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Abstract

Pointwise mutual information (PMI) is a widely used word similarity measure, but it lacks a clear
explanation of how it works. We explore how PMI differs from distributional similarity, and we
introduce a novel metric, PMImax, that augments PMI with information about a word’s number of
senses. The coefficients of PMImax are determined empirically by maximizing a utility function based
on the performance of automatic thesaurus generation. We show that it outperforms traditional PMI
in the application of automatic thesaurus generation and in two word similarity benchmark tasks:
human similarity ratings and TOEFL synonym questions. PMImax achieves a correlation coefficient
comparable to the best knowledge-based approaches on the Miller-Charles similarity rating dataset.
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1 Introduction

Word similarity is a measure of how semantically similar a pair of words is, with synonyms having the
highest value. It is widely used for applications in natural language processing (NLP), information
retrieval, and artificial intelligence, including tasks like word sense disambiguation [1], malapropism
detection [2], paraphrase recognition [3], image and document retrieval [4] and predicting hyperlink-
following behavior [5]. There are two prevailing approaches to computing word similarity, based on
either using of a thesaurus (e.g., WordNet [6]) or statistics from a large corpus. There are also hybrid
approaches [7] combining the two methods. Many well-known word similarity measures have been
based on WordNet [8, 9, 10] and most of semantic applications [1, 4, 2] rely on these taxonomy-based
measures.

Organizing all words in a well-defined taxonomy and linking them together with different rela-
tions is a labor-intensive task that requires significant maintenance as new words and word senses are
formed. Furthermore, existing WordNet-based similarity measures typically depend heavily on “IS-A”
information, which is available for nouns but incomplete for verbs and completely lacking for adjectives
and adverbs. Consequently, these metrics perform poorly (with accuracy no more than 25%) [11] in
answering TOEFL synonym questions [12] where the goal is selecting which of four candidate choices is
most like a synonym to a given word. In contrast, some corpus-based approaches achieve much higher
accuracy on the task (above 80%) [13, 14].

We expect statistical word similarity to continue to play an important role in semantic acquisition
from text [9] in the future. A common immediate application is automatic thesaurus generation, in
which various statistical word similarity measures [15, 16, 17, 18, 19] have been proposed. These are
based on the distributional hypothesis [20], which states that words occurring in the same contexts
tend to have similar meanings. Thus, the meaning of a word can be represented by a context vector
of accompanying words and their co-occurrences counts, modulated perhaps by weighting functions
[18], measured either in document context, text window context, or grammatical dependency context.
The context vectors can be further transformed to a space of reduced dimension by applying singular
value decomposition (SVD), yielding the familiar latent semantic analysis (LSA) technique [12]. The
similarity of two words is then computed as the similarity of their context vectors, and the most
common metric is the cosine of the angle between the two vectors. We will refer this kind of word
similarity as distributional similarity, following convention in the research community [21, 22, 2].

PMI has emerged as a popular statistical word similarity measure that is not based on the distri-
butional hypothesis. Calculating PMI only requires simple statistics about two words: their marginal
frequencies and their co-occurrence frequency in a corpus. In the ten years after PMI was introduced to
statistical NLP by Church and Hanks [23] it was mainly used for measuring word association [24] and
was not thought of as a word similarity measure. Along with other statistical association measures such
as the t-test, χ2-test, and likelihood ratio, PMI was commonly used for finding collocations [24]. PMI
was also a popular weighting function used in computing distributional similarity measures [15, 17, 22].
Using PMI as a word similarity measure began with the work of Turney [25], who developed a technique
he called PMI-IR that used page counts from a Web search engine to approximate frequency counts
in computing PMI values for word pairs. This produced remarkably good performance in answering
TOEFL synonym questions – an accuracy of 74% which outperformed LSA [12], and was the best
result at that time.

Turney’s result was surprising because finding synonyms was a typical task for distributional sim-
ilarity measures, and PMI, a word association measure, performed even better. Terra and Clarke [13]
redid the TOEFL experiments for a set of the most well-known word association measures including
PMI, χ2-test, likelihood ratio, and average mutual information. The experiments were based on a very
large Web corpus, and document and text window contexts of various sizes were investigated. They
found PMI performed the best overall, and obtained an accuracy of 81.25% with a window size of 16
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to 32 words.
PMI-IR has subsequently been used as a word similarity measure in other applications with good

results. Mihalcea [3] used PMI-IR, LSA, and six WordNet based similarity measures as a sub-module
in computing text similarity and applying it to paraphrase recognition and found that PMI-IR slightly
outperformed the others. In a task of predicting user click behavior, predicting the HTML hyperlinks
that a user is most likely to select given an information goal, Kaur [5] also showed that PMI-IR performs
better than LSA and six WordNet based measures.

Why PMI is effective as a word similarity measure is still not clear. Many researchers use Turney’s
good results of PMI-IR as empirical credence [13, 26, 3, 5, 27]. To explain the success of PMI, some
propose the proximity hypothesis [26, 13] noting that similar words tend to occur near each other,
which is quite different from the distributional hypothesis which assumes that similar words tend to
occur in similar contexts. However, to our knowledge no further explanations have been provided in
the literature.

In this paper, we offer an intuitive explanation for why PMI can be used as a word similarity measure
and illustrate behavioral differences between first-order PMI similarity and second-order distributional
similarity. We also provide new experiments and examples, allowing more insight into PMI similarity.
Our main contribution is introducing a novel metric, PMImax, that enhances PMI to take into account
the fact that words have multiple senses. The new metric is derived from the assumption that more
frequent content words have more senses. We show that PMImax significantly improves the performance
of PMI in the application of automatic thesaurus generation and outperforms PMI on benchmark
datasets including human similarity rating datasets and TOEFL synonym questions. PMImax also has
the advantage of not requiring expensive resources, such as sense-annotated corpora.

The remainder of the paper proceeds as follows. In Section 2 we discuss PMI similarity and define
the PMImax metric. In Section 3 we use experiments in automatic thesaurus generation to determine
the coefficients of PMImax, evaluate its performance, and examine its assumptions. Additional eval-
uation using benchmark datasets is presented in Section 4. Section 5 discusses potential applications
of PMImax and our future work. We are particularly interested in exploiting behavioral differences
between PMI similarity and distributional similarity in the application of semantic acquisition from
text. Finally, we conclude the paper in Section 6.

2 Approach

We start this section by discussing why PMI can serve as a semantic similarity measure. Then, we
point out a problem introduced by PMI’s assumption that words only possess a single sense, and we
propose a novel PMI metric to consider polysemy of words.

2.1 PMI as a Semantic Similarity Measure

Intuitively, the semantic similarity between two concepts1 can be defined as how much commonality
they share. Since there are different ways to define commonality, semantic similarity tends to be
a fuzzy concept. Is soldier more similar to astronomer or to gun? If commonality is defined as
purely involving IS-A relations in a taxonomy such as WordNet, then soldier would be more similar
to astronomer because both are types of people. But if we base commonality on aptness to a domain,
then soldier would be more similar to gun. People naturally do both types of reasoning, and to
evaluate computational semantic similarity measures, the standard practice is to rely on subjective
human judgments.

Many researchers think that semantic similarity ought to be based only on IS-A relations and that
it represents a special case of semantic relatedness which also includes antonymy, meronymy and other

1A concept refers to a particular sense of a word and we use an italic word to signify it in this section.
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Figure 1: Common contexts between concepts A and B.

associations [2]. However, in the literature semantic similarity also refers to the notion of belonging
to the same semantic domain or topic, and is interchangeable with semantic relatedness or semantic
distance [24]. In this paper, we take the more relaxed view and use two indicators to assess the goodness
of a statistical word similarity measure: (i) its ability to find synonyms, and (ii) how well it agrees
with human similarity ratings.

We use Nida’s example noted by Lin [17] to help describe why PMI can be a semantic similarity
measure:

A bottle of tezgüino is on the table.
Everyone likes tezgüino.
Tezgüino makes you drunk.
We make tezgüino out of corn.

By observing the contexts in which the concept tezgüino is used, we can infer that tezgüino is a
kind of alcoholic beverage made from corn, exemplifying the idea that a concept’s meaning can be
characterized by its contexts. By saying a concept has a context, we mean the concept is likely to
appear in the context. For example, tezgüino is likely to appear in the context of “drunk”, so tezgüino
has the context “drunk”. We may then define concept similarity as how much their contexts overlap,
as illustrated in Figure 1. The larger the overlap becomes, the more similar the two concepts are, and
vice versa.

Two concepts are more likely to co-occur in a common, shared context and less likely in an unshared
one. In a shared context, both have an increased probability of appearing but in an unshared one, as
in Figure 1, one is more likely but the other not. Generally, for two concepts with fixed sizes2, the
larger their context overlap is, the more co-occurrences result. In turn, the number of co-occurrences
can be used to indicate the amount of common contexts between two concepts with fixed sizes.

The number of co-occurrences also depends on the sizes of the two concepts. Therefore, we need a
normalized measure of co-occurrences to represent their similarity. PMI fits this role well. Equation 1
shows how to compute PMI for concepts in a sense-annotated text corpus, where fc1 and fc2 are
the individual frequencies (counts) of the two concepts c1 and c2 in the corpus, and fd(c1, c2) is the
co-occurrence frequency of c1 and c2 measured by the context window of d words and N is the total
number of words in the corpus. In this paper, log always stands for natural logarithm.

