
A Hybrid Scheduling Algorithm for Data Intensive
Workloads in a MapReduce Environment

Phuong Nguyen1 Tyler Simon1 Milton Halem1 David Chapman1 Quang Le2
1Dept. Computer Science and Electrical Engineering

University of Maryland Baltimore County
 2General Dynamics Information Technology

Email {phuong3, tsimo1, halem, dchapm2}@umbc.edu and Quang.Le@gdit.com

Abstract— The specific choice of workload task schedulers for
Hadoop MapReduce applications can have a dramatic effect on
job workload latency. The Hadoop Fair Scheduler (FairS) assigns
resources to jobs such that all jobs get, on average, an equal
share of resources over time. Thus, it addresses the problem with
a FIFO scheduler when short jobs have to wait for long running
jobs to complete. We show that even for the FairS, jobs are still
forced to wait significantly when the MapReduce system assigns
equal sharing of resources due to dependencies between Map,
Shuffle, Sort, Reduce phases. We propose a Hybrid Scheduler
(HybS) algorithm based on dynamic priority in order to reduce
the latency for variable length concurrent jobs, while maintaining
data locality. The dynamic priorities can accommodate multiple
task lengths, job sizes, and job waiting times by applying a greedy
fractional knapsack algorithm for job task processor assignment.
The estimated runtime of Map and Reduce tasks are provided to
the HybS dynamic priorities from the historical Hadoop log files.
In addition to dynamic priority, we implement a reordering of
task processor assignment to account for data availability to
automatically maintain the benefits of data locality in this
environment. We evaluate our approach by running concurrent
workloads consisting of the Word-count and Terasort
benchmarks, and a satellite scientific data processing workload
and developing a simulator. Our evaluation shows the HybS
system improves the average response time for the workloads
approximately 2.1x faster over the Hadoop FairS with a standard
deviation of 1.4x.

Keywords— Hadoop, Scheduler, dynamic priority, scheduling,
MapReduce, workflow

I. INTRODUCTION
The most popular Big Data tool for cloud computing

offered today by most commercial providers such as Microsoft,
Oracle, IBM, Amazon et al., is based on the Apache open
source Hadoop Map Reduce environment [1, 2]. The original
proposed MapReduce model is by Dean and Ghemawat [3].
One reason for its broad acceptance by many business and
government organizations is that a rich set of Hadoop software
supporting library systems have grown up providing a wide
variety of complementary organizational requirements such as
Hbase, Hive, Pig, Mahout and recently a workflow engine
Oozie. A key benefit of the Hadoop core MapReduce system is
that it automatically handles failures, hiding the complexity of
fault-tolerance. Additionally, because data locality is critical [4,

5], the default Hadoop FIFO scheduler gives preferences to
node local and rack local tasks to improve data locality.

Limitations of Hadoop FIFO occur when short jobs have to
wait too long behind long running jobs, thus negatively
affecting the job response time. The Hadoop FairS, developed
by Zaharia et al. [4], was the first to addresses this limitation in
depth by utilizing a fair share mechanism between multiple
concurrent jobs. Over time, FairS assigns resources such that
all jobs get, on average, an equal share of resources. This
methodology significantly improved the average response time
of Facebook queries [4]. Additionally FairS extends the data
locality of FIFO by using a delayed execution mechanism [4].

Workload specific choice of MapReduce task schedulers
affects the performance of MapReduce applications [6] because
currently Hadoop FairS and FIFO schedulers depend on the
frequencies of job submission patterns and the system
workloads. For example, Y. Chen showed that if there is a long
sequence of small jobs submitted after a few large jobs, then
FIFO shows superior response time over FairS [6].
Furthermore, we show that while sharing resources in a
MapReduce system, FairS response time is still longer than
necessary due to dependencies between the
Map/Shuffle/Sort/Reduce phases. Thus, we propose a new
Hadoop Scheduler called HybS based on dynamic priority in
order to reduce the delay for variable length concurrent jobs,
and relax the order of jobs to maintain data locality. In
addition, HybS provides a user-defined service level value for
QoS. We show how dynamic priorities can accommodate
multiple tasks' lengths, job sizes, and jobs' waiting time in this
environment while reducing average response time even further
beyond FairS.

The contributions of this work are as follows:
• A new MapReduce task scheduling algorithm, called

HybS based on dynamic priority, is proposed to reduce
workload response time of concurrent running
MapReduce jobs.

