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ABSTRACT 

Title of Thesis:  Clinical-Genomic Analysis for Disease Prediction 

Darshana Dalvi, Master of Science, 2011 

Thesis directed by:  Dr. Yelena Yesha, Professor, 

            Department of Computer Science and 

            Electrical Engineering. 

 

Recent advances in genomic research have generated vast amounts of 

information that can help identify individuals who differ in their susceptibility to a 

particular disease or response to a specific treatment. This information may offer 

solutions for the treatment of complex chronic diseases that are influenced by a wide 

array of factors. This vast amount of information brings critical challenges in 

applying advanced technology to synthesize clinical-genomic patient data. 

Synthesizing this information is necessary to derive the knowledge that would 

empower physicians to provide personalized care with the best possible therapeutic 

interventions. 

We used statistical methods and data mining approaches to understand 

clinical-genomic risk factors that differentiate Type II Diabetes cases from healthy 

controls. We investigated whether inclusion of genomic risk factors in conjunction 

with clinical information improves classification accuracy. We also demonstrate how 

a biased and an unbiased method for selection of risk associated single nucleotide 

polymorphisms (SNPs) effect clustering along with clinical information. We 

determined the optimal method based on its clustering performance.  

Keywords: clinical-genomic risk, SNPs, classification, clustering. 
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Chapter 1  

INTRODUCTION 

 

In this chapter we present an introduction to personalized medicine. We will 

discuss the need of clinical-genomic analysis in disease diagnosis and provide a 

formal thesis definition. 

1.1 Personalized Medicine 

 The Human Genome Project
1
; a 13 year multi-national project has laid the 

groundwork for our understanding of the roles of genes in normal human 

development. In addition, importance of realizing the genetic base of a disease has 

now become evident [1]. The researchers and the medical practitioners are now 

focusing on studying the genome sequences that are responsible for pathogenesis of 

common diseases and trying to bridge a gap between clinical and genetic factors [2].   

Increasing availability of genetic tests, over 1500 till date and the emergence 

of privately held organizations such as 23andMe
2
 allows individuals to understand 

their own genomic profile and monitor the changes over the time.  

The field that is emerging due to these advances in medicine today is the use 

of Personalized Medicine in patient care. It involves the systematic use of a patient’s 

                                                 
1
 http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml 

2
 https://www.23andme.com/ 
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medical and related information to optimize therapeutic care and diagnosis [3]. More 

specifically, information about a patient’s demographic, clinical, genomic and 

metabolic characteristics is used to tailor medical care to meet specific needs and 

provide customized healthcare.  

1.2 Motivation: The need of clinical-genomic analysis 

A precise prediction of the disease outcome is of paramount importance for 

accurate diagnosis and treatment. For oligogenic disorders that are determined by 

only a small set of genes, the assessment of risk factors is fairly straightforward. 

However, for complex chronic diseases where there are wide array of factors that are 

responsible for the disease development, the risk assessment is a complicated process. 

As explained by Khoury & Yang [4], the diversity in the genes due to origins or 

demographics conditions as well as gene-environment interactions further adds to the 

complexity of understanding controversial etiology of complex diseases. Genomic 

studies generate vast amount of data in the form of gene expressions and Single 

Nucleotide Polymorphisms (SNPs)
3
. A human genome is estimated to contain 10 

million SNPs out of which ~ 30,000 SNPs have significant genetic variations [5]. 

Primarily, these SNPs and their patterns in a human genome have been used to 

differentiate individuals based on skin color, hair, response to drugs, etc. However a 

novel approach of making use of SNPs as prognostic information to determine 

disease susceptibility in individuals is gaining attention in genetic research. 

Some of the challenging tasks in this research are described below. 

                                                 
3
 http://www.ncbi.nlm.nih.gov/About/primer/snps.html 
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 The selection of appropriate clinical or non-genetic risk factors along with 

genetic risk factors that would help to discriminate between individuals based 

on susceptibility to the disease is essential. 

 Various data mining techniques are used for assessing human genome as a 

whole such as the sequence comparison, gene expression analysis, gene 

finding, etc. [6]. However there is a need of new approaches to identify and 

extract risk associated SNPs out of the gene expressions and analyze their 

relation with the clinical and environmental risk factors in predisposition to 

the disease. 

