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ABSTRACT

We need better ways to query large linked data collections
such as DBpedia. Using the SPARQL query language re-
quires not only mastering its syntax but also understanding
the RDF data model, large ontology vocabularies and URIs
for denoting entities. Natural language interface systems ad-
dress the problem, but are still subjects of research. We de-
scribe a compromise in which non-experts specify a graphical
query “skeleton” and annotate it with freely chosen words,
phrases and entity names. The combination reduces ambi-
guity and allows the generation of an interpretation that can
be translated into SPARQL. Key research contributions are
the robust methods that combine statistical association and
semantic similarity to map user terms to the most appropri-
ate classes and properties in the underlying ontology.

Categories and Subject Descriptors

H.3 [Information Systems]: Information Storage and Re-
trieval; H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces

General Terms

Algorithms, Languages
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1. INTRODUCTION
DBpedia [2], an RDF representation of information extracted
from Wikipedia, is the key Linked Open Data (LOD) in-
tegrating component. It provides an open domain ontol-
ogy in which each ontology class, property and instance is
referenced by a unique URI that is trivially mapped to a
Wikipedia article, faciliating linking data across domains
and systems such as Freebase. and Facebook’s Open Graph.

However, it is still difficult for typical Web users and even
experts to query DBpedia with the standard RDF query
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language SPARQL. Since Wikipedia infoboxes are designed
by different communities and edited by individuals, infobox
names and attributes are largely heterogeneous. This het-
erogeneity is also a problem for the DBpedia ontology where
terms with similar meaning are used in different contexts.
For example, the property locatedInArea is used for moun-
tains and location for companies. A second challenge comes
from the large number of DBpedia vocabulary terms: cur-
rently 320 classes, 1,650 properties and several million in-
stances. It is infeasible for users to be familiar with so many
artificial terms. Finally, using SPARQL also requires mas-
tering its complex syntax and semantics.

Allowing users to express queires in their own natural lan-
guages could help. Providing Natural Language Interfaces
(NLIs) to structured data has been studied for more than
four decades. Work in the 1970s and 1980s focused on de-
veloping NLIs to Databases (NLIDB) [1] and more recently
on access to RDF [7]. The advantage of NLIs is that they
do not require users to learn artificial syntaxes and vocabu-
laries. However, there are two major obstacles for NLI sys-
tems to be widely adopted. First, current NLP techniques
are still brittle when dealing with the ambiguity and com-
plexity of Natural Language (NL) in general [1, 3]. Second,
it requires extensive domain knowledge for interpreting NL
questions. Domain knowledge typically consists of a lexi-
con, which maps user vocabulary to ontology vocabulary or
logical expressions in NLIDBs, a language model with statis-
tical information for parsing and sense disambiguation, and
a world model specifying the relationships between the vo-
cabulary terms such as subclass and the constraints on the
types of properties arguments. Developing these can be very
expensive, both for broad or open domains like DBpedia or
a narrow domain like tax law.

We introduce a Schema-Free Query (SFQ) interface in
which users specify a graphical“skeleton”for a query and an-
notate it with freely chosen words, phrases and entity names.
An example is shown in Figure 1. The SFQ interface is a
compromise between SPARQL and NLI. By asking users to
specify semantic relations between entities in a query and
the types of the entities, we avoid the difficult problem of
relation extraction [3] from NL sentences. While the full ex-
pressive power of human language is not supported, people
can use familiar vocabulary terms in composing a query.

Figure 1: A Schema-Free Query for “Where was the
author of the Adventures of Tom Sawyer born?”.



We use fully automatic approaches to obtain necessary
domain knowledge for interpreting SFQs. Instead of a man-
ually maintained lexicon, we employ a computational seman-
tic similarity measure for the purpose of locating candidate
ontology terms for user input terms. Semantic similarity
measures enable our system to have a broader linguistic cov-
erage than that offered by synonym expansion by recogniz-
ing non-synonymous terms that have very similar meaning.
For example, the properties author of and college are good
candidates for the user terms “wrote” and “graduated from”,
respectively. Semantic similarity measures can be learned
from a domain-dependent large corpus.

