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m Epilepsy is the 4th most common neurological disorder and affects about 2.2
million in the US, and 1 in 26 people may develop epilepsy in their lifetime.

m  Current ambulatory seizure monitoring devices are infeasible for long-term,
continuous use due to large false positive/negative signals, noise due to patient
activity, bulky equipment, high power consumption, and the inability of patients to
carry on with their daily lives.