• Hadoop Scheduling decisions using estimated Map
running times and user-defined service level value

• Automatic relaxing of the order of job execution to
preserve data locality.

The paper is organized as follows. Section I is the paper's
introduction. The new task scheduling algorithm is presented in
section II. Experimental analysis results of the algorithm are

2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing

978-0-7695-4862-3/12 $26.00 © 2012 IEEE

DOI 10.1109/UCC.2012.32

147

2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing

978-0-7695-4862-3/12 $26.00 © 2012 IEEE

DOI 10.1109/UCC.2012.32

161

presented in section III. Related work is disc
IV. The final section V presents conclusions an

II. SCHEDULING ALGORITH
A. The MapReduce Scheduling Model

The Hadoop scheduling model is a Maste
structure, for which the master node (Job Trac
of scheduling decisions, and the workers (no
responsible for executing tasks. Work
acknowledge the Job Tracker when they are
tasks and when the job is complete. They the
the Job Tracker’s running queue. The Job Tra
global single queue, and all jobs must subm
which is ordered by the master policy as in Fig

Figure 1 Worker nodes distribute the tasks withi
resource nodes become available

A MapReduce application job consists of
Map and Reduce tasks. Map tasks are indepe
Map tasks and do not communicate amongst e
execution. Reduce tasks are also independ
Reduce tasks. However, Reduce tasks depend
Map tasks. In other words, Reduce tasks have
Map tasks of a given job are finished bef
executed. Map tasks from different jobs can
input data files. The files are split into chunks
and stored in a distributed file system and ava
submission. The scheduler assigns one Map ta
gives preference to the node that already hol
data chunk (node-local tasks). If such local ass
be made, then the task is assigned to a remote
respective chunk is moved. Since Hadoop can
identify network topology, it can give second
rack-local tasks as opposed to non-local
completely separate rack from their data chu
process transfers output from all Map tasks (ca
files) to the local storage of nodes that run Red
Reducer nodes read these files from their loc
the appropriate Reduce function and write th
files in the distributed file system.

We also assume in this scheduling m
MapReduce cluster shares execution between
other words, the entire cluster is never dedicate
Sharing resources does not need to be equal
response time of all jobs is improved by dynam
the job priority based on its runtime, waiting t
The job's waiting time and the size are dyna
waits in the queue longer the waiting tim
Similarly, as the job's individual tasks are com
remaining size is decreased.

cussed in section
nd future work.

HMS

er/Worker cluster
cker) is in charge
ode trackers) are

ker nodes will
available to run

n pull tasks from
acker maintains a
mit to this queue
gure 1.

in multiple jobs as

f multiple parallel
endent from other
each other during
dent from other

d on the output of
e to wait until all
fore they can be
n share the same
s of the same size
ailable before job
ask per chunk and
ds the respective
signments cannot
e node where the

n be configured to
ary preference to
tasks run on a
unks. A daemon
alled intermediate
duce tasks. These
cal storage, apply
he final output to

model, that the
up to K jobs. In

ed to a single job.
however, as the

mically adjusting
time and job size.
amic. As the job
me is increased.
mpleted, the job's

The objective of our scheduling
expected response time of any given
user specified service level agreem
from consuming all available resour
tasks. HybS relaxes these policies
non-local data by assigning tasks fro
priority. This strategy is similar to
by the FairS. However the HybS do
time D. Jobs with higher priority a
order assignments will be autom
priority queue for the next assignme

B. Dynamic priority
HybS uses both dynamic prior

assignment to determine which task
be assigned to the available resourc
a job would affect the choice of
scheduling policies for the job prio
administrator by tuning the system
workload. One possible policy may
priorities are increased. Thus, the pr
that the priority weight dependence

�������	
���

� � ���
Where td is the time that a jo

avgWaitTime is the average job wait
� is the weighting factor. Job runnin
for a dynamic priority by favoring
longer running jobs. With MapRed
Map task runtime as the job r
correspond to a second weight depen

�����������

� � ���
Where r is the average runtim

MapReduce job, and avgRunTime is
runtime for the Map tasks for all
factor. The average runtime for Map
from the historical Hadoop log fil
profiler for average of map run
information available in the job
consider the number of remaining u
as another weight as

�����������
�� � ����
Where n is the number of remain

avgNumTasks is the average number
over the entire queue, and � is the w
combination of these weights becom
job in the system as