PMI(c1, c2) ≈ log(
fd(c1, c2) ·N
fc1 · fc2

) (1)

Traditionally, PMI is explained as the logarithmic ratio of the actual joint probability of two events
to the expected joint probability if the two events were independent [23]. Here, we interpret it from
a slightly different perspective and this interpretation is used in deriving our novel PMI metric in the
next section. The term fc1 · fc2 can be interpreted as the number of all co-occurrence possibilities

2The size of a concept refers to the frequency count of the concept in a corpus.
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or combinations between c1 and c2
3. The term fd(c1, c2) gives the number of co-occurrences actually

fulfilled. Thus, the ratio fd(c1,c2)
fc1 ·fc2

measures the extent to which two concepts tend to co-occur. By

analogy to the correlation in statistics which measures the degree that two random variables tend to
co-increase/decrease, PMI measures the likelihood that two concepts tend to co-occur versus occurring
alone. In this sense, we say that PMI computes the correlation between the concepts c1 and c2. We
also refer to the semantic similarity that PMI represents as correlation similarity.

Because a concept has the largest context overlap with itself, a concept has the largest chance to co-
occur with itself. In other words, a concept has the strongest correlation with itself (auto-correlation).
Auto-correlation is closely related to word burstiness, a phenomenon that words tend to appear in
bursts. If the “one sense per discourse” hypothesis [28] is applied, word burstiness would be essentially
the same as concept burstiness. Thus word burstiness is a reflection of the auto-correlation of concepts.

It is interesting that synonym correlation derives from the auto-correlation of concepts. If identical
concepts happen within a distance as short as a few sentences, writers often prefer using synonyms to
avoid excessive lexical repetition. The probability of substituting synonyms depends on the nature of
the concept as well as the writer’s literary style. In our observations, synonym correlation often has
a value very close to auto-correlation for verb, adjective and adverb concepts, but a value a little bit
lower for nominal concepts. One reason may be the ability to use a pronoun as an alternative to a
synonym in English. Although verbs, adjectives and adverbs also have pronominal forms, they are less
powerful than pronouns and used less frequently.

PMI similarity is related to distributional similarity in that both are context-based similarity mea-
sures. However, they use contexts differently which results in different behaviors. First, the PMI sim-
ilarity between two concepts is determined by how much their contexts overlap, while distributional
similarity depends on the extent that two concepts have similar context distributions. For example,
garage has a very high PMI similarity with car because garage rarely occurs in contexts which are not
subsumed by the contexts of car. However, distributional similarity typically does not consider garage
to be very similar to car because the context distributions of garage and car vary considerably. While
one might expect all words related by a PART-OF relation to have high PMI similarity, this is not the
case. Table is not PMI-similar to leg, because there are many other contexts related to leg but not
table, and vice versa.

Second, for two given concepts, distributional similarity obtains collective contextual information
for each concept and computes how similar their context vectors are. For distributional similarity
it does not require the concepts to co-occur in the same contexts to be similar. In contrast, PMI
similarity emphasizes the propensity for two concepts to co-occur in the exactly same contexts. For
example, the distributional similar concepts for car may include not only automobile, truck, and train,
but also boat, ship, carriage and chariot. This shows the ability of distributional similarity to find
“indirect” similarity. However, a problem with distributional similarity is that it cannot distinguish
them and separate them into three categories: “land vehicle”, “water vehicle”, and “archaic vehicle”.
On the other hand, the PMI-similar concepts for car do not contain boat or carriage because they do
not co-occur with car in the same contexts frequently enough.

These differences suggest that PMI similarity should be a valuable complement to distributional
similarity. Although the idea that PMI can complement distributional similarity is not new, current
techniques [29, 27] have used them as separate features in statistical models and do not exploit how that
they differ. In Section 5 we will show through examples that we can support interesting applications
by exploiting their behavioral differences.

3The requirement for multiplication rather than addition can be easily understood by an example: if one individual
frequency increased twofold, all co-occurrence possibilities would be doubled rather than increased by the individual
frequency
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2.2 Augmenting PMI to Account for Polysemy

Since it is very expensive to produce a large sense-tagged corpus, statistical semantic similarity mea-
sures are often computed based on words rather than word senses [2]. However, when PMI is applied
to measure correlation between words4, it has a problem because it assumes that words only have a
single sense. Consider “make” and “earn” as an example. “Make” has many senses, only one of which
is synonymous with “earn”, and so it is inappropriate to divide by the whole frequency of “make” in
computing the PMI correlation similarity between “make” and “earn”, since only a fraction of “make”
occurrences have the same meaning of “earn”.

PMI has a well-known problem that it tends to over-emphasize the association of low frequency
words [30, 31, 32]. We conjecture that the fact that more frequent content words tend to have more
senses, as shown in Figure 4, is an important cause for PMI’s frequency bias. More frequent words
are disadvantaged in producing high PMI value because they tend to have more unrelated or less
related senses and thereby bear an extra burden by including the frequencies of these senses in their
marginal counts. We should distinguish this cause from the one described by Dunning [33] that the
normality assumption breaks down on rare words, which can be ruled out by using a minimum frequency
threshold.

Although it can be difficult to determine which sense of a word is being used, this does not prevent
us from making a more accurate assumption than the “single sense” assumption. We will demonstrate
a significant improvement over traditional PMI by merely assuming that more frequent content words
have a greater number of senses.

We start by modeling the number of the senses of an open-class word (i.e., noun, verb, adjective,
or adverb) as a power function of the log frequency of the word with a horizontal translation q. More
specifically,

yw = a(log(fw) + q)p (2)

where fw and yw are the frequency (count) of the word w and its number of senses respectively;
a, p and q are three coefficients needed to resolve. The displacement q is necessary because fw is
not a normalized measure of the word w and varies on the size of the selected corpus. We require
(log(fw) + q > 0) to only take the strict monotone increasing part of the power function. The power
function assumption is based on observing the graphs in Figure 4, which show the dependence between
a word’s log frequency in a large corpus (e.g., two billion words) and its number of senses obtained
from WordNet. This relationship, though simple, is better modeled using a power function rather than
a linear one.

We next estimate a word pair’s PMI value between their closest senses using two assumptions.
Given a word pair, it is hard to know the proportions at which the closest senses are engaged in their
own words. Since it can be either a major or minor sense, we simply assume the average proportion
1
yw

. Consequently, the frequency of a word used as the sense most correlated with a sense in the other

word is estimated as fw
yw

.
The co-occurrence frequency between a word pair w1 and w2, represented by fd(w1, w2), is also

larger than the co-occurrence frequency between the two particular senses of w1 and w2. To estimate the
co-occurrence frequency between the two senses we assume that w1 and w2 have strongest correlation
only on the two particular senses and otherwise normal correlation. Normal correlation is the expected
correlation between common English words and we denote it using PMI value k5. Therefore, the co-
occurrence frequency between the two particular senses of w1 and w2 can be estimated by subtracting
the co-occurrence frequency contributed by other combinations of senses, denoted by x, from the total

4The same formula as in Equation 1 is used, except that senses are replaced by words
5More explanations will be given in Section 3.4 after the k is empirically learned and exhibited in Table 5.
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co-occurrence frequency between the two words. More specifically,

fd(w1, w2) − x

where x is computed using the definition of PMI by solving Equation 3.

log(
x ·N

fw1 · fw2 −
fw1
yw1

· fw2
yw2

) = k (3)

Equation 3 amounts to asking the question – with a correlation degree of k, how many co-occurrences
are expected among the remaining co-occurrence possibilities resulted by excluding the possibilities
between the two senses of interest from the total possibilities.

Finally, the modified PMI, called PMImax, between the two words w1 and w2 is given in Equation 4.

PMImax(w1, w2)

= log( (fd(w1,w2)−x)·N
fw1
yw1

· fw2
yw2

)

= log(
(fd(w1,w2)− ek

N
·(fw1 ·fw2−

fw1
yw1

· fw2
yw2

))·N
fw1
yw1

· fw2
yw2

) (4)

PMImax estimates the maximum correlation between two words, i.e., the correlation between their
closest senses. In circumstances where we cannot know the particular senses used, it is reasonable
to take the maximum similarity among all possible sense pairs as a measure of word similarity. For
example, when sense information is unavailable, the shortest path assumption is often taken to compute
word similarity in the WordNet-based measures. While the assumptions made in deriving the PMImax

may appear naive, we will demonstrate their effectiveness in later sections. More sophisticated models
may lead to better results and we plan to explore this in future work.

3 Experiments

In this section, we determine values for the coefficients used in PMImax by selecting ones that maximize
performance in automatic thesaurus generation, where the core task is to find synonyms for a target
word. Synonyms can be synonymous to the target word in their major or minor senses, and synonyms
with more senses tend to be more difficult to find because they have relatively less semantic overlap
with the target. Because more frequent words tend to have more senses, the synonyms under-weighted
by PMI are often those with high frequency. We hope PMImax can fix or alleviate this problem and
find synonyms without a frequency bias.

Since word similarity is usually measured within the same part of speech (POS) (e.g., in [8, 9, 10]),
we learn different coefficient sets for nouns, verbs, adjectives and adverbs. We further examine the
learned relations between the frequency of a word with a particular POS and its number of senses
within the POS (i.e., Equation 2) using knowledge from WordNet.

