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Abstract— Ontology alignment describes a process of mapping
ontological concepts, classes and attributes between different
ontologies providing a way to achieve interoperability. While
there has been considerable research in this area, most ap-
proaches that rely upon the alignment of attributes use label-
based string comparisons of property names. The ability to
process opaque or non-interpreted attribute names is a necessary
component of attribute alignment. We describe a new attribute
alignment approach to support ontology alignment that uses the
density estimation as a means for determining alignment among
objects. Using the combination of similarity hashing, Kernel
Density Estimation (KDE) and Cross entropy, we are able to
show promising F-Measure scores using the standard Ontology
Alignment Evaluation Initiative (OAEI) 2011 benchmark.

I. INTRODUCTION

Opaque Attribute Alignment (OAA) identifies similarity
among attributes using a method that is not reliant upon
attribute names or semantics. Rather it uses the instance data
itself to evaluate similarity between attributes. We present
OAA as a basis for performing ontology alignment.

Schema matching [1] describes a process of matching
schema elements such as database attributes. Ontology match-
ing [2] involves matching the elements of an ontology which
can include instances, classes, attributes and relations. There
is commonality between the two matching processes, and
different approaches can exploit different aspects to achieve
alignment. We focus on ontology matching in particular and
how OAA can support ontology matching functions. Semantics
alone do not always provide enough information to make
an alignment assertion, therefore string-based evaluations of
attributes may be used to augment semantic-based analysis.
We argue that this is when accounting for opaque attributes
will benefit the alignment success.

Work by [3] describes a need for handling opaque attributes
which have obfuscated, or nonobservable names. For example,
opaqueness becomes an issue when evaluating attributes that
have the same name but are not the same, or attributes
that have different names but are the same. OAA treats the
problem of ontology alignment without depending upon, or
being confused by the attribute name.

TABLE I
OPAQUENESS EXAMPLES

Opaqueness Ontology 1 Ontology 2
Same name dif-
ferent meaning

ont1:name Alberto Trombetta ont2:name Africa

Different name
same meaning

ont1:location California ont2:State CA

Using Kernel Density Estimation (KDE) enables OAA to
be an unsupervised technique, which is necessary for domain
independence, since it avoids the problems of choosing appro-
priate training data and domain transfer. The KDE approach
uses the distribution of the data to estimate a density. We take
advantage of this technique to address the problem of opaque
attributes.

There are however, known limitations to this approach
which we will address in this paper. We will address the
limitations of performance, demonstrating results on non-
numeric data and noisy data. We will show how using sam-
pling and implementing optimizations to KDE, we overcome
performance issues. We will show a competitive approach to
overcoming the issue of working with non-numeric data for
statistical analysis by using a similarity hash.

II. RELATED WORK

There is a considerable amount of work in the general area
of ontology alignment and attribute alignment. For an excellent
overview we recommend the book by Schvaiko and Euzenat
[2]. Here we focus our review on work most closely related to
the present project; namely, attribute alignment based on the
opaque or non-interpreted view.

Previous research related to attribute alignment can be
classified along several dimensions ([4]). Approaches that take
into account the values in an attribute are called interpreted;
approaches that disregard the actual values and study the
attribute as a whole (describing it through statistical or in-
formation theoretic measures) are called non-interpreted or
opaque. The work presented here fits in this latter category.



The particular technique that we use, KDE, is popular in
the field of image analysis and shape analysis [5], [6], [7].
However, as far as the authors are aware, it has rarely been
used in the present context, namely, attribute alignment. One of
the few works to do so is [8]; like the present work, they also
use KDE over the instances of a class to determine semantic
similarity. However, we make distinctions between categorical
and continuous data, using two kernels. Work by [8] handles
non-numerical data by transforming it into numerical data.
We adopt this approach as well. However, while we use a
similarity hash algorithm to deal with strings, they use a
traditional edit distance. The edit distance has a number of
shortcomings: it may give the same distance for two very
different strings with reference to a given one -that is, given
strings s, s1 and s2 it may be the case that d(s, s1) = d(s, s2)
even though s1 and s2 are quite different.