��������
� �
	!"#	
�$

�%& ' (

�
	!")��$

�*

+ ' ,
The importance of each user in t

for as
�����������-���

where u is the user priority and � is
We set � to 0 for the experime

factor could be used to provide vari

algorithm is to improve the
n job while still meeting the
ments. Tasks are prevented
rces and thus starving other
to preserve data-locality of

om jobs out of order of their
delay technique employed

oes not set a constant delay
and jobs skipped by out of
atically pushed up in the

ents.

rity and proportional share
ks from which jobs should
e node. Thus the priority of
the task assignment. The

ority can be assigned by an
m parameters of the job's
be, as jobs wait longer their

riority includes a factor such
on waiting time is

�.
��/���0�1�%

&

ob waits in the queue, and
ting time in the system, and
ng time also can be a factor
g shorter running jobs over
duce jobs, we consider the
runtime. This factor will
nding on job runtime as

�
��2340�1�5

+

me for the Map tasks of a
s the average of the average
jobs, and � is the weight

p tasks of each job is getting
les. We also use an online
nning time if there is no

history logs. Further, we
unscheduled tasks for a job

4
�6310�787%

9

ning tasks for the job and
r of remaining tasks per job
eighting factor. The

mes the final priority for the

�
,� �
	!":�
$	�;�%9 (eq.1)

he queue may be accounted

�� � 3<
the weighting factor.
ents in this paper, but this
iable quality of service in a

148162

multi-user or cloud environment by multiplying this factor to
the other factors in equation eq.1.

The priority equation and weight factors are adapted from
W. A. Ward at el. (2002), where the job priorities are used for
scheduling parallel jobs in HPC systems using backfilling
techniques [7]. The �, �, and � weighting factors are called
priority parameters. There are several possible policies for
these priority parameters. If �=1 and �=�=0 the scheduling
policies become FCFS (First Come First Serve). Whereas �=0,
�=-1 and �=0 produces shortest job first. Furthermore, �=0,
�=0 and �=-1 yields smallest job size first while �=1 produces
biggest job size first. Determining the best non zero �, �, and �
sets for a given system and workload is an interesting problem
because they give applications a choice of scheduling policies.

The dynamic scheduling algorithm considers the estimated
runtime, job size, and waiting time of the job in the queue. The
waiting time is increased as the job waits in the queue,
whereas the remaining size of the job is reduced when its
individual tasks are completed.

In systems with a high number of concurrent jobs, in order
to reduce the overhead of searching through the queue for data
locality, we can define a window W to limit the number of
jobs considered for data locality. Window W is tunable
parameter, and allows the balance of conflict tradeoff between
scheduling efficiency and data locality. The complexity of the
scheduling algorithm is the complexity of sorting the queue of
n jobs and it is O(nlogn).

C. Scheduling Algorithm
Dynamic job priorities are used in HybS for reducing the

latency of variable length concurrent jobs, while maintaining
data locality. The dynamic priorities can accommodate
multiple task lengths, job sizes, and job waiting times by
applying a greedy fractional knapsack algorithm for job task
processor assignment.

Fig. 2 presents the hybrid dynamic priority scheduling
algorithm. If Hadoop has C available slots, then we would
want to have C current tasks in execution at any particular
time. At each heartbeat, each job jobi has Fi remaining tasks,
priority of pi (calculated from equation 1), and a user- defined
service level value of si. The idea of service level value for a
job is to provide variable quality of service as a function of
system resources. One can set the same value for all of the
jobs in his/her queue if preferred. The user-defined service
level value must be between 0 and 1.

Of these Fi tasks, only the job’s predicted number of tasks
=
 � >
7
 would be eligible to be scheduled at any given time.
We will schedule all node and rack local tasks from all jobs
before we even consider scheduling a non-local task by the
greedy fractional knapsack algorithm as in step 4 of Fig.2. All
predicted tasks of job’s highest priority that have data locality
(node-local and rack-local) will be assigned first. If the job of
highest priority does not have enough data locality, tasks of
next highest priority job will be assigned. The relaxation of the
highest priority job’s assignment utilizes node-local data
without waiting or delaying the execution of any task by a
fixed amount of time.

Figure 2. HybS algorithm pseudo-code

III. EXPERIMENT RESULTS

A. Results of hybrid scheduler using Hadoop
The dynamic priority scheduling algorithm is implemented

in Hadoop 1.0.1 and labeled as HybS in the Hadoop system
for performance analysis. We ran Hadoop using the HybS,
FairS, and FIFO schedulers for comparison.