This section also serves as an evaluation of PMImax on the task of automatic thesaurus generation.
We start by describing our corpus, evaluation methodology, and the gold standard. Next we present
and analyze the performance of basic PMI, PMImax, and a state-of-the-art distributional similarity
measure.
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3.1 Corpus Selection

To learn coefficients, we prefer a balanced collection of carefully written and edited text. Since PMI is
sensitive to noise and sparse data, a large corpus is required. The British National Corpus (BNC) is
one of the most widely used corpora in text mining with more than 100 million words. Though large
enough for distributional similarity based approaches, it is not of sufficient size for PMI.

Given these considerations, we selected the Project Gutenberg [34] English eBooks as our corpus.
It comprises more than 27,000 free eBooks, many of which are well-known. A disadvantage of the
collection is its age – most of the texts were written more than 80 years ago. Consequently, many new
terms (e.g., “software”, “Linux”) are absent. We processed the texts to remove copyright statements
and excluded books that are repetitions of similar entries (e.g., successive editions of the CIA World
Factbook) or are themselves a thesaurus (e.g., Roget’s Thesaurus, 1911). We further removed unknown
thesaurus-like data in the corpus with a classifier using a simple threshold based on the percent of
punctuation characters. This simple approach is effective in identifying thesaurus-like data, which
typically consists of sequences of single words separated by commas or semi-colons. Last, we performed
POS tagging and lemmatization on the entire corpus using the Stanford POS tagger [35]. Our final
corpus contains roughly two billion words, almost 20 times as large as the BNC corpus.

3.2 Evaluation Methodology

Various methods for evaluating automatically generated thesauri have been used in previous research.
Some evaluate their results directly using subjective human judgments [15, 36] and others indirectly
by measuring the impact on task performance [37].

Some direct and objective evaluation methodologies have also been proposed. The simplest is to
directly compare the automatically and manually generated thesauri [16]. However, a problem arises
in that current methods do not directly supply synonyms but rather lists of candidate words ranked by
their similarity to the target. To enable automatic comparison, Lin [17] proposed first defining word
similarity measures for hand crafted thesauri and then transforming them into the same format as
the automatically generated thesaurus – a vector of words weighted by their similarities to the target.
Finally cosine similarity is computed between the vectors from machine generated and hand crafted
thesauri. However, it is unclear if such transformation is a good idea since it adds to the gold standard
a large number of words that are not synonyms but related words, a deviation from the original goal
of automatic thesaurus generation.

We chose a more intuitive and straightforward evaluation methodology. We use the recall levels
in six different top n lists to show how high the synonyms of the head word in an entry in the “gold
standard” occur in the automatically generated candidate list. The selected values for n are 10, 25,
50, 100, 200, and 500. A key application for automated thesaurus induction is to assist lexicographers
in identifying synonyms, and we feel that a list of 500 candidates is the largest set that would be
practical. We considered using Roget’s Thesaurus or WordNet as the gold standard but elected not
to use either. Roget’s categories are organized by topic and include many related words that are not
synonyms. WordNet, in contrast, has very fine-grained sense definitions for its synonyms, so relatively
few synonyms can be harvested without exploiting hypernyms, hyponyms and co-hyponyms. Moreover,
we wanted a gold standard thesaurus that is contemporaneous with our collection.

We chose Putnam’s Word Book [38] as our gold standard. It contains more than 10,000 entries,
each consisting of a head word, its part of speech, all its synonyms, and sometimes a few antonyms.
The different senses (very coarse in general) of the head word are separated by semi-colons, and within
each sense the synonyms are separated by commas, as in the following example.

quicken, v. revive, resuscitate, animate; excite, stimulate, incite; accelerate, expedite, hasten,
advance, facilitate, further
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All Unique Sense 1st Synonym
Entries Pairs Entries Pairs Entries Pairs

noun 2286 10994 1103 3762 886 886

verb 1187 6866 623 2515 559 559

adj. 1015 5944 579 2143 454 454

adv. 39 109 32 76 27 27

Table 1: The number of entries and synonym pairs for each POS category under our three scenarios.

While the coverage of Putnam’s Word Book synonyms is not complete, it is extensive, so that our
recall metric should be close to the true recall. On the other hand, measuring true precision is difficult
since the top n lists can contain proper synonyms which are not included by Putnam. The different
top n lists will give us a rough idea about how “precision” varies with the recall. In addition, we
supply another measure – the average rank over all the synonyms contained by a top n list. We give an
example below to show how to compute the recall measures and average ranks. The top 50 candidates
computed using basic PMI for the verb “quicken” are:

exhilarate, invigorate, energize, regenerate, alert, pulse, slacken, accelerate, deaden, begrudge,
husk, recreate, cluck, constrict, stimulate, intensify, career, stagnate, lag, throb, toughen, whinny,
enliven, resuscitate, retard, broaden, rejuvenate, rebuff, lather, sharpen, plummet, pulsate, nerve,
dull, miscalculate, weld, sicken, infuse, shrill, blunt, heighten, distance, deepen, neigh, near, kindle,
rouge, freshen, amplify, hearten

Only three synonyms for the verb “quicken” in the gold standard appear among the top 50 candidates:
“accelerate”, “stimulate”, and “resuscitate” with ranks 8, 15, and 24. Thus, the recall values for top
10, top 25 and top 50 lists are 1/12, 3/12 and 3/12, respectively (12 is the total number of synonyms
for the verb “quicken” in our gold standard). The average ranks for top 10, top 25 and top 50 lists are
8, 15.67 and 15.67, respectively.

We initially process Putnam’s Word Book to filter out entries whose head words have a frequency
less than 10, 000 in the Gutenberg corpus and further eliminate words with frequency less than 700 in
the synonym lists of the remaining head words. In our experiment, we observed that many synonyms
have PMI values slightly above 7.0 (see Table 10). Using the thresholds 10, 000 and 700 enables them
to co-occur at least four or five times, which is typically required to ensure PMI, a statistical approach,
works reasonably [23]. In addition, multi-words terms and antonyms were removed.

Words can have multiple senses and many synonyms are not completely synonymous but overlap
in particular senses. We would like to evaluate PMI’s performance in finding synonyms with different
degrees of overlap. To enable this kind of evaluation, we tested using three scenarios: (i) all entries;
(ii) entries with a unique sense; and (iii) entries with a unique sense and only using the first synonym6.
Our rationale is that the single sense words should have a greater semantic overlap with their synonyms
and moreover the largest semantic overlap with their first synonyms. Although we require the head
words to have a unique sense, their synonyms may still be polysemous. Table 1 shows the number of
entries and synonym pairs in three scenarios with different part of speech tags.

3.3 Performance of Basic PMI

In our basic PMI algorithm, word co-occurrences7 are counted in a moving window of a fixed size that
scans the entire corpus. To select the optimal window size for the basic PMI metric, we experimented
with 14 sizes, starting at ±5 and ending at ±70 with a step of five words. Windows were not allowed

6We exclude the entries whose first synonyms have a frequency less than 700
7Our word co-occurrence matrix is based on a predefined vocabulary of more than 22,000 common English words and

its final dimensions are 26,000 × 26,000 when words are POS tagged.
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T10 T25 T50 T100 T200 T500 Avg

all

noun 0.22 0.36 0.47 0.58 0.68 0.80 0.52

entries

verb 0.23 0.36 0.46 0.57 0.69 0.83 0.52
adj. 0.26 0.40 0.52 0.63 0.74 0.86 0.57
adv. 0.29 0.50 0.62 0.75 0.84 0.96 0.66

unique

noun 0.27 0.43 0.55 0.67 0.76 0.86 0.59

sense

verb 0.30 0.45 0.56 0.67 0.78 0.90 0.61
adj. 0.32 0.46 0.59 0.70 0.80 0.91 0.63
adv. 0.32 0.55 0.68 0.77 0.87 0.96 0.69

1st syn-

noun 0.32 0.50 0.63 0.75 0.83 0.91 0.66

onym

verb 0.38 0.55 0.66 0.76 0.85 0.93 0.69
adj. 0.36 0.55 0.68 0.78 0.86 0.95 0.70
adv. 0.44 0.59 0.78 0.85 0.93 0.96 0.76

Table 2: Recall for basic PMI using a ±40 words window

T10 T25 T50 T100 T200 T500 Avg

all

noun 0.29 0.44 0.56 0.66 0.75 0.85 0.59

entries

verb 0.33 0.47 0.58 0.68 0.77 0.88 0.62
adj. 0.38 0.53 0.64 0.73 0.82 0.90 0.67
adv. 0.49 0.67 0.77 0.84 0.89 0.98 0.77

unique

noun 0.36 0.53 0.64 0.74 0.82 0.90 0.67

sense

verb 0.43 0.57 0.69 0.77 0.85 0.93 0.71
adj. 0.45 0.61 0.71 0.80 0.88 0.94 0.73
adv. 0.53 0.73 0.83 0.87 0.92 0.98 0.81

1st syn-

noun 0.45 0.65 0.75 0.85 0.89 0.94 0.76

onym

verb 0.57 0.71 0.82 0.87 0.91 0.97 0.81
adj. 0.58 0.74 0.84 0.90 0.96 0.98 0.83
adv. 0.63 0.93 0.93 0.93 0.96 1.00 0.90

Table 3: Recall for PMImax using ±40 words window

to cross a paragraph boundary and we used a stop-word list consisting of only the three articles “a”,
“an” and “the”.