We believe that the use of advanced data analysis and data mining techniques will 

help us to derive clinically significant knowledge for studying development of 

complex chronic diseases using case-control population datasets. The derived 

knowledge and population based analysis of the disease would significantly benefit 

the physicians for accurate diagnosis. 

1.3 Thesis Contribution 

Our focus is on Type II Diabetes
4
, a chronic disease that comprises 90% of the 

diabetic people in the world. As stated by Thompson [7], Type II Diabetes is also 

highly prevalent in United States. We intend to contribute to the efforts of diabetes 

prevention and eradication by deriving useful knowledge from a case-control based 

study dataset of white American population. We apply several data analysis 

techniques along with knowledge driven data mining methods to find hidden patterns 

and trends in the dataset and select the methods that give accurate results.  

                                                 
4
 http://www.diabetes.org/diabetes-basics/type-2/ 
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Initially we perform literature study to identify the Type II Diabetes risk 

associated SNPs found in the population under consideration as well those which are 

independent of race or ethnicity. From these, we focus on those SNPs with 

considerably higher frequency of occurrence in cases than in controls. We define 

genomic risk of an individual in terms of associations with the selected SNPs. 

We then assess correlations amongst clinical as well as genomic risk factors 

and compare them based on their severity towards the disease. We show how the use 

of genomic risk factors along with other clinical data would help in predictive 

analysis of the disease as well as while grouping individuals based on their similar 

characteristics. We evaluate the accuracy of the results using several measures to 

show the merit of our approaches.  
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Chapter 2  

BACKGROUND AND RELATED WORK 

 

In this chapter, we will explain few background concepts and genomic details 

that would help to understand the techniques and algorithms mentioned in the 

subsequent chapters. We will also talk about some existing  researches. 

 

2.1 Single Nucleotide Polymorphisms (SNPs) 

 Single Nucleotide Polymorphism is a single change that can occur in a 

person’s DNA [8]. A change occurs when a single nucleotide for example A is 

replaced by one of the other nucleotides C, G or T.  

For example, consider a DNA segment AACGTTA when altered gives new 

segment as AATGTTA, where C in the first segment is replaced by T in the second 

segment.  

2.1.1 Allele 

Each member of a pair of chromosomes in a human or any multicellular 

organism is termed as an Allele
5
. These chromosomes are referred as heterozygous if 

two different alleles are present for the same trait or homozygous if identical alleles 

are present for the same trait.  

 

                                                 
5
 http://www.ncbi.nlm.nih.gov/About/primer/snps.html 
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Consider following example, 

 

 

               Figure 2.1. Example of different genotypes possible for a SNP in a TCF7L2 gene 

 

2.1.2 SNPs and diseases diagnosis 

SNPs are not responsible for causing the disease but can help to determine 

likelihood of someone will have the disorder. Recent studies [9] suggest that SNPs 

can lead to effective prognosis of the disease as well as can affect individual’s 

susceptibility to a disease. Genome Wide Association Studies (GWAS)
6
, a study 

conducted at large to find genes who have susceptibility towards a disorder has 

suggested common variants in certain genes such as TCF7L2, FTO, TSPAN8, 

CDAKL1, MCR4, etc. that are susceptible to Type II Diabetes. Out of these TCF7L2 

gene is reproducibly in existence in various ethnic groups [10].  McCarthy [11] 

focuses on importance of combinations of SNPs instead of a single SNP in the 

development of Type II Diabetes. This drives our approach of selecting a set of risk 

associated SNPs to determine genomic risk of an individual. 

 

                                                 
6
 http://gwas.nih.gov/ 
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2.1.3 Type II Diabetes associated genes 

Some of the Type II Diabetes genes
7
 are explained below. 

i. TCF7L2 (Transcription factor 7-like 2): Variants of this gene have been 

associated with Type II Diabetes in multiple ethnic groups and are known 

as strongest genetic risk factors. TCF7L2 polymorphisms are associated 

with impaired insulin secretion and glucose tolerance. 

ii. FTO: Variants of this gene have appeared to be associated with fat mass and 

obesity in large populations which predispose to diabetes through an effect 

on body mass index. 

iii. MC4R (Melanocortin receptor 4): Mutations of this gene have been 

associated with inherited human obesity mostly in an autosomal dominant
8
 

inheritance pattern. 

iv. CDKAL1 (CDK5 regulatory subunit associated protein 1-like 1): Variants 

of these have been reported to cause Type II Diabetes due to impaired 

pancreatic β-cell function and decreased insulin sensitivity 

v. TSPAN8 (Tetraspanin-8): This gene plays a key role in cell development, 

activation, growth and motility. Variants of this gene have been found 

associated with Type II Diabetes, metabolic syndrome and other disorders 

such as color cancer, schizophrenia. 