We know birds can fly but trees cannot and that a database
table is not kitchen table. Such knowledge is essential for
human language understanding. We refer to this as Concept-
level Association Knowledge (CAK). Domain and range def-
initions for properties in ontologies, argument constraint
definitions of predicates in logic systems and schemata in
databases all belong to this knowledge. However, manu-
ally defining this knowledge for broad or open domains is
a tedious task at best. In this paper, we introduce an ap-
proach to automatically learn this knowledge from semanti-
cally marked-up instance data.

With the learned CAK and semantic similarity measures,
we present a straightforward but novel approach that dis-
ambiguates a SFQ and maps it to a corresponding SPARQL
query to produce an answer. Our approach has a unique
feature that it resolves mappings only using information in
concept space, i.e., at the schema level. This makes it much
more scalable than those that directly search into both in-
stance and concept space for possible matches since concept
space is much smaller than instance space.

2. AUTOMATIC CAK LEARNING
We learn Concept-level Association Knowledge statistically
from instance data (the “ABOX” of RDF triples) and thus
avoid expensive human labor in building the knowledge man-
ually. However, instead of producing “tight” assertions such
as those used in RDF property domain and range defini-
tions, we generate the degree of associations. Classical logics
that make either true or false assertions are less suited in an
open-domain scenario, especially those created from hetero-
geneous data sources. For example, what is the range of the
property author? Both Writer and Artist are not appropri-
ate because the object of author could be something other
than Writer or Artist, e.g., Scientist. Specifying Person for
the range is too general to be useful. Thus we use no a fixed
range for the author property but a weighted set of classes
capturing the likelihood of each being the type of an object.

Computing statistical association requires information on
the number of occurrences of single terms and the num-
ber of co-occurrences of multiple terms in the universe. For
DBpedia, the universe is represented by the dataset Ontol-
ogy Infobox Properties, which contains RDF triples describ-
ing all relations between instances, and the dataset Ontol-
ogy Infobox Types, which provides all type definitions for
the instances. Figure 2 shows how we count term occur-
rences and co-occurrences by observing one relation in the
universe. On the figure’s left, is an RDF triple describing
a relation and the type definitions for its subject and ob-
ject and on the right are the resulting occurrences and co-
occurrences of terms. We consider direction in counting co-
occurrences between classes and properties. The directed co-

Figure 2: This example shows how we count term
(co-)occurrences in an RDF knowledge base.

