
GoRelations: An Intuitive

Query System for DBpedia⋆

Lushan Han, Tim Finin, and Anupam Joshi

University of Maryland, Baltimore County, USA
{lushan1,finin,joshi}@umbc.edu

Abstract. Although a formal query language, SPARQL, is available for
accessing DBpedia, it remains challenging for users to query the knowl-
edge unless they are familiar with the syntax of SPARQL and the un-
derlying ontology. We have developed both an intuitive semantic graph

notation or interface allowing one to pose a query by annotating a graph
with natural language terms denoting entities and relations and a sys-
tem that automatically translates the query into SPARQL to produce an
answer. Our key contributions are the robust techniques, combining sta-
tistical association and semantic similarity, that map user terms to the
most appropriate classes and properties used in the DBpedia Ontology.

Key words: Intuitive Query, Ontology Mapping, Statistical Association

1 Introduction

The growth of Linked Open Data (LOD) has made large amounts of Seman-
tic Web data available. DBpedia [1] is an important example, since it is a key
LOD integrating component serving as a microcosm for larger, evolving LOD
collections. Most of DBpedia data is extracted from Wikipedia infoboxes, which
are designed by different communities and edited by individuals, making infobox
names and attributes largely heterogeneous. DBpedia addressed this problem by
manually mapping infoboxes describing the same type of thing to the same DB-
pedia ontology class and synonymous attributes to the same ontology property,
resulting in 272 classes and 1,300 properties as of DBpedia 3.6. However, hetero-
geneity remains a problem, especially for properties due to their large number
and the difficulty of dealing with context-dependent mappings.

Although SPARQL is available for querying DBpedia, it remains difficult for
typical Web users to query its knowledge base (KB). They must simultaneously
master SPARQL, explore the large number of ontology terms, and deal with
term heterogeneity. To simplify access, systems like True Knowledge and Pow-
erAqua [2] provide natural language interfaces (NLIs) receiving users’ queries
and automatically finding answers in their underlying KBs. While they are good
at answering simple questions (Who were Richard Nixon’s children? and Who

⋆ This research was supported in part by a gift from Microsoft, NSF award IIS-0326460
and the Human Language Technology Center of Excellence.

Preprint: Lushan Han, Tim Finin and Anupam Joshi, GoRelations: An Intuitive Query System for DBpedia, 
Proceedings of the Joint International Semantic Technology Conference, Springer LNCS, December 2011.



2 Lushan Han et al.

did Julie Nixon marry?) they often fail at slightly more complex ones (Who did

President Nixon’s children marry?) due to difficulties in understanding complex
natural language (NL) questions.

GoRelations (Graph of Relations) is an open domain, intuitive query system
that is easy to learn and use. It has two components: a semantic graph interface

(SGI) allowing users to ask queries with complex relations and an effective and
efficient automatic translator mapping the semantic graph into a correspond-
ing SPARQL query to produce an answer. While our approach is tailored to
DBpedia, the idea is generic and can be adapted to other LOD collections.

2 Semantic Graph Interface

Our interface uses an intuitive concept we call a semantic graph (SG) as a repre-
sentation allowing a user to express a question or description. A semantic graph
consists of nodes denoting entities and links representing binary relations be-
tween them. Each entity is described by two unrestricted terms: its name or
value and its concept in the query context. Figure 1 shows an example of a se-
mantic graph that comprises three entities: a place, person and book, which are
linked by two relations, born in and author. Users flag entities they want to see
in the results with a ’?’ and those they do not with a ’*’.

Terms for concepts can be nouns (book) or simple noun phrases (soccer club)
and relations can be references as verbs (wrote), prepositions (in), nouns (author)
or simple phrases (born in). Users are free to name concepts and relations in their
own ways as in composing a NL question with a current constraint that concept
names should be at most two words and relation names three. One reason for
the constraint is that most class and property names in the underlying DBpedia
Ontology are no longer than two words and three words, respectively. A more
fundamental reason is to encourage users to decompose their queries into simple
entity and relation terms rather than use complex linguistic descriptions.