 

 

                                                 
7
 http://www.ncbi.nlm.nih.gov/gene 

8
 http://www.nlm.nih.gov/medlineplus/ency/article/002049.htm 
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2.2 Overview of Data Mining 

 Data mining is a field of computer science that aims to apply different 

techniques to transform abundant data into intelligence [12]. 

There are two main approaches in data mining. 

2.2.1 Supervised Learning (Classification) 

Classification is a supervised learning approach which generates an inferred 

function using set of input data that should predict a correct output value for any valid 

input provided. 

Bayesian Network [13] is one of the methods of classification which uses 

directed acyclic model to represent conditional dependencies between a set of random 

variables. Edges represent conditional dependencies and nodes which are not 

connected represent conditional independence.  

C 4.5 [14] is another method of classification which uses decision tree model 

that makes use of information gain to effectively split samples into subsets enriched 

with one of the classes. In this case, leaves represent the classification and the 

branches represent a set of features which leads to the classification.  

2.2.2 Unsupervised Learning (Clustering) 

Clustering is an unsupervised learning approach where there are no explicit 

outputs associated with the inputs. The main aim is to find hidden patterns in the 

input data that represent statistical information about the input. 

Partition clustering is a method of clustering based on the concept of division 

of a set X into non-overlapping and non-empty parts. K-means clustering [15] 
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belongs to this category in which each point is assigned to a cluster whose centroid is 

nearest to the point. 

Spectral clustering is another method based on spectral graph theory [16] 

which uses graph-based representation for clustering large datasets. Here the basic 

aim is to analyze spectrum of matrix representing a graph. Graphs are useful when we 

want to extract pairwise information of data points such as similarity or distances. In 

a graph, data points represent nodes and each edge between two nodes has a weight 

associated representing similarity or distance between them. Spectral clustering 

performs graph partitioning based on eigenvalues and eigenvectors of the similarity 

matrix which is nothing but the spectrum or global structure of the adjacency matrix.  

 

                                 Figure 2.2. Overview of Spectral Graph Clustering  
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Spectral clustering algorithm used [17]: 

I. Preprocessing: 

1.  Calculate distance matrix of the input dataset (M). 

2.  Calculate similarity matrix also called as weight matrix     

      (W). Distances and similarities are inverse of each other.  

    Therefore, W = exponential (-M). 

3. Calculate degree matrix (D). Degree of a vertex is the sum 

of edge points at that vertex. 

    D(i,j)   =   degree(Vi)  if i=j 

         =   0           otherwise 

4.  Calculate unnormalized laplacian matrix (L) = D – W.  

II. Decomposition: 

5.  Compute the eigenvectors of L as V1…..Vn. Graph laplacian 

and its eigenvalues, eigenvectors are used to describe 

properties of a graph. 

III. Clustering multiple eigenvectors: 

6.  Let U be a matrix containing first k eigenvectors of V as 

U1…Uk. First k eigenvectors here refer to the eigenvectors 

corresponding to the k smallest eigenvalues. 

7.  For i=1…n, let Ri represent i
th row of U. 

8.  Applying k-means:  

Cluster the rows Ri to Rn of Uk into k clusters, C1…Ck. 

 

This method is useful to obtain well-separated clusters where associations 

between similar points are amplified and those between dissimilar points are 

diminished. 
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2.3 Clinical-Genomic Data Description 

The raw data is broadly of two types, clinical and genomic. Our aim in such 

cases is to do away with individual level information and preserve the disease level 

context of the data. As an example for Type II Diabetes, we plan to store the clinical 

data with different attributes available across given patients and combine it with risk 

associated SNPs from the genotyped data. 

2.3.1 Clinical Data 

This data is generated when a patient visits any clinic which could be a routine 

visit to a doctor to Emergency Room visit. All the vital parameters such as age, sex, 

height, color, temperature and weight etc. are recorded besides the other condition 

specific parameters. These are certain clinical lab tests conducted on the patient.  