1) Writer→: @pseudonym 6.0, notableWork 6.0, influencedBy 5.7,

skos:subject 5.7, influenced 5.5, movement 5.1, ethnicity 4.3, @birthName

4.3, @deathDate 4.2, relative 4.1, occupation 4.0, @birthDate 3.8, na-

tionality 3.4, education 3.4, child 3.3, award 3.2, deathPlace 3.2, @ac-

tiveYearsStartYear 3.2, partner 3.2, @activeYearsEndYear 3.1, genre 3.1,

spouse 3.0, birthPlace 3.0, citizenship 2.9, foaf:homepage 2.8

2) →Writer: author 6.8, influencedBy 6.4, influenced 6.1, basedOn 5.3,

illustrator 5.1, writer 5.1, creator 5.1, coverArtist 4.4, executiveProducer

4.4, relative 4.2, translator 4.1, lyrics 4.0, previousEditor 3.9, editor 3.6,

spouse 3.5, child 3.4, nobelLaureates 3.3, designer 3.2, partner 3.2, associ-

ateEditor 3.2, director 3.0, narrator 3.0, chiefEditor 2.9, storyEditor 2.8,

person 2.7

3) Book→: @isbn 5.8, @numberOfPages 5.8, @oclc 5.6, mediaType 5.6,

@lcc 5.6, literaryGenre 5.6, @dcc 5.5, author 5.4, coverArtist 5.2, @publi-

cationDate 5.1, nonFictionSubject 5.1, illustrator 5.1, translator 4.9, pub-

lisher 4.9, series 4.5, language 4.0, subsequentWork 3.3, previousWork 3.2,

country 1.7, designer -1.9, @meaning -1.9, @formerCallsign -2.1, @review

-2.4, @callsignMeaning -2.5, programmeFormat -2.6

4) →Book: notableWork 6.8, firstAppearance 6.4, basedOn 6.1, lastAp-

pearance 5.9, previousWork 5.8, subsequentWork 5.8, series 4.8, knownFor

3.8, notableIdea 3.1, portrayer 2.6, currentProduction 2.3, related 1.9, au-

thor 1.7, nonFictionSubject 1.7, writer 1.4, translator 1.1, influencedBy

1.1, significantProject 1.1, award 0.9, coverArtist 0.8, relative 0.5, move-

ment 0.5, associatedMusicalArtist 0.5, associatedBand 0.4, illustrator 0.3

5) author: →Writer 6.8, Musical→ 6.1, Play→ 5.4, Book→ 5.4, Website→

5.4, WrittenWork→ 5.1, →Journalist 5.0, →Philosopher 4.9, →Website

4.8, →Artist 4.5, →Comedian 4.1, →Person 3.9, →ComicsCreator

3.8, →Scientist 3.6, TelevisionShow→ 3.4, Work→ 3.3, →Senator 3.2,

→FictionalCharacter 2.8, →PeriodicalLiterature 2.7, →Governor 2.4,

→Wrestler 2.3, →MemberOfParliament 2.3, →OfficeHolder 2.3, →Cleric

2.2, →MilitaryPerson 2.2

Figure 3: The top-25 most associated proper-
ties/classes from DBpedia’s CAK or five examples.

occurrences are indicated by the arrow character → between
two terms, for example Book→author. The occurrences of
directed classes (e.g. Book→) are counted separately from
the occurrences of undirected classes (e.g. Book).

After both occurrence and co-occurrence counts are avail-
able, we employ a statistical measure, Pointwise Mutual In-
formation (PMI) [4, 6], to compute two types of associations:
(i) directed association between classes and properties and
(ii) undirected association between two classes.

Figure 3 shows examples of top-25 lists of most associ-
ated properties/classes for five terms along with their PMI
values. Examples 1 to 4 present, in order, outgoing and in-
coming properties for two classes Writer and Book. Note
that datatype properties are indicated by starting an initial
’@’ to distinguish them from object properties. Example 5
shows the classes that could be in domain or range of the
property author. Terms ending and starting with → are
potential domain and range classes, respectively.

In the first four examples, top properties are the most in-
formative, such as @pseudonym and notableWork for Writer
and @isbn and @numberOfPages for Book. More lowly ranked
properties tend to be less related to the classes. Example 2



shows that both author and writer can be incoming proper-
ties of Writer though author is more related. On the other
hand, the third example shows that only author, not writer,
can describe Book. In the DBpedia ontology, author and
writer are used for different contexts and author is used
for books. The reason the class Writer has both author and
writer as incoming properties is that writers can write some-
thing other than books, such as films and songs. Example
5 illustrates the DBpedia ontology’s heterogeneity via the
property author, which is loaded with multiple senses (e.g.,
book author, Web site creator). Noisy data in DBpedia can
result in some abnormal associations, as shown in example
4, where author can be an incoming property of Book. For-
tunately, the degree of these associations is typically low.

3. MAPPING APPROACH
In this section, we give the main steps in mapping terms in
a SFQ to DBpedia ontology terms. The approach focuses
on vocabulary or schema mapping, which is done without
involving entities.