The value of entities can be something other than a name, for example, a
number or date. If the value of an entity is a number, “Number” should be used
as the entity’s concept. Numerical attributes such as population, area, height,
and revenue can be thought of as either relations or concepts, but since Number

is already used as a concept, we require them to be relations. We enforce this
rule because in DBpedia’s ontology numerical attributes only have data types,
which we uniformly treat as Number instances.

We circumvent the difficult task of understanding sentential semantics by
asking users to directly supply the compositional relations between the lexical
terms while users are not required to know a formal language and ontology.

Fig. 1. A SG for “Where was the author of the Adventures of Tom Sawyer born?”.



GoRelations: An Intuitive Query System for DBPedia 3

3 Translation

We start by laying out a novel, three-step approach that maps terms in the se-
mantic graph to ontology terms. The approach focuses on vocabulary or schema
mapping, which is done without involving entities. We then discuss how to gen-
erate a SPARQL query from the mappings. Finally, we describe the ontology
statistics and semantic similarity components used in the mapping approach.

3.1 Mapping Approach

Step one: finding semantically similar ontology terms. For each concept
or relation in the semantic graph, we generate a list of the k candidate ontol-
ogy classes or properties that are most semantically similar. (See Section 3.4 for
semantic similarity computation). A minimum similarity threshold, currently
experimentally set at 0.1, is used to guarantee that all the terms have at least
some similarity. If the relation is a very general term such as in, has and from,
which we call “default relation”, we generate k

2
most semantically similar ontol-

ogy properties to each of its connected concepts. We do so because using one
concept’s name as relation name is the typical way to represent has-relation or
in-relation in Wikipedia and because the semantics of a default relation is often
conveyed in one of its connected concepts. The value k (currently 20) depends
on the degree of heterogeneity in the underlying ontologies, how well semantic
similarity measure is implemented, and the allowed computation time.

In Figure 2, candidate

Fig. 2. Lists of candidate ontology terms.

lists are generated for the
five user terms in the se-
mantic graph query. Classes
starting with # are virtual
classes1, which we assign only
half similarity to make them
subordinate to native classes.
Datatype properties are in-
dicated by a starting @ char-
acter to distinguish them
from object properties. Can-
didate terms are ranked by their similarity scores, which are displayed to the
right of the terms. The example shows that our semantic similarity measure is
well implemented but still has a large space to improve.

Step two: disambiguation. Each combination of ontology terms, with one
term coming from one candidate list, is a potential interpretation of the user
query, but some are reasonable and others not. Disambiguation in this context
means, among all the interpretations, chooses the most reasonable ones. An
intuitive measure of reasonableness is the degree to which the ontology terms,
in one interpretation, associate in the way that their corresponding user terms
connect in the semantic graph. DBpedia is a knowledge representation of the

1 They are inferred from the object properties (e.g. “publisher”). We create them to
facilitate the mapping.



4 Lushan Han et al.

world’s facts made by humans and a semantic graph is a description of some facts
about the world in the user’s mental model. Since both of them are mirrors of
the world, they share an important feature – associations. Consider the example
in Figure 2. In the query graph the relation wrote connects the two entities
whose concepts under the query context are Author and Book. This implies that
the relation wrote should have good associations with the concepts Author and
Book. What should be reflected in the DBpedia Ontology is that the property
corresponding to the relation wrote should also have good statistical associations
with the classes corresponding to the concepts Author and Book.

Using association to resolve ambiguity is a common practice, as often seen in
word sense disambiguation. However, many of previous researches only made use
of coarse-grained association. That is, their contexts used for disambiguation are
only a bag of words without considering the compositional structure of the knowl-
edge in the sentences. With the coming of DBpedia, a large machine-readable
KB, we are now able to compute fine-grained associations. We use Pointwise Mu-
tual Information (PMI) [3] to compute statistical associations between classes
and between classes and properties (See Section 3.3 for details).

