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Abstract— The specific choice of workload task schedulers for 
Hadoop MapReduce applications can have a dramatic effect on 
job workload latency. The Hadoop Fair Scheduler (FairS) assigns 
resources to jobs such that all jobs get, on average, an equal 
share of resources over time. Thus, it addresses the problem with 
a FIFO scheduler when short jobs have to wait for long running 
jobs to complete. We show that even for the FairS, jobs are still 
forced to wait significantly when the MapReduce system assigns 
equal sharing of resources due to dependencies between Map, 
Shuffle, Sort, Reduce phases. We propose a Hybrid Scheduler 
(HybS) algorithm based on dynamic priority in order to reduce 
the latency for variable length concurrent jobs, while maintaining 
data locality. The dynamic priorities can accommodate multiple 
task lengths, job sizes, and job waiting times by applying a greedy 
fractional knapsack algorithm for job task processor assignment. 
The estimated runtime of Map and Reduce tasks are provided to 
the HybS dynamic priorities from the historical Hadoop log files. 
In addition to dynamic priority, we implement a reordering of 
task processor assignment to account for data availability to 
automatically maintain the benefits of data locality in this 
environment. We evaluate our approach by running concurrent 
workloads consisting of the Word-count and Terasort 
benchmarks, and a satellite scientific data processing workload 
and developing a simulator. Our evaluation shows the HybS 
system improves the average response time for the workloads 
approximately 2.1x faster over the Hadoop FairS with a standard 
deviation of 1.4x.  

Keywords— Hadoop, Scheduler, dynamic priority, scheduling,  
MapReduce, workflow 

I.  INTRODUCTION 
The most popular Big Data tool for cloud computing 

offered today by most commercial providers such as Microsoft, 
Oracle, IBM, Amazon et al., is based on the Apache open 
source Hadoop Map Reduce environment [1, 2]. The original 
proposed MapReduce model is by Dean and Ghemawat [3]. 
One reason for its broad acceptance by many business and 
government organizations is that a rich set of Hadoop software 
supporting library systems have grown up providing a wide 
variety of complementary organizational requirements such as 
Hbase, Hive, Pig, Mahout and recently a workflow engine 
Oozie. A key benefit of the Hadoop core MapReduce system is 
that it automatically handles failures, hiding the complexity of 
fault-tolerance. Additionally, because data locality is critical [4, 

5], the default Hadoop FIFO scheduler gives preferences to 
node local and rack local tasks to improve data locality. 

Limitations of Hadoop FIFO occur when short jobs have to 
wait too long behind long running jobs, thus negatively 
affecting the job response time. The Hadoop FairS, developed 
by Zaharia et al. [4], was the first to addresses this limitation in 
depth by utilizing a fair share mechanism between multiple 
concurrent jobs. Over time, FairS assigns resources such that 
all jobs get, on average, an equal share of resources. This 
methodology significantly improved the average response time 
of Facebook queries [4].  Additionally FairS extends the data 
locality of FIFO by using a delayed execution mechanism [4]. 

Workload specific choice of MapReduce task schedulers 
affects the performance of MapReduce applications [6] because 
currently Hadoop FairS and FIFO schedulers depend on the 
frequencies of job submission patterns and the system 
workloads. For example, Y. Chen showed that if there is a long 
sequence of small jobs submitted after a few large jobs, then 
FIFO shows superior response time over FairS [6].  
Furthermore, we show that while sharing resources in a 
MapReduce system, FairS response time is still longer than 
necessary due to dependencies between the 
Map/Shuffle/Sort/Reduce phases. Thus, we propose a new 
Hadoop Scheduler called HybS based on dynamic priority in 
order to reduce the delay for variable length concurrent jobs, 
and relax the order of jobs to maintain data locality. In 
addition, HybS provides a user-defined service level value for 
QoS. We show how dynamic priorities can accommodate 
multiple tasks' lengths, job sizes, and jobs' waiting time in this 
environment while reducing average response time even further 
beyond FairS. 

The contributions of this work are as follows: 
• A new MapReduce task scheduling algorithm, called 

HybS based on dynamic priority, is proposed to reduce 
workload response time of concurrent running 
MapReduce jobs.  

• Hadoop Scheduling decisions using estimated Map 
running times and user-defined service level value  

• Automatic relaxing of the order of job execution to 
preserve data locality. 