We also performed the evaluations on two different
configurations, a physical system and a virtual system.

Physical cluster: Hadoop 1.0.1 is installed on a cluster of 9
physical IBM blades, each with two Intel Nehalem 2.0 GHz
quad core processors on the same rack. The total number of
cores is 72. Each processor has 24 GB RAM and the local disk
capacity of the Nehalem blades is 1TB each. Each blade is
configured to run 4 concurrent map tasks, yielding a total map
capacity of 36 slots.

Virtual cluster: Hadoop 1.0.1 is installed with the open
source Eucalyptus cloud. A virtual cluster is configured with
16 virtual nodes, each node image is configured with 1 core
and 64 GB of local disk and 4GB RAM. Total map capacity is
configured for 32 slots (i.e. each virtual node runs 2
concurrent maps).

The internal physical network for both clusters above is a 1
Gigabit Ethernet connection. The Hadoop default
configuration assumes each user is configured as a queue.
Thus, the term user here has the same meaning as queue. We
use the Hadoop examples, TeraSort and WordCount, for one
class of benchmarking performance. We also use gridding of
the NASA AIRS instrument data as a real-world benchmark of
the HybS performance.

Hadoop’s speculation for Map and Reduce tasks are turned
off because we just want to compare schedules of MapReduce
task executions by each scheduler.

TeraSort: Although called TeraSort, for our experiments
the benchmark sorts data on the order of GBs per dataset,
these workloads represent both I/O and CPU intensive jobs.

WordCount: A program that counts the number of times
each word appears in a document. This application represents
the regular distribution of task length and random distribution

For each heartbeat, when there are free tasks available on
a node:

1. Update dynamic priority for all jobs based on eq 1

2. Calculate the predicted number of tasks Ai to be assigned
for each job as =
 � >
7
 and sort the job queue with
descending order of priorities

3. Assign node_local and rack_local tasks by a greedy
fractional knapsack algorithm as

loop_job: for i in jobs do
for j in Min(Ai,C)assign node/rack_local task;

C = C-1;
If (C=0) exit loop_job

4. If C>0, assign a non-local task to the first job in the queue.

149163

of key value pairs. We run this program to count the
appearances of words on Wikipedia dataset (66GB).

GridAIRS: A hyperspectral weather satellite re-projection
problem represents both an I/O and CPU intensive workload.
Each file is a 6 minute earth observing infrared measurement
projected into a latitude/longitude grid utilizing a noise
reduction algorithm [9]. One day of AIRS data is 14GB and
consists of 240 granules or files. We configure each file as a
HDFS block. This represents a scientific data intensive
workload in which the distribution of key/value pairs has
spatial data access patterns. This workload is both I/O and
CPU intensive.

Table 1: Job input information for experiment 1 (runtime
in seconds)

Job type

avg Map
task

runtime

avg
Reduce

task
runtime

avg
shuffle
Task

runtime

of
map
in

range

total
input
data
in

GB

Grid 113 49 8
60-
240 <14

Terasort 7 21 21
90-
900 <6

WordCount 400 24 62 09-32 <66

The experiments reported in this paper are run on the
physical cluster unless we specifically indicate that
experiments are run in the virtual mode. We run Hadoop only
once on the cloud system because the cloud is a dedicated
system, while the physical cluster is not. When the physical
cluster is used, we report the average of 5 runs. We also report
the overhead of running Hadoop in a cloud environment. The
individual jobs are submitted to Hadoop by means of a
MapReduce DAG workflow system [10].

Experiment 1. This Hadoop cluster has a capacity of 36
concurrent map slots run on the physical cluster. We will
compare FIFO and the FairS against the HybS for two selected
�, �, and � parameters. There are 21 jobs run concurrently on
the cluster in experiment 1. The jobs of various sizes and
estimated runtimes are submitted in random order. In figure 3,
there are some small jobs follow by some big jobs and then the
rest are small jobs in submission order. The purpose of this
workload is to see the reduction in waiting time by the
scheduler for various job types. The workload can also
represent the production workloads in HPC or in industry such
as Facebook, and Yahoo where the job arrival time can be
modeled as poison distribution. The number of required maps
(from different input dataset size) is indicated in table 1.