3.1 Candidate Generation
For each SFQ concept or relation, we generate a list of the
k most semantically similar candidate ontology classes or
properties. (See [5] for our semantic similarity computa-
tion). A minimum similarity threshold, currently experi-
mentally set at 0.1, is used to guarantee that all the terms
have at least some similarity. For a relation that has very
general meaning, such as “in”, “has” and“from”, we generate
the k

2
ontology properties most semantically similar to each

of its connected concepts because the semantics of a default
relation is often conveyed in one of its connected concepts.
We also generate k

4
ontology properties that are most seman-

tically similar to the words locate and own on the behalf of
“in” and “has”, respectively. Finally we assemble these into
a list of 3

2
k ontology properties. The selection of a value for

k is a compromise between the translation performance and
the allowed computation time and depends on the degree of
heterogeneity in the underlying ontologies and the fitness of
the semantic similarity measure.

In the example in Figure 4, candidate lists are generated
for the five user terms in the SFQ, which asks Which author
wrote the book Tom Sawyer and where was he born?. Can-
didate terms are ranked by their similarity scores, which are
displayed to the right of the terms.

3.2 Disambiguation
Each combination of ontology terms, with one term coming
from each candidate list, is a potential query interpretation,
but some are reasonable and others not. Disambiguation
here means choosing the most reasonable interpretations
from a set of candidates.

An intuitive measure of reasonableness for an interpreta-
tion is the degree to which its ontology terms associate in the
way that their corresponding user terms connect in the SFQ.
For example, since “Place” is connected by “born in” in Fig-
ure 4, their corresponding ontology terms can be expected to
have good association. Therefore, the combination of Place
and birthPlace makes much more sense than that of Place
and @cylinderBore because CAK tells us that a strong asso-
ciation holds between Place and birthPlace but not @cylin-
derBore. As you can see, we use the degree of association
from CAK to measure reasonableness. As another example,

Figure 4: Lists of candidate ontology terms.

CAK data shows that both the combinations of Writer +
writer and Writer + author are reasonable interpretations
of the SFQ connection “Author → wrote”. However, since
only author not writer has a strong association with the class
Book, the combination of Writer, author and Book produces
a much better interpretation than that of Writer, writer
and Book for the joint SFQ connection “Author → wrote →
Book”.

We select two types of connections in a SFQ for comput-
ing the overall association of an interpretation. They are
the connections between concepts and their relations (e.g.,
“Author” and “wrote”) and the connections between direct
connected concepts (e.g., “Author”and“Book”). We exclude
indirect connections (e.g., between “Book” and “born in” or
between“Book”and“Place”) because they do not necessarily
entail good associations.

If candidate ontology terms contained all the substitutable
terms, we could rely solely on their associations for disam-
biguation. However, in practice many other related terms
are also included and therefore the similarity of candidate
ontology terms to the user terms is an important feature to
identify correct interpretations. We experimentally found
that by simply weighting their associations by their similar-
ities we obtained a better disambiguation algorithm.

To formalize our approach, suppose the query graph Gq

has m edges and n nodes. Each concept or relation xi in
Gq has a corresponding set of candidate ontology terms Yi.
Our interpretation space H is the Cartesian product over
the sets Y1, ..., Ym+n.

H = Y1 × ... × Ym+n = {(y1, ..., ym+n) : yi ∈ Yi}

Each interpretation h ∈ H also describes a function h(x)
that maps xi to yi for i ∈ {1, ..., m + n}.

We define a fitness function Φ(h, G) that produces the
fitness score of an interpretation h on a query graph or sub-
graph G. We seek the interpretation h∗ ∈ H that maximizes
the fitness on the query graph Gq, which is computed as the
summation of the fitness on each link Li in Gq, i from 1 to
m. More specifically,

h
∗ = argmax

h∈H

Φ(h, Gq) (1)

.
= argmax

h∈H

m
X

i=1

Φ(h, Li) (2)

where link Li is a tuple with three elements: subject concept
si, relation ri and object concept oi. Formula 2 achieves



joint disambiguation because the joint concepts of different
links should be mapped to the same ontology class.

