of building a frame-
work for automating the process of generating evidence re-
ports.

Our future work will include exploiting table captions
and descriptions which often hold information helpful or
even essential to understand a table, incorporating a person-
in-the-loop architecture to identify incorrect semantics in-
ferred by the framework and performing a thorough evalua-
tion across different areas in medical research.
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