In Fig 3. HybS �=1 �=-1 �=-1 (red) has a lower or equal
job response times to the FairS for almost all jobs except for
the largest jobs (job 13). Since HybS �=1 �=-1 �= -1 use
shortest job first and smallest job size first policies, both HybS
and FairS give short jobs (job 4 to job 9) better chances to
finish earlier while FIFO does not. There are similar patterns
shown for jobs (18, 19, and 20). HybS �=1 �=-1 �=-1 has
overall lower response times comparing HybS �=0 �=-1 �=-1
because it considers the job’s waiting time factor. We choose
these policies because short jobs should not have to wait for
long running jobs to share the resources and also prevent jobs
from starving where long running jobs wait too long for the
resource allocation.

Figure 3 Total job's runtime HybS vs FairS vs FIFO scheduler. 21
jobs with different workloads described in table 5. HybS with �=0
�=-1 �= -1 and �=1 �=-1 �= -1(experiment 1).

Figure 4 Detailed comparison of HybS �=1 �=-1 �= -1 vs FairS for
all jobs in experiment 1.

Fig. 4 plots the response time speed up of HybS over FairS
for the parameters �=1 �=-1 �=-1. HybS performed better for
all jobs except job 9 and job 13. For small jobs (18, 19, 20, 21)
HybS performs 4x to 6.7x faster, while FairS shows 1.04x to
1.09x faster for big jobs (9, 13). HybS provides 2.4x faster
response time on average than FairS for the average workload
of 21 jobs. For the job submission order and their workload in
this experiment, the results show that the waiting time for
small jobs is significantly reduced compared with FairS.

Experiment 2. A small workload of 95 small jobs running
the Terasort benchmark with a variable number of Map tasks
and input dataset sizes. The number of Map tasks ranges from
50 to 148 with different input dataset sizes on the order of
(MB-GB). The average Map task runtime fluctuated between
4 to 6 seconds. This workload simulates the long sequence of
small jobs in a snapshot of a day-long Facebook workload
presented in fig. 11 (Y. Chen et al.) [6].

 Figure 5 shows HybS is superior compared to FairS for the
workload in experiment 2. HybS provides 2.1x faster
response time for jobs on average over FairS for this
workload.

150164

Figure 5 Total job's runtime HybS �=1 �=-1 �= -1 vs FairS. The 95
Terasort jobs with different workloads are described in experiment 2.

HybS more quickly resolves the data dependence between
the Map and Reduce stages. Because the final Reduce must
wait for the output from all maps, the last Map task is the main
latency bottleneck toward job completion. This improvement
is likely due to the � parameter of -1, which boosts the priority
of jobs with fewer remaining tasks. In other words, HybS
attempts to “finish off” nearly completed jobs rather than
leave dangling a few Map tasks. This allows the Reduce to
start more quickly with resolved data dependencies providing
faster response time on average. Since the experiments are
performed using Hadoop on the same rack and the number of
tasks are higher than the cluster Map capacity, the rate of node
local data is very high. We were not able to evaluate
completely non-local tasks because we had one rack available.
We plan to run experiment at large scale system with different
racks to evaluate the data locality technique.

Figure 6 Average overhead ratio (Virtualized / Physical runtime) for
two jobs of the Terasort benchmark using the Eucalyptus cloud
(Virtual cluster)

Experiment 3 (on Virtual cluster). We ran the Terasort

benchmark on 1.2GB of data using 2 jobs each with 60 maps
using the Eucalyptus cloud. HybS also gives approximately
1.3x faster performance than FairS. Figure 6 shows that the
overhead of these two jobs on the Virtual cluster as compared
to same hardware configuration without virtualization. We
used the same number of Map and Reduce slots in both
configurations. We see the overhead is significant for the

shuffle (7.5x slower) and reduce phases (8.2x slower). The
reason is the rate of I/O and network I/O for virtual images is
an order of magnitude slower than for of physical system. All
virtual nodes share the same physical I/O and network
bandwidth.

B. Simulation results
In addition to running our proposed scheduler on physical

and virtual systems, we developed a simulator that allows us
to investigate the optimal response time of a given workload
for specific α, β, and γ values, as well as the effects of the
service level value and system size for specific classes of jobs.

The simulator takes as input the fixed α, β, γ parameters,

system size, and a workload description file formatted as
follows:

<jobid> <number of tasks> <average time per task> <wait
time> <service level value>. The simulator output consists of
two files, a time based trace file for all of the states of the run
and waiting queues and an Attribute Relationship File Format
(ARFF) summary, which can be analyzed by the WEKA[11]
Machine learning toolkit.