If candidate ontology terms ideally contained all the near-synonyms, we could
rely solely on their fine-grained associations for disambiguation. However, in
practice many other related terms are also included and therefore the similarity
of candidate ontology terms to the user terms is an important feature to identify
correct interpretations. We experimentally found that by simply weighting their
associations by their similarities we obtain a better disambiguation algorithm.

Below, we present a simple but novel disambiguation algorithm that exploits
fine-grained associations. Suppose the query graph G has m links and n nodes.
We need find a combination of m ontology properties p1 to pm, and n ontology
classes, c1 to cn, from the space H of all interpretations that maximize the good-
ness or reasonableness of the mapping on the query graph G. This is computed
as the summation of goodness of the mapping on each link Li, i from 1 to m.
More specifically,

argmax
p1..pm c1..cn∈H

goodness(G) = argmax
p1..pm c1..cn∈H

m∑

i=1

goodness(Li) (1)

Note that the global optimal mapping on the whole graph is not necessarily
composed of all the local optimal mappings on the individual links. Since a node
can be involved in multiple links, the mapping decision on the node is affected
by all the links it participates in. For example, the “Author” node in Figure 2 is
involved in both the left link born in and the right link wrote. The local optimal
mapping decision for “Author” from one link may be given up if it produces low
goodness score on the other link. The same principle can be recursively spread
to all other nodes and links in the entire graph. Therefore, our approach maps
the semantic graph jointly.

Each link Li is a tuple with three elements: subject concept Si, relation Ri

and object concept Oi. Let their corresponding ontology terms of current inter-
pretation be c(Si), p(Ri) and c(Oi). Before we compute the goodness of link Li,



GoRelations: An Intuitive Query System for DBPedia 5

we need first resolve the direction of the property p(Ri) because p(Ri) is seman-
tically similar to Ri but they may have opposite directions. For example, the
relation wrote in Figure 2 is semantically similar to the property author which,
however, connects from Book to Author. We invent the statistical association

measure
−−→

PMI (see Section 3.3) to help determine the direction of p(Ri).
−−→

PMI
measures statistical association between a class and a property. Unlike the tra-

ditional PMI,
−−→

PMI also considers direction.
−−→

PMI(Class c, Property p) measures
the strength of association between c as subject and p as predicate whereas
−−→

PMI(Property p, Class c) measures the strength of association between p as
predicate and c as object. Whether the direction of p(Ri) should be inverse to
the one of Ri is decided in Formula 2.

If [
−−→

PMI(c(Oi),p(Ri)) +
−−→

PMI(p(Ri), c(Si))]

− [
−−→

PMI(c(Si),p(Ri)) +
−−→

PMI(p(Ri), c(Oi))] > α

Then Si
′ = Oi, Oi

′ = Si

Else Si
′ = Si, Oi

′ = Oi (2)

The association term
−−→

PMI(c(Oi),p(Ri)) +
−−→

PMI(p(Ri), c(Si)) measures the de-

gree of reasonableness of the inverse direction and the term
−−→

PMI(c(Si),p(Ri)) +
−−→

PMI(p(Ri), c(Oi)) measures the degree of reasonableness of the original direc-
tion. If the inverse direction is much more reasonable than the original direction,
we inverse the direction by switching the classes that p(Ri) connects; otherwise
we respect the original direction. Currently, the reverse threshold α is 2.0. The
Formula 2 worked very well empirically. Further verifying the formula and the
hypothesis behind it using statistical techniques is one of our future work.