2.3.2 Genomic Data 

Genomic data is mainly available at the nucleotide level. Based on the study 

type conducted the goal is to ascertain in the lab the nucleotide (AGCT) makeup of 

the patient at the given location which is known to have been disease causing.   

2.3.3 dbGAP 

dbGAP
9
 is a database of genotypes and phenotypes that provides 

unprecedented access to the large-scale genetic and phenotypic datasets required for 

GWAS 
10

designs, including public access to study documents linked to summary data 

on specific phenotype variables, statistical overviews of the genetic information, 

position of published associations on the genome, and authorized access to 

individual-level data [18]. dbGaP accommodates studies of varying design. It 

                                                 
9
 http://www.ncbi.nlm.nih.gov/gap 

 
10

 http://gwas.nih.gov/ 
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contains four basic types of data: (i) study documentation, including study 

descriptions, protocol documents, and data collection instruments, such as 

questionnaires (ii) phenotypic data for each variable assessed, both at an individual 

level and in summary form (iii) genetic data, including study subjects' individual 

genotypes, pedigree information, fine mapping results and resequencing traces and 

(iv) statistical results, including association and linkage analyses, when available. 

Data access structure: 

 Study protocols and summary phenotype and genotype data are available to 

the public without restrictions on use. 

 Access to individual-level data requires preauthorization from sponsoring NIH 

(National Institutes of Health) programs. Use of the data is limited to the 

approved research activities, and must follow the basic principles set forth in 

the NIH policy for GWAS. 

 

2.3.4 GENEVA Diabetes Case-Control Study 

The dataset consists of genotype files as well as dietary and lifestyle 

information of cohorts of nurses and health professionals. The dataset is a part of 

Gene Environment Association Studies Initiative (GEI)
11

 undertaken with the goal of 

identifying novel genetic factors that contribute to Type II Diabetes. 

 

 

                                                 
11

 http://www.genome.gov/19518663 
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2.4 Related Work 

Cancer prognostics and therapeutics are among the first major research 

contributors in genomic personalized medicines. Researchers at the Unit of Medical 

Technology and Intelligent Information Systems, Dept. of Computer Science, 

University of Illinois [19] proposed a framework that integrates Single Nucleotide 

Polymorphism related to colon cancer with the clinical data and profiles patients with 

similar clinical genomic characteristics for decision support, diagnosis and treatment 

of colon cancer. 

Interdisciplinary Study Group on Gene Environment Interaction and Breast 

Cancer in Germany [20] aimed to investigate gene to environment interactions by 

exploring several ways to find similarity between two objects based on their clinical 

attributes and gene locii. Such studies opened up an approach of observing 

correlations amongst genetic variations and the clinical risk factors. 

2.4.1 Data Mining in Personalized Medicine 

Most of the current data mining methodologies applied in genetic research 

focus on gene expression profiles of individuals for classification and correlation with 

the traditional clinical outcomes.  This creates a challenge to select appropriate data 

analysis methods and data mining algorithms due to the complexity and volume of 

genomic data [21].  Ban and Heo [22] suggests use of Multi Dimensionality 

Reduction (MDR) techniques to select a subset of risk associated SNPs followed by 

classification using Support Vector Machine that optimally predicts the risk. Gregory 

F. Cooper [23] demonstrated use of Bayesian method and several machine learning 

methods on a genome-wide dataset in predicting outcomes of Alzheimer’s disease.  A 
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tree-based classification framework combining gene signatures and clinical factors 

has been used in breast cancer prediction [24].  

Finding patterns in clinical-genomic data has been an open area of research 

for data mining experts due to heterogeneous nature of the healthcare data.  K-modes 

clustering method proposed at an International Conference on Data Mining [25] gave 

us an exposure on effective use of SNPs for finding their association with the disease. 

Several data mining approaches have been applied to assess Type II Diabetes SNP 

variants along with its clinical risk factors. The Framingham offspring study [26] 

proved that 40-SNP weighted genomic risk score along with clinical risk factors 

improved diabetes prediction in younger people < 50 years of age.  
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Chapter 3  

SYSTEM OVERVIEW AND METHODOLOGY 

In this chapter, we explain the high level overview and different components 

that influence the system. We then describe the dataset and different tools we used for 

data mining purposes. 