We found that performance initially improves as the window size increases. However, the perfor-
mance enters a plateau when the window size reaches ±40, a window that corresponds to about four
lines of text in a typically formatted book. We note that our optimal window size is slightly larger
than the 16-32 size obtained by Terra and Clarke [13]. Data sparseness may account for the difference
because Terra and Clarke used a much larger corpus (53 billion words) and therefore data sparseness
was less severe in their case. The six recall levels of basic PMI and their average for the context window
of ±40 words are shown in Table 2. The average ranks are presented in Figure 2 for the four POS
categories. Six markers on each line correspond to six top n lists. The x and y coordinates of a marker
are the recall level and the average rank for the corresponding list. The average ranks for unique sense
scenario are omitted due to space limitations. Note that in populating the ranked candidate list, we
rule out the words whose frequency is under 700. This is consistent with the preprocessing we did for
the gold standard.

The table and figures show that the “first synonym” category has better performance than the
“unique sense” one, which is again better than the “all entries” category. We conclude that the
synonyms with more semantic overlap have stronger correlation as measured by basic PMI. Among all
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T10 T25 T50 T100 T200 T500 Avg

all

noun 0.38 0.49 0.57 0.66 0.74 0.83 0.61

entries

verb 0.34 0.45 0.53 0.62 0.72 0.84 0.58
adj. 0.37 0.48 0.58 0.66 0.75 0.86 0.62
adv. 0.53 0.66 0.72 0.78 0.83 0.94 0.74

unique

noun 0.47 0.59 0.67 0.75 0.81 0.88 0.70

sense

verb 0.44 0.56 0.64 0.73 0.81 0.90 0.68
adj. 0.45 0.57 0.66 0.74 0.82 0.91 0.69
adv. 0.55 0.68 0.73 0.77 0.84 0.93 0.75

1st syn-

noun 0.62 0.74 0.80 0.84 0.88 0.91 0.80

onym

verb 0.58 0.70 0.77 0.83 0.90 0.95 0.79
adj. 0.62 0.72 0.81 0.86 0.91 0.96 0.81
adv. 0.67 0.78 0.81 0.89 0.93 0.96 0.84

Table 4: Recall for Distributional Similarity – PPMIC

POS tags, adverbs have the best performance, followed by adjectives and verbs, with nouns exhibiting
the worst performance.

3.4 PMImax Coefficient Tuning and Performance

A number of coefficients must be determined for PMImax. We find their optimal values by maximizing
a utility function based on the performance of automatic thesaurus generation. The utility function
is defined as the average of the recall levels in the six different top n lists. The intuitive basis behind
this is to improve recall in the six lists while giving emphasis to smaller lists since each list subsumes
all its smaller-sized lists. Increasing recall in a fixed top n list typically results in the improvement of
precision in the list. Therefore, this utility function measures precision as well. To see why, suppose
our gold standard supplies the complete set of synonyms for a target word. Then the ratio between
the recall and the precision in a fixed top n list is a constant. Though not complete, our gold standard
can be thought as supplying a random sample of synonyms. Thus, the recall in a top n list can be
used to estimate the true recall and thereby the constant ratio property should hold.

We use a constrained brute force search to maximize the utility function. The PMImax coefficients
(a, p, q and k) form a four dimensional search space that is computationally expensive to search. By
averaging the number of senses extracted from WordNet over nouns, verbs, adjectives and adverbs
with frequency around the minimum threshold (i.e., 700) respectively, we found that their mean values
all fall into the range between one and two. So we make a simplifying assumption that words with
frequency of 700 in our corpus have just one sense, reducing the search space to three dimensions. With
this assumption, we can solve the coefficients a to be 1

(log(700)+q)p . Then Equation 2 can be updated to

yw =
(log(fw) + q)p

(log(700) + q)p
(5)

In exploring the three dimensional space, we let p be in the range [0..10] stepped by 0.5, which comprises
21 choices. To avoid searching in a continuous real range, we sample evenly spaced points. We choose
the range [0..10] because we expect p to be positive and not a very high power. Similarly, we let q
be in the range [-6..10] stepped by 1, yielding 17 choices. We set the left boundary as -6 because it
is the smallest number that keeps (log(700) + q) positive and the right boundary to 10 because we
don’t expect the displacement to be large due to the large corpus that we use. We let ek be in the
range [0..100] stepped by 10, which has 11 values. This spans a range from a very weak correlation to
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Figure 2: Average ranks for nouns, verbs, adjectives and adverbs. The six marks on each line correspond
to six top n lists and their x and y coordinates give the recall and the average rank.

fairly strong correlation under our setting of context window of ±40 words. A total of 3927 candidate
solutions are included in our search space.

In order to avoid overfitting, we randomly partitioned the Putnam entries under each POS, except
adverbs8, into two equal size datasets, resulting in three pairs of datasets for noun, verb and adjective
and one single dataset for adverb. We then carried out 3927 experiments on each dataset separately,
iterating and testing all the entries, and computing recall values for the six top n lists averaging over
all entries, and finally calculating the utility function. All computations were based on the words
co-occurrence matrix generated using the moving window of ±40 words. The optimal coefficients are
shown in Table 5. For nouns and verbs, the optimal coefficients on the two datasets are the same. In the
case of adjectives, although the optimal coefficients are different, their curves generated by Equation 5
are close, which is illustrated in the adjective graph in Figure 4. The strong agreement on the pairs
of datasets is not accidental. By sorting the 3927 solutions using their utility values, we find that the
higher a solution appears, the closer its curve is to the optimal solution’s curve. In other words, the
curves tend to converge to the optimal one as their utilities increase. Note that two combinations of p
and q, though may vary dramatically in individual p and q values, can yield close curves, as shown in
the adjective graph in Figure 4.

With our experimental settings, PMI values as the Ks in Table 5 indicate a correlation which is

8We only had 39 adverbial entries and 109 synonym pairs in total, so we did not apply two-fold cross-validation to it.
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p q ek k

noun (1,2) 1.5 -4 30 3.4

verb (1,2) 1.5 -5 40 3.7

adj. (1) 2 -4 70 4.2

adj. (2) 5 4 70 4.2

adv. 3 0 40 3.7

Table 5: Optimal coefficients on three partitioned datasets and one intact dataset

close to “normal correlation” for their particular POS. If we compute PMI values for all possible word
pairs (within the same POS) satisfying our filtering criteria and use them to draw a histogram, we
observe a familiar bell distribution. “Normal correlation” is the center of the distribution. Note that
according to the Equation 4, these Ks impose a lower bound on what PMImax can compute. In many
applications these lower bounds would not cause a problem because people are typically interested in
correlations which are stronger than “normal correlation”. For example, as illustrated in Table 10 for
human similarity ratings, noun pairs holding PMI value around 3.4 would be judged as having no or
very low similarity.

The performance of automatic thesaurus generation using two-fold cross-validation is shown in
Table 3 and Figure 2. Although the coefficients are learned from the “all entries” scenario, the same
coefficients are applied to generate the results for the “unique sense” and “first synonym” scenarios. As
Table 3 shows, the recall values enjoy significant improvements over basic PMI for all of the scenarios,
POS tags, and top n lists. Some recall values, for example, verbs in top 10 list as “first synonym”,
received a 50% increase. The improvements on all the recall values are statistically significant (p <
0.001 two-tailed paired t-test). Regarding average rank, the comparison should be based on the same
recall level instead of the same top n list. This is because a list with larger recall may contain more
synonyms with bigger ranks and therefore draw down the average rank. Figure 2 clearly shows that, at
the same recall level, average ranks for PMImax get across-the-board improvements upon basic PMI.

Compare PMImax’s top 50 candidates for the verb “quicken” to those shown for PMI in Section
3.2.

slacken, stimulate, invigorate, regenerate, throb, accelerate, intensify, exhilarate, kindle, deepen,
deaden, sharpen, retard, enliven, near, awaken, revive, thrill, heighten, overtake, pulse, broaden,
stir, lag, sicken, infuse, expand, slow, brighten, dilate, strengthen, dull, purify, refresh, hasten,
begrudge, spur, trot, career, nerve, freshen, hurry, blunt, sanctify, warm, cluck, inspire, lengthen,
speed, impart

For this example, four synonyms for the word “quicken” appear in the top 50 candidate list and are
marked as bold. Their ranks are 2, 6, 17 and 35, so the recall values for top 10, 25 and 50 lists are
2/12, 3/12 and 4/12 respectively. The average ranks for top 10, 25 and 50 lists are 4, 8.3 and 15. These
numbers all improve upon the numbers using basic PMI. High frequency verbs like “spur”, “hurry”,
and “speed”, which are not shown by basic PMI, also enter the ranking.