The paper is organized as follows. Section I is the paper's 
introduction. The new task scheduling algorithm is presented in 
section II. Experimental analysis results of the algorithm are 
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presented in section III. Related work is disc
IV. The final section V presents conclusions an

II. SCHEDULING ALGORITH
A. The MapReduce Scheduling Model 

The Hadoop scheduling model is a Maste
structure, for which the master node (Job Trac
of scheduling decisions, and the workers (no
responsible for executing tasks. Work
acknowledge the Job Tracker when they are 
tasks and when the job is complete.  They the
the Job Tracker’s running queue. The Job Tra
global single queue, and all jobs must subm
which is ordered by the master policy as in Fig

 

Figure 1 Worker nodes distribute the tasks withi
resource nodes become available 
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Map tasks. In other words, Reduce tasks have
Map tasks of a given job are finished bef
executed.  Map tasks from different jobs can
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data chunk (node-local tasks). If such local ass
be made, then the task is assigned to a remote
respective chunk is moved.  Since Hadoop can
identify network topology, it can give second
rack-local tasks as opposed to non-local 
completely separate rack from their data chu
process transfers output from all Map tasks (ca
files) to the local storage of nodes that run Red
Reducer nodes read these files from their loc
the appropriate Reduce function and write th
files in the distributed file system. 
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MapReduce cluster shares execution between 
other words, the entire cluster is never dedicate
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the job priority based on its runtime, waiting t
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multi-user or cloud environment by multiplying this factor to 
the other factors in equation eq.1. 

The priority equation and weight factors are adapted from 
W. A. Ward at el. (2002), where the job priorities are used for 
scheduling parallel jobs in HPC systems using backfilling 
techniques [7]. The �, �, and � weighting factors are called 
priority parameters. There are several possible policies for 
these priority parameters. If �=1 and �=�=0 the scheduling 
policies become FCFS (First Come First Serve). Whereas �=0, 
�=-1 and �=0 produces shortest job first. Furthermore, �=0, 
�=0 and �=-1 yields smallest job size first while �=1 produces 
biggest job size first. Determining the best non zero �, �, and � 
sets for a given system and workload is an interesting problem 
because they give applications a choice of scheduling policies. 

The dynamic scheduling algorithm considers the estimated 
runtime, job size, and waiting time of the job in the queue. The 
waiting time is increased as the job waits in the queue, 
whereas the remaining size of the job is reduced when its 
individual tasks are completed. 

In systems with a high number of concurrent jobs, in order 
to reduce the overhead of searching through the queue for data 
locality, we can define a window W to limit the number of 
jobs considered for data locality. Window W is tunable 
parameter, and allows the balance of conflict tradeoff between 
scheduling efficiency and data locality. The complexity of the 
scheduling algorithm is the complexity of sorting the queue of 
n jobs and it is O(nlogn). 

C. Scheduling Algorithm 
Dynamic job priorities are used in HybS for reducing the 

latency of variable length concurrent jobs, while maintaining 
data locality. The dynamic priorities can accommodate 
multiple task lengths, job sizes, and job waiting times by 
applying a greedy fractional knapsack algorithm for job task 
processor assignment. 

Fig. 2 presents the hybrid dynamic priority scheduling 
algorithm.  If Hadoop has C available slots, then we would 
want to have C current tasks in execution at any particular 
time.  At each heartbeat, each job jobi has Fi remaining tasks, 
priority of pi (calculated from equation 1), and a user- defined 
service level value of si. The idea of service level value for a 
job is to provide variable quality of service as a function of 
system resources. One can set the same value for all of the 
jobs in his/her queue if preferred. The user-defined service 
level value must be between 0 and 1.   

Of these Fi tasks, only the job’s predicted number of tasks 
=
 � >
7
 would be eligible to be scheduled at any given time. 
We will schedule all node and rack local tasks from all jobs 
before we even consider scheduling a non-local task by the 
greedy fractional knapsack algorithm as in step 4 of Fig.2. All 
predicted tasks of job’s highest priority that have data locality 
(node-local and rack-local) will be assigned first. If the job of 
highest priority does not have enough data locality, tasks of 
next highest priority job will be assigned. The relaxation of the 
highest priority job’s assignment utilizes node-local data 
without waiting or delaying the execution of any task by a 
fixed amount of time. 

 

 
Figure 2. HybS algorithm pseudo-code 

 

III. EXPERIMENT RESULTS 

A. Results of hybrid scheduler using Hadoop  
The dynamic priority scheduling algorithm is implemented 

in Hadoop 1.0.1 and labeled as HybS in the Hadoop system 
for performance analysis. We ran Hadoop using the HybS, 
FairS, and FIFO schedulers for comparison. 

We also performed the evaluations on two different 
configurations, a physical system and a virtual system.  