3.1 System Outline 

Following figure shows overview of the system. 

 
 

                            Figure 3.1. Overview of steps followed in knowledge discovery 
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Description: 

 

I. Integration layer: This is the first step to integrate the heterogeneous clinical and 

genomic data downloaded from dbGAP. While phenotype
12

 data is present in comma 

separated file format, the genotype information is present in .CHP Affymetrix
13

 files 

generated during genotype analysis.  

II. Data Preprocessing: Before the data is sent to data mining engine such as WEKA 

or MATLAB, it processed and transformed into a suitable format. Data cleaning and 

normalization also takes place at this step. 

III. Data Mining: In this step, selected classification and clustering algorithms are 

run on the gathered data. 

IV. Validation and Knowledge Discovery: The results obtained after executing data 

mining algorithms are validated with the help of a physician or a doctor which then 

become a part of the derived knowledge.  

3.2 Dataset Description  

Following are some statistics regarding phenotype and genotype information 

present in the dataset. 

3.2.1 Phenotype Data 

Number of individuals in the dataset based on race: 
Race Female Male 

White 3303 2436 

 Asian 17 25 

African-American 30 25 

Other 

 

50 

American-Indian 14 

         

 

                                                 
12

 http://www.ncbi.nlm.nih.gov/About/primer/genetics_genome.html 
13

 http://www.affymetrix.com/support/developer/powertools/changelog/gcos-agcc/chp.html 

 
Hispanic Non-Hispanic 

Female 37 3327 

Male Unknown Unknown 

    Table3.1. Population division based on race 

Table 3.2. Population division based on hispanicity 
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The dataset consists of following set of 23 variables. 

 

 

Out of the available set of variables, we select following set of variables for 

data mining purposes. We further categorize them depending upon their severity 

towards diabetes. 

   

High risk associative (primary) Low risk associative dietary habits (secondary)

Weight in kgs (wt) Polyunsaturated fat intake as % of total energy (pufa)

Body mass index in kg/m2 (bmi) Trans fat intake as % of total energy (trans)

Physical activity in MET hrs/week (act) Glycemic load (gl)

Family history (famdb) Cereal fiber intake in g/day (ceraf)

Reported high blood pressure (hbp) Heme iron intake in mg/day (heme)

Reported high cholesterol (chol) Mangesium intake in mg/day (magn)  

 

This way we could differentiate between physical or biological characteristics 

of an individual from the dietary habits of an individual. 

  
Table 3.3. Dataset Variable description 

        Table 3.4. Categorization of clinical risk factors 



 

 18 

 

Age-wise distribution of cases and controls: We divide the population into different 

age groups and observe distribution of cases and controls amongst them. 

 

 

 

 

 

 

 

 

                                Figure 3.2. Histogram of age cateories vs cases and controls 

 

We observe that since diabetes is a disease that is independent of the age, the 

distribution of cases and controls is seen overall uniform across different age groups 

with a marginal increase in cases for age above 55. 

 

Age Category Age in years 

1 <45 

2 45-50 

3 51-55 

4 56-60 

5 61-65 

6 66-70 

7 >70 

 Table 3.5. Different age categories 
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Phenotype data vs Risk: 

We observe effect of age on some phenotypes such as high blood pressure and 

cholesterol which are known to vary with the age.  

                   

                            Figure 3.3. Age category vs % of individuals (male dataset) 

 

        

                            Figure 3.4. Age category vs % of individuals (female dataset) 

 

Here we observe that % of cases doesn’t increase much with the increase in 

age. Whereas in case of the phenotype, % of individuals with high blood pressure 

tends to increase with the increase in age, more significantly in females. % of 

individuals with high cholesterol also increases considerably with the increasing age. 
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3.2.2 Genotype Data 

Identification of Type II Diabetes associated SNPs and corresponding risk allele:  

To identify which SNPs are associated with Type II Diabetes and which of the 

alleles has more tendencies towards the risk, we apply following approaches: 

1. Using existing researches and literature articles: Over 40 or more SNPs have 

been reported as associated with Type II Diabetes in the existing research. We used 

this evidence to identify Type II Diabetes associated SNPs from our dataset of white 

American population. 

2. SNPedia: More Type II Diabetes related SNPs are learnt using SNPedia. For  

example, for a TCF7L2 gene related SNP - Rs4506565 [A/T], SNPedia gives 

following information.  