Figure 3 shows additional examples of synonym lists produced by PMI and PMImax, displaying a
word and its top 50 most similar words for each syntactic category. Words presented in both lists are
marked as italic. The examples show that synonyms are generally ranked at the top places by both
methods. However, antonyms can have rankings as high as synonyms because antonyms (e.g., “twist”
and “straighten”) have many contexts in common and a single negation may reverse their meaning to
one another. Among all POS examples, the noun “car” exhibits the worse performance. Nevertheless,
synonyms and similar concepts for “car”, such as “automobile”, “limousine” and “truck” still show
up in the top 50 lists of both PMI and PMImax. The very top places of “chauffeur”, “garage” and
“headlight” suggests that both measures highly rank a special kind of relation: nouns that are formed
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(PMI) twist VB: contort, squirm, writhe, knot, twine, twirl, wriggle, warp, card, coil, wrench, loop, dislocate, braid,
interlock, untangle, snake, distort, dent, wiggle, grimace, unwind, mildew, slump, stem, flex, splinter, crook, thud, stunt,
groove, tangle, claw, mat, hunch, lunge, char, curl, unhook, joint, clamp, blotch, crochet, constrict, rotate, sprain, lacquer,
vein, fork, protrude

(PMImax) twist VB: writhe, knot, squirm, contort, twine, wriggle, twirl, warp, coil, wrench, distort, curl, crook, stem,
round, tangle, braid, grimace, wind, spin, fasten, loop, jerk, stunt, dislocate, weave, curve, double, clutch, protrude, tie,
screw, tear, splinter, bend, mat, hook, tug, crumple, claw, wrinkle, grip, roll, tighten, dangle, char, straighten, fork, pull,
strangle

(PMI) car NN: garage, trolley, headlight, chauffeur, limousine, motorist, motor, siding, locomotive, caboose, subway,
freight, automobile, conductor, motorcycle, driveway, axle, radiator, brake, throttle, speeding, uptown, curb, auto, skid,
balloon, truck, refrigerator, driver, downtown, parachute, gasoline, steering, spin, mileage, passenger, racing, train, engine,
purr, suitcase, chute, tractor, taxi, railroad, traction, goggles, elevator, toot, standstill

(PMImax) car NN: chauffeur, garage, motor, trolley, locomotive, conductor, automobile, limousine, freight, headlight,
train, driver, brake, siding, passenger, engine, balloon, railroad, curb, axle, wheel, truck, motorist, auto, driveway, subway,
platform, track, caboose, speed, tire, compartment, radiator, baggage, depot, rail, steering, elevator, seat, shaft, station,
racing, vehicle, taxi, gasoline, throttle, occupant, ambulance, uptown, road

(PMI) ridiculous JJ: nonsensical, laughable, puerile, absurd, preposterous, contemptible, sublime, ludicrous, grotesque,
farcical, bizarre, melodramatic, insipid, snobbish, pedantic, comic, impertinent, incongruous, indecent, comical, odious, pan-
icky, wasteful, grandiose, idiotic, inane, conceited, disgusting, satirical, sobering, outlandish, narrow-minded, despicable,
unreliable, stilted, messy, good-humored, paltry, irreverent, extravagant, regrettable, degrading, humiliating, humdrum,
pompous, frivolous, exasperating, antiquated, silly, dowdy

(PMImax) ridiculous JJ: absurd, sublime, contemptible, preposterous, grotesque, ludicrous, laughable, puerile, comic,
nonsensical, odious, impertinent, foolish, silly, extravagant, comical, bizarre, incongruous, childish, insipid, disgusting,
indecent, conceited, vulgar, monstrous, fantastic, idiotic, frivolous, pathetic, pedantic, satirical, stupid, paltry, melodra-
matic, humorous, awkward, sentimental, humiliating, exaggerated, trivial, farcical, pompous, amused, wasteful, despicable,
serious, degrading, senseless, funny, tragic

(PMI) commonly RB: supposedly, incorrectly, customarily, erroneously, technically, conventionally, ordinarily, chemi-
cally, psychologically, traditionally, infrequently, credibly, sexually, predominantly, popularly, improperly, currently, rarely,
locally, seldom, usually, mistakenly, sparingly, generally, legitimately, frequently, experimentally, universally, preferably,
capriciously, relatively, hugely, rationally, variously, exclusively, vertically, negligently, annually, habitually, philosophi-
cally, fourthly, correspondingly, extensively, rigorously, sometimes, necessarily, chiefly, invariably, primarily, symmetri-
cally

(PMImax) commonly RB: generally, usually, frequently, seldom, rarely, sometimes, ordinarily, often, erroneously, most,
technically, supposedly, more, universally, chiefly, incorrectly, exclusively, especially, less, necessarily, infrequently, namely,
popularly, relatively, annually, occasionally, hence, invariably, therefore, also, customarily, either, properly, likewise,
habitually, widely, largely, formerly, very, improperly, comparatively, variously, conventionally, particularly, sparingly,
however, locally, strictly, principally, equally

Figure 3: Four pairs of examples, showing the top 50 most similar words by PMI and PMI max

specifically for use in relation to the target noun. In the definitions of these nouns, the target noun
is typically used. For example, “chauffeur” is defined in WordNet as “a man paid to drive a privately
owned car”. The advantage of these nouns in computing PMI similarity comes from the fact that they
seldom have their own contexts which are not subsumed by the contexts of the target noun. PMI
similarity is context-based, which means that the similarity is not solely relied on “IS-A” relation but
an overall effect of all kinds of relations embodied by the contexts in a corpus.

The examples show that PMI and PMImax capture almost the same kind of semantic relations
and many of the words in their top 50 lists are the same. Their key difference is how they rank low
frequency and high frequency words. PMI is predisposed towards low frequency words and PMImax

alleviates this bias. For example, the topmost candidates for “twist”, “ridiculous” and “commonly”
produced by PMI are “contort”, “nonsensical” and “supposedly” respectively, which are less common
than the corresponding words generated by PMImax, “writhe”, “absurd” and “generally”, although
they have close meanings. The overall adjustment made by PMImax is that low frequency words move
down the list and high frequency words move up with the constraint that more similar words are still
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ranked higher. Low frequency words at the top of the PMI list are often good synonyms. Though
moved down, they typically remain in the PMImax list. Low frequency words which are more lowly
ranked tend to be not very similar to the target; in the PMImax list, they are replaced with higher
frequency words.

In the example of “twist”, high frequency words (e.g., “round”, “wind”, “spin”, “fasten”, “jerk”,
“weave”, “curve”, “double” and “bend”) move in the list to replace low frequency words including
noisy words (e.g., “blotch” and “lacquer”), less similar words (e.g., “groove” and “lunge”), and less
commonly used similar words (e.g., “flex” and “crochet”). In the example of “car”, two important
similar words “vehicle” and “wheel” appear in the PMImax list after the adjustment.

Because PMImax estimates semantic similarity between the closest senses of two words, it has an
advantage over PMI in discovering polysemous synonyms or similar words. As examples, “double” has
a sense of bend and PMImax find it similar to “twist”; “platform” can mean vehicle carrying weapons
and PMImax find it similar to “car”; “pathetic” has a sense of inspiring scornful pity and PMImax find
it similar to “ridiculous”.

The frequency counts of the verb “double”, noun “platform” and adjective “pathetic” in our Guten-
berg corpus are 32385, 60114 and 28202 and their assumed senses (according to Equation 5 and Table 5)
are 6.5, 4.5 and 6.0 respectively. They are ranked at 106th , 64th and 108th places in their PMI lists.
They are able to move up in the PMImax lists because they have more assumed senses than many words
in the PMI lists. Here we zoom in on a concrete example that compares a moving-out word “blotch”
to a moving-in word “double”. “Blotch” has a frequency count 1149 and co-occurs with “twist” 18
times, producing a PMI value 6.35. “Double” has a lower PMI value, 5.98, and co-occurs with “twist”
349 times. However, since “blotch” only has 1.5 assumed senses its PMImax value is 8.71, which is
smaller than the PMImax value between “double” and “twist”, 9.75.

The PMImax list for the adverb “commonly” has some words that are often seen in a stop words
list, such as “more”, “less”, “hence”, “also”, “either”, “very” and “however”. These words have very
high frequencies but few senses. PMImax erroneously judges them similar to “commonly” because their
high frequency mistakenly suggests many senses.

3.5 Comparison to Distributional Similarity

To demonstrate the efficacy of PMImax in automatic thesaurus generation, we compare it with a
state-of-the-art distributional similarity measure proposed by Bullinaria and Levy [14]. Their method
achieved the best performance after a series of work on distributional similarity from their group
[39, 40, 41]. The method is named Positive PMI components and Cosine distances (PPMIC) because
it uses positive pointwise mutual information to weight the components in the context vectors and
standard cosine to measure similarity between vectors. Bullinaria and Levy demonstrated that PPMIC
was remarkably effective on a range of semantic and syntactic tasks, achieving, for example, an accuracy
of 85% on TOEFL synonym test using the BNC corpus. Using PMI as the weighting function, and
cosine as the similarity function is a popular choice for measuring distributional similarity [30]. What
makes PPMIC different is a minimal context window size (±1 word window) and the use of a high
dimension context vector that does not remove of low frequency components. Bullinaria and Levy
found that these uncommon settings are essential to make PPMIC work extremely well, though they
are not generally good choices for other similarity measures.

Our PPMIC implementation differs from Bullinaria and Levy’s in using lemmatized and POS-
tagged words (noun, verb, adjectives and adverbs) rather than unprocessed words as vector dimension.
This variation is simply due to convenience of reusing what we already have. We tested our im-
plementation of PPMIC on TOEFL synonym test and obtained a score of 80%. The slightly lower
performance may result from the variation we made or the use of the outdated Gutenberg corpus to
answer questions about modern English. Nevertheless, 80% is a very good score on TOEFL synonym
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noun verb adj. adv.

PMI 0.133 0.148 0.161 0.155

PMImax 0.173 0.219 0.242 0.224

PPMIC 0.283 0.255 0.276 0.374

Table 6: Top-1 Precision of PMI, PMImax and PPMIC

noun verb adj. adv.

PMI 0.120 0.160 0.163 0.103

PMImax 0.168 0.256 0.261 0.179

PPMIC 0.433 0.442 0.436 0.487

Table 7: MAP values of PMI, PMImax and PPMIC

test. As an example, Bullinaria and Levy’s previous best result, before inventing PPMIC, was 75%
[41].