Physical cluster: Hadoop 1.0.1 is installed on a cluster of 9 
physical IBM blades, each with two Intel Nehalem 2.0 GHz 
quad core processors on the same rack. The total number of 
cores is 72. Each processor has 24 GB RAM and the local disk 
capacity of the Nehalem blades is 1TB each. Each blade is 
configured to run 4 concurrent map tasks, yielding a total map 
capacity of 36 slots. 

Virtual cluster: Hadoop 1.0.1 is installed with the open 
source Eucalyptus cloud. A virtual cluster is configured with 
16 virtual nodes, each node image is configured with 1 core 
and 64 GB of local disk and 4GB RAM. Total map capacity is 
configured for 32 slots (i.e. each virtual node runs 2 
concurrent maps). 

The internal physical network for both clusters above is a 1 
Gigabit Ethernet connection. The Hadoop default 
configuration assumes each user is configured as a queue. 
Thus, the term user here has the same meaning as queue. We 
use the Hadoop examples, TeraSort and WordCount, for one 
class of benchmarking performance. We also use gridding of 
the NASA AIRS instrument data as a real-world benchmark of 
the HybS performance.  

Hadoop’s speculation for Map and Reduce tasks are turned 
off because we just want to compare schedules of MapReduce 
task executions by each scheduler. 

TeraSort: Although called TeraSort, for our experiments 
the benchmark sorts data on the order of GBs per dataset, 
these workloads represent both I/O and CPU intensive jobs. 

WordCount: A program that counts the number of times 
each word appears in a document. This application represents 
the regular distribution of task length and random distribution 

For each heartbeat, when there are free tasks available on 
a node: 

1. Update dynamic priority for all jobs based on eq 1 
 

2. Calculate the predicted number of tasks Ai to be assigned 
for each job as  =
 � >
7
  and sort the job queue with 
descending order of  priorities 
 

3. Assign node_local and rack_local tasks by a greedy 
fractional knapsack algorithm as 

 
loop_job: for i in jobs do 
for j in Min(Ai,C)assign node/rack_local task; 

C = C-1; 
If (C=0) exit loop_job 

 
4. If C>0, assign a non-local task to the first job in the queue. 
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of key value pairs. We run this program to count the 
appearances of words on Wikipedia dataset (66GB).  

GridAIRS:  A hyperspectral weather satellite re-projection 
problem represents both an I/O and CPU intensive workload. 
Each file is a 6 minute earth observing infrared measurement 
projected into a latitude/longitude grid utilizing a noise 
reduction algorithm [9]. One day of AIRS data is 14GB and 
consists of 240 granules or files. We configure each file as a 
HDFS block. This represents a scientific data intensive 
workload in which the distribution of key/value pairs has 
spatial data access patterns. This workload is both I/O and 
CPU intensive. 

Table 1: Job input information for experiment 1 (runtime 
in seconds) 

Job type 

avg Map 
task 

runtime 

avg 
Reduce  

task 
runtime 

avg 
shuffle 
Task 

runtime  

# of 
map 
in 

range 

total 
input 
data 
in 

GB 

Grid 113 49 8 
60-
240 <14 

Terasort 7 21 21 
90-
900 <6 

WordCount 400 24 62 09-32 <66 
 

The experiments reported in this paper are run on the 
physical cluster unless we specifically indicate that 
experiments are run in the virtual mode. We run Hadoop only 
once on the cloud system because the cloud is a dedicated 
system, while the physical cluster is not. When the physical 
cluster is used, we report the average of 5 runs. We also report 
the overhead of running Hadoop in a cloud environment. The 
individual jobs are submitted to Hadoop by means of a 
MapReduce DAG workflow system [10]. 

Experiment 1.  This Hadoop cluster has a capacity of 36 
concurrent map slots run on the physical cluster. We will 
compare FIFO and the FairS against the HybS for two selected 
�, �, and � parameters. There are 21 jobs run concurrently on 
the cluster in experiment 1. The jobs of various sizes and 
estimated runtimes are submitted in random order. In figure 3, 
there are some small jobs follow by some big jobs and then the 
rest are small jobs in submission order. The purpose of this 
workload is to see the reduction in waiting time by the 
scheduler for various job types. The workload can also 
represent the production workloads in HPC or in industry such 
as Facebook, and Yahoo where the job arrival time can be 
modeled as poison distribution. The number of required maps 
(from different input dataset size) is indicated in table 1.  