 

 

 

                            Table 3.6. Genotype vs risk association (Courtesy: SNPedia) 

 

From this, we can infer that ‘A’ allele is at a higher risk than ‘T’.  

 

Using these two approaches, we obtained a set of 20 SNPs that are found 

prominent in our dataset. Some of the common SNPs observed amongst both male 

and female population are summarized below.  

 

 

 

Genotypes Effect 

Rs4506565 (A;A) 1.9x increased risk for type-2 diabetes 

Rs4506565 (A;T) 1.4x increased risk for type-2 diabetes 

Rs4506565 (T;T) normal 
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Gene RsId Risk Allele 

TCF7L2 rs12255372  T 

TCF7L2 rs4506565 A 

TCF7L2 rs7901695 C 

TSPAN8 rs7961581 C 

TSPAN8 rs1495377 G 

MCR4 rs17782313 C 

CDAKL1 rs7754840 C 

KCNJ11 rs5215 T 

FTO rs9930506 C 

FTO rs8050136 A 

 

           Table 3.7. Type II Diabetes SNPs found common between male and female datasets 

 

 

Following are sets of Type II Diabetes SNPs which shows higher % of presence of a 

risk allele in cases than in controls. 

   

 

 

                       Table 3.8. Comparison of cases and controls based on% of risk SNPs 

 

 

Male Population Female Population 
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Genomic data vs risk: 

Presence of a risk allele increases individual’s tendency towards the risk. Following 

graph shows the variation in % of cases with respect to different genetic variants. 

    

 
                                        

Figure 3.5. Risk associated gene vs % of cases 

 

It was confirmed that the risk allele is present in the majority of the cases. It 

also confirmed prominence of TCFL2 gene. To further understand risk alleles and 

their associativity with the cases, we used following methods. 

 

SNP Density Distribution Graph  

Consider a graph showing SNPs variations amongst male cases and male 

controls. The red band at the bottom is 800 controls in the beginning followed by 800 

cases. Values on the Y axis after the red band are 10 dominant risk SNPs in males.  
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                                             Figure 3.6. SNP Density distribution graph 

 

Here we observe that the light blue and the green band is spread more in cases 

than in controls which indicates that Type II Diabetes risk allele association is 

observed more in cases than in controls. Similarly widespread dark blue band in 

controls indicate absence of risk allele. 

 

Tri-colored scattered plot of SNP intensities 

We compare homozygous vs heterozygous risk SNPs based on their 

intensities. Considering allele A and B for a SNP, the following scattered plot gives 

intensity distribution for the genotypes AA, AB and BB. The analysis is performed on 

180 male samples using a trial version of Golden Helix SVS software for extracting 

data from .CEL files.  
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In the scattered plots,  

Red indicates risk allele is present at both positions. 

Green Indicates risk allele is present at a single position. 

Blue indicates absence of a risk allele. 

 
                                    Figure 3.7. Tri-colored scatter plot showing allele intensities 

 

 

Using these plots, we can differentiate between a risk (red/green) and non-risk 

allele (blue). For example, if allele A is the risk allele then red color dominance is 

observed on the x-axis where as if allele B is the risk allele then red color dominance 

is observed on the y-axis. This helps us in interpreting the genotyping results.  

For example, SNP1 in the left graph is variation ‘rs11196205’ of TCF7L2 

gene susceptible to Type II Diabetes. In this case, C is the risk allele, hence red band 

is observed on the X-axis. SNP2 in the right graph is a variation ‘rs864745’ of JAZF1 

gene susceptible to Type II Diabetes. In this case, the red band is leaning towards Y-

axis since T is the risk allele. Such scattered plot can be used to observe the intensity 

variations amongst risk and non-risk alleles which also help to determine genotyping 

accuracy based on density of scattered points. 
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3.3 Preprocessing the data 

3.3.1 Nature of the data 

Some epidemiologic variables from the dataset are quantitative while other 

clinical risk factors are binary in nature. We select 9 quantitative and 3 binary 

variables which are also the dominant clinical risk factors. 