Another work that uses a kernel-based method is [9], which
addresses the question of whether two sets of observations
are generated by the same distribution. Most work on opaque
attribute alignment uses information theoretic measures. The
seminal work of Kang and Naughton ([3]) uses this approach,
considering the values in a domain (attribute or column) of
a relational database as a probability distribution, and uses
their entropy as a measure of similarity. Also, the mutual
information and conditional information between a pair of
attributes in the same relation is computed. Most papers,
including [10], [11], [12], [13], use information theory ideas
expanded on the basic intuition of a seminal paper by Resnick
[14] that analyzes the similarity of two objects in a taxonomy
based not just on the hierarchical distance between them, but
also on the probabilities of said objects occurring at all. One
of the few techniques that does not use information theory
directly is that of [15]. The approach relies on an ensemble
of basic non-parametric classifiers, since it is meant to be
universally applicable. However, the classifiers used are very
weak, and may not work in differently typed domains (strings
vs. numbers).

There is considerable work in the area of ontology align-
ment. As representation of modern systems, we overview the
three top systems in the 2010 OAEI benchmark: ASMOV,
RiMOM, and AgrMaker.

ASMOV ([16]) analyzes four features: lexical elements
(basically, labels), relational structure (ancestor-descendant hi-
erarchy), internal structure (property restrictions for concepts;
types, domains, and ranges for properties; data values for
individuals), and extension (instances of classes and property
values). Measures obtained by comparing these four features
are combined into a single value using a normalized weighted
average. A distinguished feature of ASMOV is that semantic
verification is used in these matches. Verification attempts to
find if a mapping is semantically inconsistent with the infor-
mation on either ontology. Inconsistent mappings are removed
but remembered so the algorithm will not consider them
again. Because general inconsistency checking is too complex
(undecidable in the general case), ASMOV uses a tailored
algorithm that considers five specific types of inconsistencies.

RiMON [17] also uses several strategies: the name based
strategy calculates the edit distance between labels of two
entities; the metadata based strategy considers the information
of each entity as a document. Using standard Information
Retrieval ideas (tf-idf weight for labels, cosine comparison), a
similarity is computed. Finally, the instance based strategy
also constructs a document for each entity, but it includes
instances of the entity, as well as their properties. Potential
alignments above a threshold are created by each individual
strategy, and then combined. A similarity-flooding-like algo-
rithm [18] is used to add more alignments.

Finally, AgreementMaker [19] hierarchically layers three
different matchers: concept-based, structural and instance-
based. Here, classes are compared based on their extensions,
and properties are compared based on their range and domain.
The results of individual matchers are put together with a
Linear Weighted Combination.

It is notable that all systems use a combination of the same
basic methods. They differ in how they combine the methods,
but in essence the same three types of basic matchers are
used: lexical, structural, and extensional. Note that when the
instances are complex objects, a recursive procedure can be
used. However, when the instances are simply names, only
the lexical approach is available. Likewise, comparison of
properties is different when the domain/range is a class or
a datatype: for the latter case, only the lexical approach is
applicable. Since a lexical analysis is in many cases carried
out first to get some initial candidates for matching, it can
be argued that modern systems still rely on a very crude
initialization method. Hence, the Opaque Attribute Alignment
approach proposed here can be seen as a sophisticated matcher
that can be used as a module in any of the systems mentioned,
to provide a more reliable indicator of possible initial matches.

III. APPROACH

Given two data sources d1 and d2 each of which has a set
of attributes A1 and A2, we build a common probability space
for each pair of attributes from A1 and A2. We determine the
closeness of each pair of attributes using KDE to estimate a
density over the instances of each attribute.

KDE is conventionally used with numeric data. The OAA
algorithm converts non-numeric distributions into numeric
distributions that can then be evaluated by KDE. We use a
similarity hash algorithm that generates similar hashes for
similar strings and produces a numeric representation of a
non-numeric data value. As part of a normalization process,
all strings are lower-cased, various punctuations are removed,
and conversions are made when possible.

Cross entropy is measured between the two distributions of
comparable attributes. The resulting cross entropy is used as
a similarity metric to determine whether a pair of attributes
within the data set are alignable.

A. Using Multiple Regressors

OAA makes use of multiple regressors that support con-
tinuous and discrete data; the use of multiple regressors is



described in [20]. We define discrete data as data that has a
finite set of possibilities, for example, days of the week, or
gender. We define continuous data as data that can have an
infinite amount of possibilities, for example temperature or
last name. We use a heuristic that samples portions of the
data to find repeatability among data items for a particular
attribute. Based on the outcome of this heuristic we then use
the appropriate kernel, discrete or continuous of nature.