The performance of PPMIC in the automatic thesaurus generation is shown in Table 4 and Figure 2.
As we did for PMI and PMImax, we exclude words with frequency less than 700 or with different POS
from the target word in the candidate list. Unlike PMI and PMImax, PPMIC has very good performance
on nouns, which is even slightly better than verbs and adjectives. Unsurprisingly, PPMIC outperforms
PMI on almost all the recall values and average ranks. The improvements on the recall values are
statistically significant (p < 0.001 two-tailed paired t-test). When comparing with PMImax, PPMIC
has obvious advantage on nouns but just competing performance on other POS categories. Although
PPMIC leads PMImax on recall values for the small top n lists, such as top-10, PMImax can generally
catch up quickly and outrun PPMIC for the subsequent longer lists. The same trend can also be
observed on average ranks depicted in Figure 2. When considering all the recall values in Table 3
and Table4, PMImax has a significantly better performance than PPMIC (p < 0.01 two-tailed paired
t-test). Compared with PMImax, PPMIC seems to be able to rank a portion of synonyms very highly
but it fails to give high scores to the remaining synonyms.

3.6 Mean Average Precision Evaluation

Mean Average Precision (MAP) is a common measure used to evaluate systems in information retrieval
(IR) tasks. Automatic thesaurus generation can be evaluated as an IR task if we make an analogy
between an IR query and the need to identify synonyms for a target word (in this analogy correct
synonyms are the relevant documents). We compare PMI, PMImax and PPMIC using MAP in Table 6.
PMImax is significantly better than PMI (p < 0.01 two-tailed paired t-test). PPMIC numerically
outperforms PMImax but the improvements are not statistically significant (p > 0.05 two-tailed paired
t-test). A higher average precision does not necessarily entail a lower average rank. For example,
suppose system A ranks three synonyms of a target word at 1st, 9th and 10th places and system B
ranks them at 3rd, 5th and 6th places. A’s average precision of 0.51 is higher than B’s 0.41, but B’s
average rank is 4.67, which is smaller than A’s, 6.67.

PPMIC’s higher MAP value results from its much better performance in placing synonyms at the
very top ranks. The top-1 precision of PMI, PMImax and PPMIC are supplied in Table 7. PPMIC has
excellent precision, considering our gold standard only provides a subset of synonyms. However, Tables
6 and 7 again imply that PPMIC’s performance degrades faster than that of PMImax in finding more
synonyms. Typically lexicographers desire high recall, therefore, the higher MAP scores for PPMIC
do not necessarily make it a more compelling approach for lexicography than PMImax.
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Figure 4: The frequency and the number of senses for nouns, verbs, adjectives and adverbs.

3.7 Examining the Assumptions in PMImax

The key assumption made for PMImax is found in Equation 5. In Section 3.4 we determined coefficients
by maximizing the performance of PMImax for automatic thesaurus generation. Note that the function
is learned using an automated statistical approach. We will examine this function by comparing it
with knowledge from human judgments extracted from WordNet.

Since we learned a different combination of coefficients for each POS category, we examine them
separately. For each POS-tagged word with frequency above 700 in our corpus, we get its number of
senses within its POS from WordNet and group them into noun, verb, adjective, and adverb categories,
resulting in 8467 nouns, 3705 verbs, 3763 adjectives and 1095 adverbs. We generated four scatter plots
using the natural logarithm of the frequency of a POS-tagged word as x-axis and its number of senses as
y-axis. Matlab’s non-linear least squares problem solver (LSQCURVEFIT) was used to find coefficients
p, q that best fit Equation 5 to the scatter plots, producing the results in Figure 4. For nouns, the
automatically learned function is almost identical to the best-fit function and for verbs they are quite
close. For adjectives and adverbs, both the learned functions have steeper slope than the corresponding
best fit functions. The noun class probably enjoys the best match because the assumptions used in
deriving PMImax work best for nouns and worst for adjectives and adverbs.

The closeness between the learned functions and the best-fit functions suggests that fitting Equa-
tion 5 could be an alternative way to determine the coefficients of PMImax. To see how this approach
performs, we also give its recall values in the six top n lists for the “all entries” scenario in Table 8.
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T10 T25 T50 T100 T200 T500 Avg

all

noun 0.29 0.44 0.56 0.66 0.75 0.85 0.59

entries

verb 0.33 0.46 0.57 0.67 0.77 0.88 0.61
adj. 0.37 0.52 0.63 0.73 0.81 0.89 0.66
adv. 0.43 0.64 0.71 0.83 0.86 0.96 0.74

Table 8: Recall for PMImax using coefficients in best-fit functions

Nouns and verbs have almost the same performance as in Table 3. Even adjectives and adverbs have
close performance to their counterparts in Table 3. It shows that for adjectives and adverbs, most
of the performance gain is achieved by changing the horizontal line y = 1 (i.e., the “single sense”
assumption) to the places of the best-fit functions.

In deriving PMImax in Section 2.2, we implicitly assumed that different senses of a word are not
similar. However, it has been argued that WordNet’s senses are too fine-grained [42], that is, different
WordNet senses of the same word can be similar or highly correlated. According to this, the learned
functions should have a lower slope than the best-fit functions, which is inconsistent with our results.

This is probably because our frequency-sense model is too simple and something is not very ac-
curately modeled. Another possibility is that some other factors, which are irrelevant to senses, also
contribute to the frequency bias of PMI. To counteract that part of bias, PMImax could yield a steeper
slope than what word polysemy requires. Other causes may possibly exist, such as different sets of
words used in the automatic thesaurus generation experiment and in creating the plots, or missing
senses in WordNet.

3.8 Low Frequency Words Evaluation

We learned coefficients for PMImax using the occurrence frequency thresholds 10, 000 and 700 for
target words and their synonyms. Now we would like to check if PMImax learned in this way could
produce consistently better results than PMI for low frequency target words. To this end, we extracted
Putnam entries whose head words have a frequency between 700 and 2,000, obtaining 238, 103 and 155
entries and 598, 282 and 449 synonym pairs for nouns, verbs and adjectives, respectively. The recall
values at six top n lists (“all entries” scenario) for PMI, PMImax and PPMIC are shown in Table 9.
Interestingly, PPMIC’s performance for low frequency words is even better than its performance for
high frequency words, as compared to Table 4. More data typically leads to more accurate results
in statistical approaches. PPMIC’s unusual result implies that its performance is also affected by the
degree of word polysemy. The case of low frequency words is easier for PPMIC because they only have
a few senses.

On the contrary, PMI and PMImax have degraded performances compared to Tables 2 and 3 due to
insufficient data for them to work reasonably. In our experiment, the expected co-occurrence between
two strong synonyms (PMI value 8.0) with the frequencies 700 and 1,000 is only one. Thus, many
low frequency synonyms lack even a single co-occurrence with their targets while many noisy, low
frequency words are ranked at top places by chance. PMImax produces consistently better results than
PMI (p < 0.001 two-tailed paired t-test) but the improvement rate is generally lowered, especially
for large top n lists. We see three reasons for this: some low frequency synonyms cannot be found
regardless of the length of the ranked list because they have no co-occurrences with the target, PMImax

ranks noisy words downward but does not remove them in the relatively long lists, and the coefficients
are not optimized for low frequency target words.

18



T10 T25 T50 T100 T200 T500 Avg

PMI
noun 0.26 0.36 0.45 0.58 0.66 0.78 0.52
verb 0.19 0.28 0.41 0.53 0.62 0.75 0.46
adj. 0.23 0.35 0.42 0.57 0.74 0.87 0.53

PMImax

noun 0.32 0.44 0.53 0.63 0.70 0.80 0.57
verb 0.30 0.40 0.46 0.55 0.64 0.75 0.52
adj. 0.31 0.42 0.54 0.65 0.74 0.87 0.59

PPMIC
noun 0.48 0.61 0.67 0.74 0.81 0.89 0.70
verb 0.42 0.53 0.62 0.66 0.72 0.84 0.63
adj. 0.43 0.56 0.66 0.74 0.81 0.88 0.68

Table 9: Recall for Low Frequency Words

4 Benchmark Evaluation

In the preceding section, we demonstrated the effectiveness of PMImax for automatic thesaurus gener-
ation. In this section, we will evaluate PMImax, tuned for the automatic thesaurus generation task, on
common benchmark datasets including the Miller-Charles (MC) dataset [46] and the TOEFL synonym
test [25], allowing us to compare our results with previous systems. In these datasets, there are words
which occur less often in the Gutenberg corpus than our frequency cutoff of 700. For these words, we
assume a single sense and apply Equation 4 to compute PMImax.

4.1 Human Similarity Ratings

The widely used MC dataset [8, 10, 9, 43, 22, 44, 45] consists of 30 pairs of nouns rated by a group
of 38 human subjects. Each subject rates “similarity of meaning” for each pair on a scale from 0 (no
similarity) to 4 (perfect synonymy). The mean of the individual ratings for each pair is used as its
semantic similarity. The MC dataset was taken from Rubenstein-Goodenough’s [47] original data for
65 word pairs by selecting ten pairs of high, intermediate, and low levels of similarity respectively.
Although the MC experiment was performed 25 years after Rubenstein-Goodenough’s, the Pearson
correlation coefficient between the ratings is 0.97. Four years later, the same experiment was replicated
again by Resnik [8] with ten subjects. Their mean ratings also had a very high correlation coefficient
of 0.96. Resnik also showed that the individual ratings in his experiment have an average correlation
coefficient 0.8848 with the MC mean ratings.