The simulator uses a greedy fractional knapsack algorithm
that runs a subset of tasks for each job based on an ordered
queue of prioritized jobs.

We make several assumptions in our simulations. All job
wait times start at 1, as we assume the workload is a single
group of jobs that all arrive to be scheduled at the same time
and have no prior expectation of FIFO, as opposed to
determining arrival rates with distributions for a given
workflow.

There is no backfill and no preemption. Thus jobs will not
be stopped if they haven't completed, and no jobs will be
scheduled around a larger job if the large job has the highest
priority. Because jobs are almost always split into independent
tasks, even if the scheduler cannot satisfy a relatively high
proportional service level value, say of 0.9, we guarantee that
at least one task from the highest priority job will be
scheduled, if there is room. Thus the large, high priority job,
will not accrue wait-time, but will slowly eat up the available
resources at the rate they become available.

In addition to these assumptions, system utilization is
always at 100% because of our fractional knapsack approach.

Each Job within a workload can be classified into one of

four groups based on their size, number of tasks, and duration
time in seconds relative to the average for the workload. The
classes are; small and short (SS), small and long (SL), large
and short (LS) and large and long (LL). Figure 7 shows the
classification for the first 20 jobs from the mixed workload
outlined in experiment 1.

Response time is the value we would like to minimize for
all jobs. Response time is a function of the time it takes to run
the job including the time the job spent waiting, this can be
formulated as an

expansion factor = ����$

�?�	
�$

�%���$

�
Ideally, jobs will have an expansion factor of 1.0, which

means their response time is their runtime, with 0 wait time.

151165

We use these terms interchangeably in our pr
simulation results.

Figure 9 shows simulation results for th
data, run with �=0 �=-1 �=-1, and �=1 �=-1 �

Figure 7: Summary of experiment 1 workload in

Figure 8. Expansion factor as a function of job size
the second y axis is job size.

Figure 8 shows the relationship between
the variation of α from 0 to -1. We see that w
line), the expansion factor is slightly lower. Th
scheduler emphasizes wait time. The average
decreased by 7% when α=1 vs α=0. This is
jobs, (jobs 4,13,14,15) getting a higher prio
case. These results are consistent with our ph
Hadoop for the experiment 1.

We also use simulation to identify the rela

the service level value and response time. W
that a higher share value would get the job com
the emphasis of the α,β,γ values do not proh
having an increased priority. We studied the r
job groups as a function of α,β and γ. We r
with a 20 job workload description file from e
used values between 0 and 1 for each of the α
ran the workload to completion, this resulted
combinations. For each job we looked at the
response times with the associated parame
values are different across job classes. For
jobs the average minimum response was 1.0 w
range of α=(0.1-1.0), β =(0-0.6) and γ = (0.
two large and short jobs (LS), the optimal re
was achieved with α=0.8, β =0.3 and γ = (0.1
and long (SL) jobs we observed an average
1.7, with small and short jobs (SS) an averag

resentation of the

he experiment 1
�=-1.

nto job classes.

e and α, β, γ values

the job size and
when α=1 (the red

his is because the
response time is
due to the large

ority in the α=1
hysical results in

ationship between
We would expect
mpleted sooner if

hibit the job from
response time for
ran the simulator
experiment 1 and
α,β,γ values, and
in 103 workload

e best and worst
eters. The α,β,γ
large long (LL)

with values in the
.1−1.0). For the
sponse time of 1
−1.0). For small
response time of
ge response time

of 14.8 with α=(0.1-1.0), β = 0 an
times for SS and SL jobs are due
reasoning being that if the job onl
then waiting for several times that a
move it to the top of the queue wh
with higher priorities. Regarding w
research will involve identifying m
algorithms for determining the be
with the relative influence of t
completion time within each cla
completion time.

IV. RELATED
Scheduling literature is a w

Performance Computing [12]. B
Torque are very popular in
environments, even though they do
allocations or resource changes
schedulers use priorities and back
system utilization [13]. On Grid en
also based on resource consum
resource awareness. The task runt
data transfer time are used for pl
transfer time also critical in this m
geographically distributed sites [14,

However scheduling in the Ma
more recent development and is a
Hadoop is by far the most dominan
system for large scale distributed
Hadoop uses the simple FIFO algor
as the Hadoop community has matu
Capacity Scheduler provide share m
cluster among users, and improv
environment. Fair Scheduler allocat
each of the users running the MapR
user, there is no additional schedu
fairshare. In addition, the scheduli
dynamically for jobs as the jobs a
focuses on the fairness and data loca

FairS maintains data locality by
there is no data currently available
'D' is configurable and needs to
workloads and resource types [4]. W
for data locality. However, HybS
tasks assignment by dynamic prior
task assignment, its wait-time is in
will be increased and likely be co
beat. As the tasks of a given job ar
remaining tasks for that job is redu
the job's priority during runtime.

