Algorithm Characterization and Implementation for Large Volume, High Resolution,

Multichannel Electroencephalography Data in Seizure Detection **Tinoosh Mohsenin and Tim Oates**

Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County

Objectives

- Personalized health care depends crucially on continuous monitoring and processing of large volumes of data about individuals and populations.
- As the number of people and the amount of data being produced grows, the challenges become:
 - How to extract useful information for identifying health states
 - How to integrate complex large data processing algorithms into a low power wearable device.
- Embedded real-time processing is a must
 - Perform signal processing and classification right at the sensor instead of transmitting the raw data and therefore significantly saving communication power and storage requirement

Wearable EEG Seizure Detection

- Electrical signals can be detected by EEG signals before or just at the start of clinical symptoms
 - The ability to detect can be used to warn the patient or caregiver
 - Implementation must be able to detect seizure and warn the patient or caregiver within one to two seconds after the electrical onset
- Each signal represents one channel from an electrode
 - Ch1 and Ch2 detect seizure
 - Complex algorithms and multichannel detection is necessary to remove false positives
- **Detection accuracy comparison** Comparison of different classifiers KNN3 detection accuracy kNN5 kNN7 (F1 score) when SVM Poly single patient data SVM Radial SVM Sigmoid is used for training Log Reg and test

- Increasing energy-efficiency (i.e. ↑GOPS/W, ↓pJ/op), accuracy and reliability requires innovations in algorithms, programming models, processor architectures, and circuit design
 - Study methods to represent large volumes of medical time series so that the information they carry about health state is exposed
 - Study the algorithms are best to extract that information and can be implemented efficiently
 - Explore classification accuracy, computational complexity and memory requirements
 - Study the implementation of the algorithms on different hardware approaches e.g FPGAs GPUs, and ASIC.

Embedded Processors in the Big Data Infrastructure

Layered Learning Approach for multi-physiological signal processing

- Use multi-physiological sensors such as EEG, EOG, 3-axis gyroscope, heart rate, accelerometer, blood flow, and blood oxygenation to compensate for ambulatory noise and loss of information.
- Combine a unique sequence of digital signal processing (DSP) and machine learning (ML) algorithms for feature extraction, noise reduction

Computation and Memory Complexity Comparison

Complexity comparison between KNN, CNN, SVM, and LR relative to LR for Simple Features

Smart Health Monitoring: Analysis & Delivery

- Wearable medical monitoring systems
 - Reliable and seamless multi-physiological signal processing and monitoring integrated into patients daily life routine
- Data analysis
 - Real-time data analysis and diagnosis for efficient healthcare delivery
- Data delivery
 - Real time data transmission to healthcare providers (e.g. nurses, primary care

Feature Extraction and Classifiers Used

- Feature extraction
 - Total of 9 features of the dataset are derived from the raw time series signal
- Deep belief network (DBN)
 - Learn deep structures in the time-series data
- Classifiers
- Classify the incoming DBN abstraction of the time-series with a certain class label.
- Support vector machine (SVM)
- K-nearest neighbor (KNN)
- Logistic regression (LR)

ASIC and manycore mapping of DSP algorithms

†				ASIC imple
			Technology	
				Logic Utiliza
440 μm	EL.	Seizure analysis proc	Area per bl	
			Total Area (
			Performanc	
				Power (uW
				Current (nA
	110 μm seizu dete	ire ct		[
	 110 μι	→ n		[
	Blocks	s include 33 ta	p high pass	Ë
	FIR fil	ter and 128 pc	pint FFT	D
	For cu	stomized mar	nycore:	D
	6 0) processing c	ores utilized	c
		l cores operat	e at nominal	

рду	65 nm, 1.3V		
lization	96%	92%	
block (mm ²)	0.01	0.19	
a (mm²)	0.43		
ance (KHz)	0.256	1.85	
W)	0.04	0.36	
(nA)	2.15	282	
FIR Det 1 FIR Det 2 DETECT Ch. 1, 2 DETECT Ch. 3, 4	Mult Ch, X X X Multi-Ch. Detect and Memory Band	θα	
DETECT Ch. 7, 8 Ch. 5, 6	128-FFT Part 1 Part 1	16 I6 FFT FFT 16 18 FFT FFT	

Detection Analysis

mplementation

physicians, and first responders) through networks

Detection latency: 900 ns Energy: 240 nJ

10

frequency and voltage

Case study: Seizure Detection

- Epilepsy is the 4th most common neurological disorder and affects about 2.2 million in the US, and 1 in 26 people may develop epilepsy in their lifetime.
- Current ambulatory seizure monitoring devices are infeasible for long-term, continuous use due to large false positive/negative signals, noise due to patient activity, bulky equipment, high power consumption, and the inability of patients to carry on with their daily lives.