Well known in the statistics community, KDE is non-
parametric and estimates the probability density function of
a random variable based on sampling [21]. KDE estimates a
probability of density from a sample of data [22].

The estimated density is:

f̂ (x) =
1

nh

n∑
i=1

K(
x− xi
h

) (1)

where x...xi is the set of independent observations and h
is the smoothing parameter (bandwidth). The bandwidth can
have a significant effect on the estimation, and appropriate
parameter estimation on h is key to the applicability of KDE.
For a discussion of KDE’s properties, see [23], [21].

K is the kernel function which satisfies the following
condition: ∫ ∞

−∞
K (x) dx = 1

1) Continuous Regression: Kernel choice and parameter
estimation can be addressed by many performance metrics.
In this work, Mean Integrated Squared Error (MISE) and
Asymptotic Mean Integrated Square Error (AMISE) are used
to assess estimation error from the true density [23], [21].
In choosing a kernel and its associated smoothing parameters,
we aim to minimize AMISE. We use the Epanechnikov kernel
because it has been shown to be more efficient than a number
of other kernels [23]. It is defined as:

K (x) =
3

4

(
1− x2

)
1 (|x| ≤ 1) (2)

Selection of the bandwidth is an important research topic;
[24], [25], [26], [27], [28] show different current approaches
to optimizing the selection process. When OAA employs a
continuous kernel, Silverman’s Rule of Thumb [21], [23] is
used to calculate the bandwidth.

h = b×min
{
σ̂,
IQR

1.34

}
× n− 1

5 (3)

where n is the size of the sample, σ̂ is the standard deviation
of the sample, IQR is the interquartile range and b is a
constant which is chosen based on the kernel used.

If the sample is normally distributed, this method is said
to give optimal bandwidth. If the sample is not normally
distributed, this method is said to give a bandwidth not far
from optimal if the distribution is close to normal [29].

2) Discrete Regression: OAA makes use of Aitchison &
Aitken’s [30], [20] kernel in order to estimate densities for
discrete data. Though kernel selection has less effect on the
overall outcome as compared to bandwidth selection [23], our
experiments have shown that using multiple kernels, namely
Aitchison & Aitken’s kernel for discrete data and Epanech-
nikov kernel for continuous data, yielded better performance
than using a single kernel. Recall with discrete data we have
a finite set of values; we can think in terms of categorizing
this data.

For further theoretical discussion related to Aitchison &
Aitken, refer to [30], [20].

B. Non-Numeric Data and Hashing

Using KDE presents a problem when working with non-
numeric data. To overcome this issue, we use a hash represen-
tation of strings to represent data in a numeric way. Many hash
functions are meant to reduce, or eliminate collision altogether,
resulting in strings that may be lexically similar, but hashed
to very different values. Our goal was to create hashes of
similar strings that are also similar. We found work related to
similarity hashing[31] that was promising based on previously
conducted experiments [31], [32]. We implemented a 128-bit
version of similarity hashing based on [31].

C. Cross entropy

The probability distributions generated by our kernel density
methods are compared by generating a common probability
space for each pair of distributions. Based on their cross
entropy, a decision is made as to whether we consider the
attributes alignable. We compared Cross entropy with other
ways to measures distances and experiments showed that this
method is competitive with other methods such as Kullback-
Leibler divergence.

H (p, q) = −
∑
x

p (x) log q (x) (4)

where p and q are discrete probability distributions.

D. Sampling

KDE is known to have a complexity of O(MN)[33], where
there are N points to evaluate by M samples. Though we have
begun investigating optimizations suggested by [33], [28] and
others, we have tested and show that with sampling we are
able to keep the sampling size within a certain bound with
minimal reduction in F-Measure scores.

IV. EXPERIMENTS

Experiments included testing OAA using Ontology Align-
ment Evaluation Initiative (OAEI) Benchmark to measure pre-
cision, recall and F-Measure. We also conducted experiments
which compare using a single continuous kernel with using
both a categorical and continuous kernel. Our third experiment
shows how using a similarity hash compared to other string-
handling methods we tested. Finally, our sampling experiments
show how we use sampling to reduce overall computing time
without significantly impacting performance.