Zaharia proposed LATE (Long
End) scheduler to robustly improve
overhead of speculation execution
works for MapReduce in heteroge
technique is complementary to
heterogeneous environment.

Sandholm and Lee (2010) eval
(DP) share scheduling in Hadoop t
and reduce slots and controlling th
over time [17]. Their DP system al

nd γ = 0. The high response
to their short runtimes, the
ly runs for a few seconds,
amount, still isn’t enough to
here larger jobs are waiting
workload simulation, future

multi-objective optimization
st parameter combinations
the service level on job
ass and overall workload

 WORK
well-studied area of High
Batch schedulers such as

parallel and distributed
o not support dynamic job
over time. Instead, batch

kfill techniques to improve
nvironments, Scheduling is

mption and heterogeneous
time at each node and the
lan optimization. The data

model since data resides on
, 15].
apReduce environment is a

subject of active research.
nt open source MapReduce

computation and storage.
rithm by default. However,

ured, the Fair Scheduler and
mechanisms for the Hadoop
ve latency in a multi-user
tes equal resource shares to

Reduce jobs [4]. For a given
uling optimization beyond
ng decision is not adapted

are in progress, since FairS
ality [4].
y delaying the Map task if
e. This constant time delay

be adjusted for different
We use a similar technique
 automatically adjusts the
rity. If a job is skipped in
ncreased. Thus, its priority
nsidered at the next heart-
e completed, the number of
uced, which further affects

gest Approximate Time to
e performance by reducing
tasks [16]. The technique

eneous environment. This
HybS for targeting a

luated ynamic Proportional
to allow user bids for map

heir spending of those slots
llows dynamic control over

152166

the resource spending and allocation to provide quality of
service. However, they were less concerned with the
improvement of system utilization, application performance,
or data locality.

Polo et al. (2010) provides an online profiler for
MapReduce job completion time. They use this profiler to
adjust resource allocations for different jobs [18]. However at
the beginning of job execution, there is no information for
online profiling. We also use an online profiler for average of
map running time if there is no information available in the
job history logs.

Regulated dynamic priority for MapReduce scheduling is a
method using assigned priorities to offer different service
levels for users over time [19]. Their dynamic priority aims to
let users change their job priority overtime. The technique
imposes regulation to prevent users from playing games with
the priority. Our HybS uses dynamic priority from the system
performance perspective and provides service level values for
the users.

Kernel Canonical Correlation Analysis is used to predict the
performance of MapReduce workloads [8]. This model is
proposed for Hive queries and they suggest the use of this
information for MapReduce schedulers. We currently use the
average of map runtime in the job histories and in the future
work, we plan to use this model to predict the MapReduce
performance for HybS.

Phan et al. (2010) is focused on providing a scheduler for
MapReduce jobs based on their deadlines [20]. This algorithm
also falls into the dynamic scheduling category, and their
approach is tied to the constraint satisfaction problem (CSP).
However, they do not consider the dependencies between
Map/Reduce phases that would make the CSP more complex.

V. CONCLUSIONS AND FUTURE WORK
A Hybrid Dynamic Priority scheduling algorithm, HybS, is

presented for the Hadoop MapReduce environment. We show
that HybS allows for a flexible policy-driven scheduling
system that improves response time by an average of 2.2X
with a standard deviation of 1.4 for two workload experiments
using Hadoop's FairS on a 9 node cluster. HybS achieves this
improved response time by means of relaxing the strict
proportional fairness with a simple exponential policy model.
We show how the default HybS parameters quickly resolve
the data dependence between the Map and Reduce phases by
improving the wait time of the last Map task on average.
Additionally, we show simulation analysis of the optimal
service level value and policies for overall performance as
well as response time under a variety of conditions. In
conclusion, HybS is a fast and flexible scheduler that improves
response time for multi-user Hadoop environments. Future
work will include evaluating the effects of the service level
value on the total workload completion time. Additionally we
will integrate the simulator into the HybS scheduler code in
Hadoop to act as a workload profiler.