In Fig 3. HybS �=1 �=-1 �=-1 (red) has a lower or equal 
job response times to the FairS for almost all jobs except for 
the largest jobs (job 13). Since HybS �=1  �=-1 �= -1 use 
shortest job first and smallest job size first policies, both HybS 
and FairS give short jobs (job 4 to job 9) better chances to 
finish earlier while FIFO does not. There are similar patterns 
shown for jobs (18, 19, and 20). HybS �=1 �=-1 �=-1 has 
overall lower response times comparing HybS �=0 �=-1 �=-1 
because it considers the job’s waiting time factor. We choose 
these policies because short jobs should not have to wait for 
long running jobs to share the resources and also prevent jobs 
from starving where long running jobs wait too long for the 
resource allocation. 

 
Figure 3 Total job's runtime HybS vs FairS vs FIFO scheduler. 21 
jobs with different workloads described in table 5. HybS with �=0  
�=-1 �= -1 and �=1 �=-1 �= -1(experiment 1). 

Figure 4 Detailed comparison of HybS �=1  �=-1 �= -1 vs FairS for 
all jobs in experiment 1. 

Fig. 4 plots the response time speed up of HybS over FairS 
for the parameters �=1 �=-1 �=-1. HybS performed better for 
all jobs except job 9 and job 13. For small jobs (18, 19, 20, 21) 
HybS performs 4x to 6.7x faster, while FairS shows 1.04x to 
1.09x faster for big jobs (9, 13).    HybS provides 2.4x faster 
response time on average than FairS for the average workload 
of 21 jobs. For the job submission order and their workload in 
this experiment, the results show that the waiting time for 
small jobs is significantly reduced compared with FairS.  

Experiment 2. A small workload of 95 small jobs running 
the Terasort benchmark with a variable number of Map tasks 
and input dataset sizes. The number of Map tasks ranges from 
50 to 148 with different input dataset sizes on the order of 
(MB-GB). The average Map task runtime fluctuated between 
4 to 6 seconds. This workload simulates the long sequence of 
small jobs in a snapshot of a day-long Facebook workload 
presented in fig. 11 (Y. Chen et al.) [6]. 

 
 Figure 5 shows HybS is superior compared to FairS for the 
workload in experiment 2.  HybS provides 2.1x faster 
response time for jobs on average over FairS for this 
workload. 
  

150164



 
Figure 5 Total job's runtime HybS �=1 �=-1 �= -1 vs FairS. The 95 
Terasort jobs with different workloads are described in experiment 2. 

HybS more quickly resolves the data dependence between 
the Map and Reduce stages.  Because the final Reduce must 
wait for the output from all maps, the last Map task is the main 
latency bottleneck toward job completion. This improvement 
is likely due to the � parameter of -1, which boosts the priority 
of jobs with fewer remaining tasks.  In other words, HybS 
attempts to “finish off” nearly completed jobs rather than 
leave dangling a few Map tasks.  This allows the Reduce to 
start more quickly with resolved data dependencies providing 
faster response time on average. Since the experiments are 
performed using Hadoop on the same rack and the number of 
tasks are higher than the cluster Map capacity, the rate of node 
local data is very high.  We were not able to evaluate 
completely non-local tasks because we had one rack available. 
We plan to run experiment at large scale system with different 
racks to evaluate the data locality technique. 

 

 

Figure 6 Average overhead ratio (Virtualized / Physical runtime) for 
two jobs of the Terasort benchmark using the Eucalyptus cloud 
(Virtual cluster) 

 
Experiment 3 (on Virtual cluster).  We ran the Terasort 

benchmark on 1.2GB of data using 2 jobs each with 60 maps 
using the Eucalyptus cloud. HybS also gives approximately 
1.3x faster performance than FairS. Figure 6 shows that the 
overhead of these two jobs on the Virtual cluster as compared 
to same hardware configuration without virtualization.  We 
used the same number of Map and Reduce slots in both 
configurations.  We see the overhead is significant for the 

shuffle (7.5x slower) and reduce phases (8.2x slower). The 
reason is the rate of I/O and network I/O for virtual images is 
an order of magnitude slower than for of physical system.  All 
virtual nodes share the same physical I/O and network 
bandwidth.   
 

B. Simulation results 
In addition to running our proposed scheduler on physical 

and virtual systems, we developed a simulator that allows us 
to investigate the optimal response time of a given workload 
for specific α, β, and γ values, as well as the effects of the 
service level value and system size for specific classes of jobs. 

 
The simulator takes as input the fixed α, β, γ parameters, 

system size, and a workload description file formatted as 
follows: 

<jobid> <number of tasks> <average time per task> <wait 
time> <service level value>. The simulator output consists of 
two files, a time based trace file for all of the states of the run 
and waiting queues and an Attribute Relationship File Format 
(ARFF) summary, which can be analyzed by the WEKA[11] 
Machine learning toolkit.    