Finally, the goodness on link Li is the sum of three pairwise associations:
the directed association from subject class c(Si

′) to property p(Ri), the directed
association from property p(Ri) to object class c(Oi

′), and the undirected as-
sociation between subject class c(Si

′) and object class c(Oi
′), all weighted by

semantic similarities between ontology terms and their corresponding user terms.

goodness(Li) = max(
−−→

PMI(c(Si
′),p(Ri)) · sim(Si

′, c(Si
′)) · sim(Ri,p(Ri))

+
−−→

PMI(p(Ri), c(Oi
′)) · sim(Oi

′, c(Oi
′)) · sim(Ri,p(Ri)), β)

+PMI(c(Si
′), c(Oi

′)) · sim(Si
′, c(Si

′)) · sim(Oi
′, c(Oi

′)) (3)

We use a parameter β (currently 0.05) to shield the effect of the first two pairwise
terms on the occasions when the property p(Ri) fits too poorly with its two
classes to be a valid choice (their value can be negative infinite). For these cases,
the goodness is determined only by the last pairwise term.

Of the best interpretation yielded by the disambiguation algorithm for the
example in Figure 2, the concepts Place, Author and Book are mapped to the
ontology classes Place, Writer and Book respectively. The relation born in and
wrote are mapped to the ontology property birthPlace and author with direction
unchanged and reversed respectively. Although the property writer has larger



6 Lushan Han et al.

semantic similarity to the user term wrote than the property author, it is not
selected because it is mainly used for describing films or songs but rarely for
books. Although the property birthPlace has relatively low similarity with born

in, it is selected because all the candidate terms with higher similarity do not
associate well with the classes similar to the concept Place and Author.

The computation complexity of a straightforward disambiguation algorithm
is O(kn+m) simply because the total number of interpretations is kn+m. However,
we can significantly reduce this complexity to O(kn m

n
k) by exploiting locality

because the optimal mapping choice of a property can be determined locally
when the two classes it links are fixed.

Step three: refinement. The best interpretation typically gives us the most
appropriate classes and properties that the user terms can map to. However,
for properties there can be some issues requiring additional work. First, the
concepts are mapped to correct classes but occasionally the relation connecting
them cannot find any mapping. Second, although the disambiguated property
is appropriate, sometimes it is not the major property used in the context.
Because the concepts are already disambiguated, we can narrow down to the
disambiguated context where we can have more information about all properties
that actually connect the two known classes and their conditional probabilities.
In the case of a missing property, we map the relation to its most semantically
similar property in the context. In the case of a minor property, we add other
properties in the context, which are less similar to the user relation than the
disambiguated property but have much higher conditional probabilities.

3.2 SPARQL Generation

After users terms are disambiguated

Fig. 3. SPARQL Query Generated

and mapped to appropriate ontology
terms, the translation of a semantic
graph query to SPARQL is straight-
forward. Figure 3 shows the SPARQL
query produced for the semantic graph
in Figure 2. Classes are used to type
the instances, such as ?x a dbo:Writer.
Properties are used to connect instances
just as relations do for entities as in ?0

dbo:author ?x. If a user relation is mapped to multiple properties, the SPARQL
UNION operator is used to combine them. bif:contains is a virtuoso built-in text
search function which find literals containing specified text.

3.3 Ontology Statistics Component

GoRelations uses three kinds of ontology statistics: directed association between
classes and properties, undirected association between classes themselves, and
conditional probability of properties given two connected classes. Computing



GoRelations: An Intuitive Query System for DBPedia 7

these statistics requires information about the number of occurrences of a term
and the number of co-occurrences of two or three terms in the universe con-
sisting of all relations. In DBpedia, the universe is represented by the dataset
Ontology Infobox Properties, which contains RDF triples describing all relations
between instances, and the dataset Ontology Infobox Types, which provides all
type definitions for the instances.

The example in Figure 4

Fig. 4. An example for counting (co-)occurrences

explains how we count term
occurrences and co-occurr-
ences by observing one rela-
tion in the universe. On the
left of the figure, we give
an RDF triple describing a
relation and the type defi-
nitions for the subject and
object in the triple. On the
right, we list the resulting
occurrences and co-occurr-
ences of terms. The directed co-occurrences are indicated by the arrow character
→ between two terms, for example Book→author. The occurrences of directed
classes (e.g. Book→) are counted separately from the occurrences of undirected
classes (e.g. Book).