Φ(h, Li) is the linear combination of three pairwise asso-
ciations: the directed association from subject class h(si) to
property h(ri), the directed association from property h(ri)
to object class h(oi), and the undirected association between
subject class h(si) and object class h(oi), all weighted by se-
mantic similarities between ontology terms and their corre-
sponding user terms. We need resolve the direction of h(ri)
before we compute Φ(h, Li) because h(ri) and ri may have
opposite directions. For approach details, please refer to [5].

If each candidate list contains k semantically similar terms,
the computation complexity of a straightforward disambigua-
tion algorithm is O(kn+m) because the total number of in-
terpretations is kn+m. We can significantly reduce this com-
plexity by exploiting locality. The optimal mapping choice
of a property can be determined locally when the two classes
it links are fixed. Thus we need only iterate on all combina-
tions of classes, which have a total number kn. Moreover,
we can iterate in a way such that the next combination dif-
fers from current combination only on one class with other
classes remaining unchanged. This enables us to re-compute
only for the links in which the changed class participates and
reuse previous computations on other links. The average
number of links in which a class participates is 2m

n
. On the

other hand, finding the property that maximizes the fitness
of a link requires going through all k choices in the candidate
list, resulting in O(k) running time. Put them together, the
total computation complexity can be reduced to O(kn m

n
k).

Further optimization can be achieved by decomposing the
graph into subgraphs.

4. SPARQL GENERATION
After users terms

PREFIX dbo:<http://dbpedia.org/ontology/>
SELECT DISTINCT ?x, ?y WHERE {

?0 a dbo:Book .
?0 rdfs:label ?label0 .
?label0 bif:contains ’"Tom Sawyer"’ .
?x a dbo:Writer .
?y a dbo:Place .
{?0 dbo:author ?x} .
{?x dbo:birthPlace ?y} .}

Figure 5: SPARQL query

are disambiguated
and mapped to ap-
propriate ontology
terms, translating
a SFQ to SPARQL
is straightforward.
Figure 5 shows the
SPARQL query pro-
duced from the SFQ
in Figure 4. Classes are used to type the instances, such as
?x a dbo:Writer, and properties used to connect instances as
in ?0 dbo:author ?x. The bif:contains property is a built-in
text search function which find literals containing specified
text. The named entities in the SFQ can be disambiguated
by the constraints in the SPARQL query. In this example,
Tom Sawyer has two constraints: it is in the label of some
book and is written by some writer.

5. EVALUATION
To evaluate ontology-based Question Answering systems,
the 2011 Workshop on Question Answering over Linked Data
[8] provided 50 training and 50 test questions over DBpedia
3.6 along with their ground truth answers. Of the 50 test
questions, we selected 33 that could be answered using only
the DBpedia ontology, i.e., without the additional assertions
in the YAGO ontology.

Three computer science graduate students who were unfa-
miliar with DBpedia and its ontology independently trans-

lated the 33 test questions into SFQs. We first familiarized
the subjects with the SFQ concept and its rules and then
trained them with ten questions from the training dataset.
Finally, we asked each subject to draw SFQs for the 33 test
questions. None of the subjects had difficulty in construct-
ing the SFQs and all finished within half an hour.

Three versions of 33 SFQs were given to our system which
automatically translated them into SPARQL queries. The
queries were then run on public SPARQL endpoints to pro-
duce answers. The answer of each query was evaluated for
standard precision and recall. The average precision and
recall of 33 queries on three versions were 0.754 and 0.832,
respectively. The average time to translate a SFQ was only
two seconds. Please refer to [5] for evaluation details.

6. CONCLUSION
The schema-free structured query approach allows people
to query the DBpedia dataset without mastering SPARQL
or acquiring detailed knowledge of the classes, properties
and individuals in the underlying ontologies and the URIs
that denote them. Our system uses statistical data about
lexical semantics and RDF datasets to generate plausible
SPARQL queries that are semantically close to schema-free
queries. An evaluation using an independently developed
set of natural language queries showed that non-expert users
were able to write effective SFQ queries for them with good
accuracy.
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