The simulator uses a greedy fractional knapsack algorithm 
that runs a subset of tasks for each job based on an ordered 
queue of prioritized jobs. 

We make several assumptions in our simulations. All job 
wait times start at 1, as we assume the workload is a single 
group of jobs that all arrive to be scheduled at the same time 
and have no prior expectation of FIFO, as opposed to 
determining arrival rates with distributions for a given 
workflow. 

There is no backfill and no preemption. Thus jobs will not 
be stopped if they haven't completed, and no jobs will be 
scheduled around a larger job if the large job has the highest 
priority. Because jobs are almost always split into independent 
tasks, even if the scheduler cannot satisfy a relatively high 
proportional service level value, say of 0.9, we guarantee that 
at least one task from the highest priority job will be 
scheduled, if there is room. Thus the large, high priority job, 
will not accrue wait-time, but will slowly eat up the available 
resources at the rate they become available.  

In addition to these assumptions, system utilization is 
always at 100% because of our fractional knapsack approach.  

 
Each Job within a workload can be classified into one of 

four groups based on their size, number of tasks, and duration 
time in seconds relative to the average for the workload. The 
classes are; small and short (SS), small and long (SL), large 
and short (LS) and large and long (LL). Figure 7 shows the 
classification for the first 20 jobs from the mixed workload 
outlined in experiment 1. 

Response time is the value we would like to minimize for 
all jobs. Response time is a function of the time it takes to run 
the job including the time the job spent waiting, this can be 
formulated as an 

expansion factor = ����$
�?�	
�$
�%���$
�  
Ideally, jobs will have an expansion factor of 1.0, which 

means their response time is their runtime, with 0 wait time. 
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We use these terms interchangeably in our pr
simulation results.  

Figure 9 shows simulation results for th
data, run with �=0 �=-1 �=-1, and  �=1 �=-1 �

 

Figure 7: Summary of experiment 1 workload in

 
 

 

Figure 8. Expansion factor as a function of job size
the second y axis is job size. 
 

Figure 8 shows the relationship between 
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the resource spending and allocation to provide quality of 
service. However, they were less concerned with the 
improvement of system utilization, application performance, 
or data locality. 

Polo et al. (2010) provides an online profiler for 
MapReduce job completion time. They use this profiler to 
adjust resource allocations for different jobs [18]. However at 
the beginning of job execution, there is no information for 
online profiling. We also use an online profiler for average of 
map running time if there is no information available in the 
job history logs.  

Regulated dynamic priority for MapReduce scheduling is a 
method using assigned priorities to offer different service 
levels for users over time [19]. Their dynamic priority aims to 
let users change their job priority overtime. The technique 
imposes regulation to prevent users from playing games with 
the priority. Our HybS uses dynamic priority from the system 
performance perspective and provides service level values for 
the users. 

Kernel Canonical Correlation Analysis is used to predict the 
performance of MapReduce workloads [8]. This model is 
proposed for Hive queries and they suggest the use of this 
information for MapReduce schedulers. We currently use the 
average of map runtime in the job histories and in the future 
work, we plan to use this model to predict the MapReduce 
performance for HybS. 

Phan et al. (2010) is focused on providing a scheduler for 
MapReduce jobs based on their deadlines [20]. This algorithm 
also falls into the dynamic scheduling category, and their 
approach is tied to the constraint satisfaction problem (CSP). 
However, they do not consider the dependencies between 
Map/Reduce phases that would make the CSP more complex.    

V. CONCLUSIONS AND FUTURE WORK 
A Hybrid Dynamic Priority scheduling algorithm, HybS, is 

presented for the Hadoop MapReduce environment. We show 
that HybS allows for a flexible policy-driven scheduling 
system that improves response time by an average of 2.2X 
with a standard deviation of 1.4 for two workload experiments 
using Hadoop's FairS on a 9 node cluster.  HybS achieves this 
improved response time by means of relaxing the strict 
proportional fairness with a simple exponential policy model.  
We show how the default HybS parameters quickly resolve 
the data dependence between the Map and Reduce phases by 
improving the wait time of the last Map task on average.  
Additionally, we show simulation analysis of the optimal 
service level value and policies for overall performance as 
well as response time under a variety of conditions. In 
conclusion, HybS is a fast and flexible scheduler that improves 
response time for multi-user Hadoop environments. Future 
work will include evaluating the effects of the service level 
value on the total workload completion time. Additionally we 
will integrate the simulator into the HybS scheduler code in 
Hadoop to act as a workload profiler.  
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