Due to the absence of the word “woodland” in earlier versions of WordNet, only 28 pairs are actually
adopted by most researchers. Our PMI implementation has a similar problem in that “implement” has
very low frequency (117) in the Gutenberg corpus so that there are no co-occurrences for “implement”
and “crane”. Since their PMI value is undefined, only 29 pairs can be used for our experiment. For
these, the correlation coefficient between the MC and PMI ratings is 0.794, and for MC and PMImax

is 0.852. However, in order to compare with other people’s results, it is necessary to have an equal
setting. Fortunately, the published papers of most previous researchers included lists of ratings for
each pair, allowing the comparison of our work over 27 pairs as shown in Table 10.

The six previous measures in Table 10 give the best results that we can find in the literature on the
MC dataset. Among them, Resnik [8], Jiang and Conrath [10], Lin [9], and Li et al [43] are WordNet-
based approaches while CODC [44] and WebSVM [45] are Web-based, making use of page counts and
snippets. PMImax is the first corpus-based approach that enters the same performance level as other
best approaches with a score 0.856, a 7.5% improvement over basic PMI. Although even basic PMI
has a decent performance 0.796, PPMIC only obtains a correlation 0.654 which does not match its
performance in automatic thesaurus generation or TOEFL synonym test. However this is not new. In
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Word Pair
Miller- Resnik J & C Lin Li et al CODC WebSVM

PMI PMImax PPMIC
Charles [8] [10] [9] [43] [44] [45]

car-automobile 3.92 8.0411 30 1 1 0.4229 0.98 7.570 10.498 0.392

gem-jewel 3.84 14.929 30 1 1 0.353 0.686 7.985 10.778 0.447

journey-voyage 3.84 6.7537 27.497 0.89 0.779 0.2666 0.996 5.336 8.567 0.477

boy-lad 3.76 8.424 25.839 0.85 0.778 0.2828 0.974 5.581 9.168 0.527

coast-shore 3.7 10.808 28.702 0.93 0.779 0.2923 0.945 6.606 10.039 0.511

asylum-madhouse 3.61 15.666 28.138 0.97 0.779 0.1845 0.773 8.016 9.614 0.102

magician-wizard 3.5 13.666 30 1 0.999 0.2076 1 8.008 10.242 0.295

midday-noon 3.42 12.393 30 1 1 0.2994 0.819 6.417 9.041 0.301

furnace-stove 3.11 1.7135 17.792 0.18 0.585 0.1982 0.889 6.935 9.585 0.310

food-fruit 3.08 5.0076 23.775 0.24 0.17 0.2355 0.998 5.970 9.388 0.337

bird-cock 3.05 9.3139 26.303 0.83 0.779 0.2295 0.593 6.567 9.607 0.287

bird-crane 2.97 9.3139 24.452 0.67 0.472 0 0.879 7.119 9.853 0.245

implement-tool 2.95 6.0787 29.311 0.8 0.778 0.2506 0.684 8.689 10.128 0.070

brother-monk 2.82 2.9683 19.969 0.16 0.779 0.1956 0.377 4.824 7.980 0.250

brother-lad 1.66 2.9355 20.326 0.2 0.355 0.1811 0.344 4.421 7.613 0.256

car-journey 1.16 0 17.649 0 0 0.2049 0.286 4.969 8.201 0.124

monk-oracle 1.1 2.9683 18.611 0.14 0.168 0 0.328 4.639 7.038 0.151

food-rooster 0.89 1.0105 17.657 0.04 0 0 0.06 4.721 7.019 0.064

coast-hill 0.87 6.2344 25.461 0.58 0.366 0 0.874 5.198 8.545 0.362

forest-graveyard 0.84 0 14.52 0 0.132 0 0.547 4.859 7.337 0.209

monk-slave 0.55 2.9683 20.887 0.18 0.35 0 0.375 3.798 6.026 0.238

coast-forest 0.42 0 15.538 0.16 0.17 0.1686 0.405 5.100 8.352 0.296

lad-wizard 0.42 2.9683 20.717 0.2 0.355 0 0.22 4.275 6.521 0.124

chord-smile 0.13 2.3544 17.535 0.2 0 0 0 4.436 7.012 0.178

glass-magician 0.11 1.0105 17.098 0.06 0 0 0.18 4.894 7.632 0.075

noon-string 0.08 0 12.987 0 0 0 0.018 3.757 5.742 0.081

rooster-voyage 0.08 0 12.506 0 0 0 0.017 3.679 4.919 0.044

Correlation 1 0.791 0.836 0.834 0.883 0.837 0.847 0.796 0.856 0.654

Table 10: Comparisons of PMImax with PMI, PPMIC and previous measures on the MC dataset

an intensive study of distributional similarity, Weeds [22] applied ten different distributional measures,
based on the BNC corpus, to the MC dataset with a top correlation coefficient of 0.62. The value of
distributional similarity appears to vary significantly with the target words selected. Although it can
generate a properly ranked candidate list, the absolute similarity value is not consistent across different
target words selected.

We compare PMImax with basic PMI on two other standard datasets: Rubenstein-Goodenough
(RG) [47] and WordSim353 [48]. Among 65 word pairs in the RG dataset we removed five with
undefined PMI and PMImax values, and performed the experiment on the rest. WordSim353 contains
353 word pairs, each of which is scored by 13 to 16 human subjects on a scale from 0 to 10. We
removed proper nouns, such as “FBI” and “Arafat”, because they are not supported by our current
implementation of PMI and PMImax. We also imposed a minimum frequency threshold of 200 to
WordSim353 because it contains many modern words such as “seafood” and “Internet” which occur
infrequently in our corpus. Choosing 200 as the threshold is a compromise between keeping most of
the word pairs available and making PMI and PMImax perform reliably. After all the preprocessing,
289 word pairs remains. The comparison results of PMI, PMImax and PPMIC on the two datasets
along with the MC dataset are shown in Table 11. Both the Pearson correlation and Spearman rank
correlation coefficients are investigated.

While PMImax’s Pearson correlation on the RG dataset is lower than its on the MC dataset, its
Spearman rank correlation on the RG dataset is higher. WordSim353 is a more challenging dataset
than MC and RG. Our results, though lower than those on MC and RG, are still very good [48]. The
improvements of PMImax over basic PMI using either Pearson correlation or Spearman rank correlation
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MC(27) RG(60) WS353(289)

PMI (Pearson) 0.796 0.791 0.570

PMImax (Pearson) 0.856 0.818 0.625

PPMIC (Pearson) 0.654 0.707 0.381

PMI (Spearman) 0.784 0.790 0.635

PMImax (Spearman) 0.839 0.844 0.666

PPMIC (Spearman) 0.703 0.705 0.353

Table 11: Comparing PMImax with PMI on three datasets

are all statistically significant (p < 0.05 with two-tailed paired t-test). Both PMI and PMImax have a
consistently higher performance than PPMIC on the three datasets.

4.2 TOEFL Synonym Questions

Eighty synonym questions were taken from the Test of English as a Foreign Language (TOEFL). Each
is a multiple choice synonym judgment, where the task is to select from four candidates the one having
the closest meaning to the question word. Accuracy, which is the percentage of correctly answered
questions, is used to evaluate performance. The average score of foreign students applying to US
colleges from non-English speaking countries was 64.5% [12].

This TOEFL synonym dataset is widely used as a benchmark for comparing the performance of
computational similarity measures [12, 25, 41, 13, 49, 21, 14]. Currently, the best results from corpus-
based approaches are achieved by LSA [49], PPMIC [14] and PMI-IR [13], with scores of 92%, 85%
and 81.25%, respectively.

Since the words used in our implementations of PMI, PMImax and PPMIC are POS tagged, we
first assign a POS tag to each TOEFL synonym question by choosing the common POS of the question
and candidate words. The results on the TOEFL synonym test for PMI, PMImax, and PPMIC are
72.5%, 76.25% and 80%, respectively. Although the Gutenberg corpus has two billion words, it is still
small compared with Web collections used by PMI-IR. Thus, unlike PMI-IR, data sparseness is still
a problem limiting the performance of PMImax. For example, there are three “no answer” questions9

for which the question word has no co-occurrence with any of four candidate words. It is known
that TOEFL synonym questions contain some infrequently used words [14]. In addition, some TOEFL
words common in modern English, such as “highlight” and “outstanding”, were uncommon at the time
of Gutenberg corpus. 76.25% is an encouraging result because it demonstrates that PMImax need not
rely on search engines to be effective in a difficult semantic task like the TOEFL synonym questions.

5 Discussion and Future Work

PMImax can be used in various applications that require word similarity measures. However, we are
more interested in combining PMImax with distributional similarity in the area of semantic acquisition
from text because this direction is not yet explored. We start our discussion by looking at an example,
the top 50 most similar words for the noun “car” generated by PPMIC.

train, automobile, boat, wagon, carriage, engine, vehicle, motor, truck, coach, cab, wheel, ship,
machine, cart, locomotive, chariot, canoe, vessel, craft, horse, bus, auto, driver, sleigh, gun, launch,
taxi, buggy, barge, yacht, ambulance, passenger, freight, box, round, plane, trolley, station, team,
street, track, window, rider, chair, mule, elevator, bicycle, door, shaft

9They are treated as incorrectly answered questions.
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The example shows that, as a state-of-the-art distributional similarity, PPMIC has an amazing ability
to find the concepts that are functionality or utility similar to “car”. These concepts, such as “train”,
“boat”, “carriage”, “vehicle”, are typically neighboring concepts of “car” in a taxonomy structure
such as WordNet. In contrast, PMImax, as illustrated in the “car” example in Figure 3, can only
find synonymous concepts and “siblings” concepts (e.g. “train” and “truck”) but miss the “cousin”
concepts (e.g. “boat” and “carriage”). This is because PMI similarity measures the degree that two
concepts tend to co-occur over the exactly same contexts. “boat” and “carriage” are missing because
only a small proportion of contexts of “car” relates it to watercraft or archaic vehicles. Seemingly not
as powerful as distributional similarity, PMI similarity provides a very useful complement to it.