We use the Ontology Alignment Evaluation Initiative
(OAEI) which provides a benchmark for testing ontology
alignment [34]. We parsed each of the benchmark files,
then retrieved the associated RDF files. We then parse the
expected alignments and use this as ground truth along with
additional custom ground truth based on common URIs. Since
we currently are testing attribute alignment only, we exclude
the class alignments from our evaluation. The OAEI includes
a list of tests used to compare a reference ontology with
variations. The tests are classified as concept tests and sys-
tematic tests that include missing instances, missing attributes,
synonyms, misspelled data values, obfuscated attribute names
and flattened hierarchies, see [34] for a full description.
The reference ontology contains 33 named classes, 24 object
properties, 40 data properties, 56 named individuals and 20
anonymous individuals [34]. This benchmark is used for the
OAEI matching evaluation, final participant results of the 2011
evaluation are available [35].

The first version of our system analyzes the effectiveness
of OAA. We modified our expected output to only include
attributes and not class alignments. The next version of our
system will test both attribute and class alignments. The results
of figure 1 show our overall F-Measure score of 55% which
is promising for our future work. When running each test we

Fig. 1. Result Measures

plotted recall in relation to precision. We also show the average
precision, F-Measure and recall across test sets 1xx and 2xx.

We used the same benchmark to test the difference be-
tween using a single continuous kernel (Epanechnikov) and
using mixed kernels (Epanechnikov and Aitchison & Aitken’s
Kernel ), see figure 2. Mixed kernels offered overall better
performance with F-Measure scores of 34% for a single kernel
and 55% for mixed kernels.

A. Non-numeric Conversions

We developed an experiment to test different non-numeric to
numeric conversions. Using the OAEI Benchmark, we tested
using a simple cryptographic function, an implementation of
Soundex [36], a simhash implementation based on the work
of [31], [32] using 128 bits and a modified version of simhash
that reduces collision. We show in figure 3 that simhash is
competitive to the other implementations.

Fig. 2. Comparing Mixed Kernels to Single Continuous Kernel

Fig. 3. Comparing Non-Numeric Conversions

B. Sampling

We developed experiments to test the effects of sampling
when using kernel density estimation. In figure 4 and figure
5 we show that when we used a Monte Carlo simulation and
made small, incremental changes to the sample size, there was
a threshold reached where increasing the sample size would
not improve the F-Measure further. This experiment allowed
us to learn the smallest sample size that could be used without
degrading accuracy and F-Measure scores. We tested using a
public data set from the U.S. Census and further tested with
two proprietary data sets. The data included structured and
semi-structured input (RDF). Datasets 1 and 2 were semi-
structured and dataset 3 was structured. Dataset 2 was wider
than dataset 1 and 3 with over 30 attributes per data source
and was a ’noisier’ dataset with less consistency across tuples,
more typographical errors and missing data. Dataset 3 had
between 10 and 30 tuples per data source, where datasets 1
and 2 contained a larger number of tuples in the range of 4,000
tuples.

We compared different sampling sizes in relation to accu-
racy and time. Our initial experiments explored establishing



Fig. 4. Effects of Sampling on Performance and Computing Time

a sample size threshold. Sampling effects on performance
showed that at a 50% sampling for data set 3, the loss in
F-Measure scores was about 16%. Sampling resulted in a
reduction in computing time of about 54% (50% sampling).

Our final experiment, shown in figure 5, used a larger data
set (about 7,000 triples for each data source). We measured
performance while incrementally increasing our sample size.
Our goal was to test when our F-Measure scores would start to
plateau. Our test took approximately 25 seconds to complete
with an F-Measure score of 35%.

C. Evaluation

Through our experimentation we have proven the usefulness
of KDE to perform opaque attribute alignment. Using the
OAEI benchmark our F-Measure scores for test sets 1xx and
2xx was 55%. For initial results, we believe this is promising.
We have shown that by using sampling, we can reduce
overall computing time without a significant reduction in F-
Measure scores. By using additional improvements described
in research by [33], [28], we could further improve computing
time. Our experiments have shown that similarity hashing can
be used for converting non-numeric to numeric data. The
authors note that there are known information losses with this
type of conversion and are exploring clustering methods to
further improve this approach.

Fig. 5. Effects of Sampling on Performance and Computing Time

V. CONCLUSION AND FUTURE WORK

We described a promising new approach for opaque attribute
alignment, which is foundational to our future ontology align-
ment work. We have shown a way to convert non-numeric data
into a numeric format with promising results. We have also
shown how we use sampling to reduce computing time. Our
future work will include aligning classes and instances using
OAA. We are also experimenting with a clustering method for
representing data values. Our research will continue to explore
ways to improve bandwidth selection, computing time, and
will further improve existing methodology.
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