ACKNOWLEDGMENTS
This work is supported in part by Center for Hybrid

Multicore Productivity Research, UMBC/CSEE, and an NSF

CORBI grant between CHMPR/MC2 and CHREC/GWU.
Thanks also to Navid Golpayegani for his work building our
initial Eucalyptus cloud testbed on the CHMPR bluegrit
cluster.

REFERENCES
[1] NIST big data workshop. http://www.nist.gov/itl/ssd/is/big-data.cfm

June 2012.
[2] http://hadoop.apache.org/
[3] J. Dean and S. Ghemawat, “MapReduce Simplified data processing on

large clusters,” In OSDI, pages 137-150, 2004.
[4] M. Zaharia et al. “Delay scheduling: a simple technique for achieving

locality and fairness in cluster scheduling,” In EuroSys 2010.
[5] Yunhong Gu and Robert Grossman, “Lessons Learned From a Year's

Worth of Benchmarks of Large Data Clouds,” 2nd Workshop on Many-
Task Computing on Grids and Supercomputers Portland, Oregon 11,
2009.

[6] Y. Chen et al. “The Case for Evaluating MapReduce Performance Using
Workload Suites,” In MASCOTS 2011.

[7] W. Ward, Jr., Carrie L. Mahood, and John E. West, “Scheduling jobs on
parallel systems using a relaxed backfill strategy,” Job Scheduling
Strategies for Parallel Processing, pages 88-102. Springer Verlag, 2002.
Lect. Notes Comput. Sci. vol. 2537

[8] Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson, “Statistics-
driven workload modeling for the cloud,” In Proc. Of 5th Intl. Workshop
on Self Managing Database Systems, 2010.

[9] D. Chapman, M. Halem,P. Nguyen, J. Avery, "Noise reduction in
gridded AIRS Brightness temprature grids using the MODIS Obscov
algorithm," IEEE IGARSS, Munich Germany, Jul, 2012

[10] P. Nguyen, M. Halem, “A MapReduce Workflow System for
Architecting Scientific Data Intensive Applications,” SECLOUD 2011,
May 22, 2011, Waikiki, Honolulu, HI, USAM.

[11] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, Ian H. Witten, “The WEKA Data Mining Software: An
Update,” SIGKDD Explorations, Volume 11, Issue 1 2009.

[12] Joseph Y-T. Leung, “Handbook of scheduling algorithms, models and
performance analysis,” Chapman & Hall/CRC ISBN L - 58488-397-9.
2004.

[13] http://www.adaptivecomputing.com/products/open-source/torque/
[14] Arun Ramakrishnan, Gurmeet Singh, Henan Zhao, Ewa Deelman, Rizos

Sakellariou, K. Vahi, K. Blackburn, D. Meyers, and M. Samidi,
“Scheduling Data -Intensive Workflows onto Storage-Constrained
Distributed Resources,” in Seventh IEEE International Symposium on
Cluster Computing and the Grid - CCGrid 2007.

[15] Jim Blythe, Sonal Jain, Ewa Deelman, Karan Vahi, Yolanda Gil,
Anirban Mandal, Ken Kennedy, “Task Scheduling Strategies for
Workflow-based Applications in Grids,” IEEE International Symposium
on Cluster Computing and the Grid (CCGrid 2005)

[16] Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.,
“Improving MapReduce performance in heterogeneous environments,”
In: OSDI 2008: 8th USENIX Symposium on Operating Systems Design
and Implementation 2008.

[17] T. Sandholm and K. Lai, “Dynamic Proportional Share Scheduling in
Hadoop,” LNCS: Proc. of the 15th Workshop on Job Scheduling
Strategies for Parallel Processing, 2010.

[18] J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguad´e, M. Steinder, and
I. Whalley, “Performance-driven task coscheduling for MapReduce
environments,” in 12th IEEE/IFIPNetwork Operations and Management
Symposium, 2010

[19] T. Sandholm and K. Lai, "Map-Reduce optimization using regulated
dynamic prioritization," presented at the eleventh international joint
conference on Measurement and modeling of computer systems, Seattle,
WA, USA, 2009.

[20] L. Phan, Z. Zhang, B. Loo, and I. Lee, “Real-time MapReduce
Scheduling,” Tech. Report No. MS-CIS-10-32, UPenn, 2010.

153167