Quantitative bmi, act, wt, pufa, trans, magn, ceraf, gl, heme

Binary famdb, chol, hbp
 

                                                     Table 3.9. Data type of clinical risk factors 

 

Genomic risk factors (SNPs): 

The difficulty in analyzing SNP data is the large occurrence of homozygous 

genotypes. This is handled by assigning each SNP variation into either of the 

following categories: 

-  Homozygous with risk allele  

-  Homozygous without risk allele  

-  Heterozygous.  

3.3.2 Representation of SNP data 

We use following approaches for representing genomic characteristics of an 

individual. 

I. Genomic risk score: Genomic risk score of an individuals is calculated as the  

count of risk associated SNPs present in an individual out of the 20 risk associated 

SNPs selected. 

For example, genomic risk score of 10 indicates that a particular individual carries 10 

risk associated SNPs out of the selected 20 SNPs. 
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II. Biased SNP selection (Ternary representation): 

A ternary number
14

 has a base of 3. Some examples, 

Ternary 1 10 12 22 212 

Decimal 1 3 5 8 23 

 

Consider a SNP of two alleles A & T, where T is the risk allele. We assign 

following values: 

 

  

  

 

Before we form a ternary number using all 20 SNPs, we need to determine the 

order of SNPs such as which SNP would go at MSB position and which one at the 

LSB position in the ternary number representation. For this, we rank the SNPs based 

on the information gain [27]. Information gain ranks SNPs based on how well they 

separate data points with respect to the underlying class label. 

Consider 20 SNPs as SNP1, SNP2,……SNP20 in aligned in the order of 

decreasing information gains where SNP1 is the one with the highest information gain 

with respect to a class indicating a case or a control. WEKA is used to obtain ranks of 

SNPs based on their information gain. We get the ternary representation as: 

2 2 1 1 2 0 0 1 2 2 1 0 0  1 1 2 2 1 0 2 

 

 

 

 

                                                 
14

 http://en.wikipedia.org/wiki/Ternary_numeral_system 

AA  0 

AT  1 

TT  2 

SNP1 SNP20 

. . . . . . . . . . . . . .  
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We convert this ternary number into its equivalent decimal value which would 

vary between 3,486,784,400 if 20 SNPs have value of 2 and the minimum 0 with 

complete absence of risk allele. This decimal value represents genomic weight of an 

individual.  

Consider an individual with ternary representation of 20 SNPs as: 

22112010210112202200 

Then, genomic weight = 3,302,267,040 and genomic risk score = 14. 

We include genomic weight or genomic risk score with other phenotypes as a 

new feature for determining similarity between individuals. Euclidean distance is 

applied on all features. 

 

                          Figure 3.8. Similarity matrix formation using genomic score/weight 

 

III.  Unbiased SNP selection (Binary representation): 

Again consider a SNP of two alleles A & T, where T is the risk allele. We 

assign following binary values: 

 

 

            

Here our main purpose is to distinguish individuals based on the genomic 

pattern, hence there is no ordering of the SNPs while forming a binary representation. 

A binary pattern of 20 SNPs is gives as: 

1111011111000101000011110101111101110000 

AA  00 

AT  01 

TT  11 
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While using this method to group individuals, distances are calculated 

separately for phenotype characteristics and genomic characteristics. The phenotype 

attributes are compared based on Euclidean distances where as SNP data is compared 

based on Hamming distances. 

 

 

                        Figure 3.9. Similarity matrix formation using binary representation 

 

3.4 Data normalization 

Selection of appropriate measures for data representation before it is used for 

data mining depends on the nature and the scale of the underlying data set. The 

clinical-genomic dataset being heterogeneous in nature, we have to decide on a 

method to find similarity between two the individuals which would account for the 

diversity in the data. Genomic data has the same structure; however clinical data have 

different scales due to their different measuring units. The clinical information has to 

be in the same scale before it is used for fair comparison. In statistics, Normalization 
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is the process which allows comparing data on different scales and brings them on a 

common scale before it is used for finding distance between two individuals [28].  

We perform normalization in following two steps. 

I. Standardization: Consider an original value as ‘x’ before standardization.  

Let  ‘µ’ be the mean and ‘σ’ be the standard deviation of all values in the set where 

‘x’ belongs. Then standardized value of ‘x’ is given by, 

The standardized value, 

      s  =   

 

II. Converting to a common range: After the data is standardized we need to 

bring them  to a common scale to avoid weight biasing while calculating distances 

between objects. We normalize the data further by calculating numerically equivalent 

value in the range of -1 and 1. This is nothing but dividing the value by something 

that is bigger than the value.  