PMI is used to measure the strength of statistical association between two
terms. Equation 4 gives the PMI formula where ft1

and ft2
are the marginal

occurrence counts of the two terms t1 and t2 and f(t1, t2) is the co-occurrence
count of t1 and t2 in the universe. N is a constant for the size of the universe.
−−→

PMI is computed the same way as PMI except that its class term is directed.

PMI(t1, t2) ≈ loge(
f(t1, t2) · N

ft1
· ft2

) (4)

3.4 Semantic Similarity Component

We assume that the semantic of a phrase is compositional on its component
words and we apply an algorithm to compute semantic similarity between two
phrases using word similarity. As in Mihalcea’s approach [4], we pair up words
from two phrases in a way such that it maximizes the sum of word similarities of
the resulting word-pairs. We differ, however, in that we do not allow a constituent
word to participate in multiple pairs. The maximized sum of word similarities
is further normalized by the number of words in the longer phrase to get the
output similarity for two phrases.

Our word similarity measure is based on distributional similarity and latent
semantic analysis, which is further enhanced using knowledge from WordNet.
The distributional similarity approach that we use is described in [5] while we
give higher similarity to word pairs which are in the same WordNet synset or
one of which is the immediate hypernym of the other.



8 Lushan Han et al.

4 Evaluation

To evaluate ontology-based QA systems, the 2011 Workshop on Question An-
swering over Linked Data (QALD) provided 50 training and 50 test questions on
DBpedia dataset along with their true answers. We use the 50 QALD training
questions to tune our system, setting the thresholds and coefficients. Of the 50
test questions, 33 questions can be answered using only the DBpedia Ontology,
while the rest need knowledge from the YAGO ontology. We used the 33 ques-
tions to evaluate our system. We modified seven of them that required Boolean
answers or operations not supported by our semantic graph notation for the time
being, such as grouping and counts. Our changes included changing the answer
type or removing the unsupported operations but preserving the relations and
thus the question schemata. Our collection of 33 test questions with their true
answers are available at http://ebiq.org/r/326.

Three human subjects unfamiliar with the DBpedia ontology independently
translated the test questions into semantic graph queries. Three versions of 33
semantic graphs were given to our system which automatically translated them
into SPARQL queries. The average time to translate a semantic graph to its
corresponding SPARQL queries was 0.38 second. The queries were then run on
public DBpedia SPARQL endpoints to produce answers. The precision, recall
and f-measure of our system, averaging on three versions, are 0.687, 0.722 and
0.704, respectively.

5 Conclusion

GoRelations is an intuitive query system that allows people to query DBpedia
without mastering SPARQL or acquiring detailed knowledge of the classes and
properties used in the underlying ontologies. It’s interface uses a simple semantic

graph notation for queries that is automatically translated into a corresponding
SPARQL query. We developed a novel three-step mapping approach that dis-
ambiguates user terms in a semantic graph query and maps them to DBpedia
ontology terms. Our system was evaluated on 33 QALD test questions and the
result shows the approach works decently well.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A Nucleus for a Web of Open Data. In: Proc. 6th Int. Semantic Web Conf. (2007)

2. Lopez, V., Fernndez, M., Motta, E., Stieler, N.: Poweraqua: Supporting users in
querying and exploring the semantic web content. Semantic Web Journal (2011)

3. Church, K., Hanks, P.: Word association norms, mutual information and lexicogra-
phy. In: Proc. 27th Annual Conf. of the ACL. (1989) 76–83

4. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based mea-
sures of text semantic similarity. In: Proc. 21st AAAI Conf. (2006) 775–780

5. Rapp, R.: Word sense discovery based on sense descriptor dissimilarity. In: Proc.
9th Machine Translation Summit. (2003) 315–322