There are many potential applications. Below we suggest two directions related to automatic
thesaurus or ontology generation. First, we could devise an improved approach for high-precision
automatic thesaurus generation by taking intersection of the candidate lists generated by PMImax and
a state-of-the-art distributional similarity, such as PPMIC. For example, the intersection of two top-50
candidate lists generated by PMImax and PPMIC for “car” includes:

train, automobile, engine, vehicle, motor, truck, wheel, locomotive, auto, driver, taxi, ambulance,
passenger, freight, trolley, station, track, elevator, shaft

Many inappropriate distributional similar terms like “boat” and correlational similar terms like “chauf-
feur” are filtered out by the intersection. This makes synonyms, for example “auto”, have higher ranks
in the resulting candidate list than either of the parent lists.

The second application is more interesting and challenging. We know that distributional similarity
can find neighboring concepts of the target word in a taxonomy. A subsequent question on the course
is how we could classify these concepts into different clusters corresponding to the “sibling”, “parent”
and “cousin” sets in a taxonomy. This is an largely unsolved problem in ontology learning from text
that the combination of PMImax and distributional similarity can help address.

For example, of the 50 most distributional similar words of “car”, which are most likely to be
classified together with “boat”? A simple approach is to take the intersection of two top-50 candidate
lists generated by PPMIC and PMImax for “car” and “boat” respectively10. The results for “boat”
and several other examples obtained this way are shown in Figure 5. The words that can be classified
with “boat” include its “sibling” concepts (conveyances on water) and “parent” concepts (vessel, craft)
but no “cousin” concepts (conveyances on land). Similarly, the intersection list for “carriage” includes
archaic vehicles and rejects modern ones. Although in the example of “chariot”, “car” appears in the
list, it is due to a different sense of “car”11. This shows that polysemy of words can add even more
complexity to this problem. Regarding to identifying the “parent” set, common words can be good
cues. For example, “boat” and “ship” have the common word “vessel” whereas “carriage”, “chariot”,
and “truck” share the words “vehicle” and “wheel”. This suggests that “boat” and “ship” may have
parent “vessel” while “carriage”, “chariot”, and “truck” may have parent “vehicle” or “wheel”. This
also implies that in the time of Gutenberg corpus, about eighty years ago, “vehicle” cannot be used to
describe “boat” or “ship”. We confirm this hypothesis by checking our gold standard, Putnam’s Word
Book, in which “vehicle” is shown as a synonym for “car”, “cart”, “wagon” and other conveyances
on land but not for “boat” and “ship”, for which “vessel” is used instead. As another example, the
word “horse” is only associated with “carriage” and “chariot”, which implies that they are historical
vehicles powered by a “horse”.

10The target word is also included in its candidate list and the words in the intersection are ranked by their orders in
the PPMIC list.

11The original meaning of car is similar to “chariot”, however this sense is missing in WordNet.
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boat: ship, canoe, vessel, craft, launch, barge, passenger

ship: boat, vessel, passenger

carriage: train, vehicle, coach, cab, wheel, cart, horse, driver, passenger, station, street, window,
door

chariot: car, vehicle, coach, wheel, horse, driver, team

truck: car, train, automobile, wagon, engine, vehicle, motor, wheel, cart, locomotive, auto, driver,
ambulance, freight, trolley

Figure 5: Examples for classifying distributional similar words for “car”

6 Conclusion

In this paper, we described the characteristics of PMI as a measure of semantic similarity for words,
and directly compared it with distributional similarity. We developed a new metric, PMImax, by
augmenting traditional PMI to take into account the number senses that a word has. We experimentally
showed that PMImax outperforms PMI in automatic thesaurus generation and on benchmark datasets
for human similarity ratings and TOEFL synonym questions. PMImax also gives, among corpus-based
approaches, the highest correlation coefficient of 0.856 for the Miller-Charles dataset based on 27 pairs.

Our experiments have demonstrated that PMI need not rely on Web search engine data or an
information retrieval index to be effective in a range of semantic tasks. Compared with distributional
similarity, PMI is a lightweight measure, though it requires a larger corpus to be effective. With the vast
amount of data available today, data sparseness, becomes a much less severe issue than twenty years
ago when Church and Hanks popularized the use of PMI in computational linguistics. We anticipate
that PMI and PMImax will play an important role in lexical semantic applications in the future.
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[27] N. Kaji and M. Kitsuregawa, “Using hidden markov random fields to combine distributional and
pattern-based word clustering,” in Proc. of the 22nd Int. Conf. on Computational Linguistics,
2008, pp. 401–408.

[28] W. Gale, K. Church, and D. Yarowsky, “One sense per discourse,” in Proc. DARPA Speech and
Natural Language Workshop, Harriman, NY, 1992, pp. 233–237.

[29] P. Turney, M. Littman, J. Bigham, and V. Shnayder, “Combining independent modules to solve
multiple-choice synonym and analogy problems,” in Proc. RANLP-2003, 2003, pp. 482–489.

[30] P. Pantel and D. Lin, “Discovering word senses from text,” in Proc. ACM SIGKDD Conf. on
Knowledge Discovery and Data Mining, Edmonton, Canada, 2002, pp. 613–619.

[31] J. Weeds and D. Weir, “Finding and evaluating sets of nearest neighbours,” in Proc. 2nd Int.
Conf. on Corpus Linguistics, Lancaster, UK, 2003.

[32] H. Wu and M. Zhou, “Synonymous collocation extraction using translation information,” in Proc.
41st Annual Meeting of the Association for Computational Linguistics, Sapporo, Japan, 2003, pp.
120–127.

[33] T. Dunning, “Accurate methods for the statistics of surprise and coincidence,” Computational
Linguistics, vol. 19, no. 1, pp. 61–74, 1993.

[34] M. Hart, “Project gutenberg electronic books,” http://www.gutenberg.org/wiki/Main Page, 1997.

[35] K. Toutanova, D. Klein, C. Manning, W. Morgan, A. Rafferty, and M. Galley, “Stanford log-linear
part-of-speech tagger,” http://nlp.stanford.edu/software/tagger.shtml, 2000.

[36] F. Smadja, “Retrieving collocations from text: Xtract,” Computational Linguistics, vol. 19, no. 1,
pp. 143–178, 1993.

[37] I. Dagan, S. Marcus, and S. Markovitch, “Contextual word similarity and estimation from sparse
data,” in Proc. ACL-93, Columbus, Ohio, 1993, pp. 164–171.

[38] L. A. Flemming, “Putnam’s Word Book,” http://www.gutenberg.org/files/13188/13188-8.txt,
1913.

[39] M. Patel, J. A. Bullinaria, and J. P. Levy, “Extracting semantic representations from large text
corpora,” in Fourth Neural Computation and Psychology Workshop: Connectionist Representa-
tions. London: Springer, 1997, pp. 199–212.

[40] J. P. Levy, J. A. Bullinaria, and M. Patel, “Explorations in the derivation of semantic repre-
sentations from word co-occurrence statistics,” South Pacific Journal of Psychology, vol. 10, pp.
99–111, 1998.

[41] J. P. Levy and J. A. Bullinaria, “Learning lexical properties from word usage patterns: Which
context words should be used?” in Sixth Neural Computation and Psychology Workshop: Connec-
tionist Models of Learning, Development and Evolution. London: Springer, 2001, pp. 273–282.

25



[42] R. Navigli, “Meaningful clustering of senses helps boost word sense disambiguation performance,”
in Proc. 21th Int. Conf. on Computational Linguistics, Sydney, Australia., 2006, pp. 105–112.

[43] Y. Li, Z. Bandar, and D. McLean, “An approach for measuring semantic similarity between words
using multiple information sources,” IEEE Transactions on Knowledge and Data Engineering,
vol. 15, no. 4, pp. 871–882, 2003.

[44] H. Chen, M. Lin, and Y. Wei, “Novel association measures using web search with double checking,”
in Proc. COLING/ACL 2006, 2006, pp. 1009–1016.

[45] D. Bollegala, Y. Matsuo, and M. Ishizuka, “Measuring semantic similarity between words using
web search engines,” in Proc. WWW, 2007.

[46] G. Miller and W. Charles, “Contextual correlates of semantic similarity,” Language and Cognitive
Processes, vol. 6, no. 1, pp. 1–28, 1991.

[47] H. Rubenstein and J. Goodenough, “Contextual correlates of synonymy,” CACM, vol. 8, no. 10,
pp. 627–633, 1965.

[48] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Ruppin,
“Placing search in context: The concept revisited,” ACM Transactions on Information Systems,
vol. 20, no. 1, pp. 116–131, 2002.

[49] R. Rapp, “Word sense discovery based on sense descriptor dissimilarity,” in Proc. 9th Machine
Translation Summit, 2003, pp. 315–322.

26