     Consider di as an array containing standardized data from step I.  

After mapping we get, 

           

Thus all the values in the array are now mapped between -1 and 1. 

 

  

 x - µ 

-------- 

    σ  
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3.5 Clinical-Genomic Data Integration  

Following figure explains clinical-genomic data integration process in detail. 

 

                  Figure 3.10. Schematic architecture of clinical-genomic data integration 

Data integration steps: 

 Each individual in the study is assigned a GENEVA ID which acts a patient 

identifier. Using this ID, phenotype information about the individual is 

directly fetched from the file storing phenotype data. 

 The mapping file contains .CHP file name corresponding to each GENEVA 

ID. Each .CHP file stores information of 909623 SNPs including the SNP ID 

and both the alleles. 

 The selected 20 SNPs are extracted from the .CHP file and inserted under 

corresponding GENEVA ID along with other phenotype data. 
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3.6 Tools Used 

i. WEKA 

WEKA is an open source data mining software consisting of collection of 

machine learning algorithms. It contains tools for data preprocessing, classification, 

clustering, association and visualization.  

ii. MATLAB 

It is a computing environment which allows you to perform numeric intensive 

operations, matrix manipulations, data mining and data plotting, etc. It supports 

several functions which we used to perform spectral clustering. 

iii. Statistical Analysis Tool (Microsoft Excel Add-in) 

 It is a collection of statistical and engineering macro functions such as 

Correlation, T-Test, etc. which be performed on the worksheet data directly.  

iv. Aspera Client 

It is a fully featured desktop client used to initiate and automate high 

performance transfer of large data over the internet. We used this tool to download 

datasets from dbGAP repository. 

v. MySQL Server 

 It is an open source database we used for storing integrated clinical-genomic 

information from the dataset.  

vi. Golden Helix Software  

It is a high performance analytic tool for managing, analyzing and visualizing 

complex genomic data. A trial version of this tool was used to retrieve SNP intensity 

level data from .CEL files.
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Chapter 4 

EXPERIMENTAL ANALYSIS AND RESULTS 

We present the results of the analysis performed on the dataset to understand 

the contribution of clinical and genomic risk factors in disease development. We 

present comparison different classification and clustering methods using different 

input datasets and several validation criteria. 

Most of the statistical data analysis is done using Microsoft Excel’s library 

and tools where as data mining is performed using WEKA And MATLAB. We use 

Windows machine with 3GB RAM for data mining. Linux scripting commands are 

used to extract data from the Affymetrix CHP files. Relational clinical-genomic 

knowledge data is maintained using MySQL database server. 

4.1 Initial Data Analysis 

4.1.1 Correlation Analysis 

To determine if two variables are statistically dependent on each other, 

Spearman Correlation Rank Coefficient is calculated amongst them [29]. It is a rank 

based statistic method to assess strength of the associations between two variables.  

The Spearman rank correlation coefficient is given by, 
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where d is the difference in the statistical ranks of corresponding variables. (Rank 

here is a specific number indicating order of a value in the list). 

Consider two variables X and Y, where we want to find relation of values of 

Y with respect to the values of X. If the Spearman Correlation Coefficient between X 

and Y is positive then it indicates that Y tends to increase when X increases. If it’s 

negative then it indicates that Y tends to decrease when X increases. If its zero then it 

indicates that Y does not tend to either increase or decrease with respect to X. 

Correlation between genomic risk score and % of cases: 

                                    

                                       Figure 4.1.  % of cases against genomic risk score 

A strong correlation is found between the number of risk alleles and the 

likelihood of being a diabetic. Cases increase with the increasing number of risk 

associated alleles. 

Correlation amongst phenotypes: 

age wt bmi act alcohol pufa trans magn ceraf heme gl

age 1 -0.17598 -0.10465 0.065924 0.083023 -0.02987 -0.12023 0.110436 0.070507 -0.08586 -0.00612

wt -0.17598 1 0.842712 -0.13571 -0.01607 -0.0096 0.110307 -0.0698 -0.13096 0.126929 -0.16615

bmi -0.10465 0.842712 1 -0.16603 -0.02693 0.014164 0.098798 -0.0912 -0.15961 0.164001 -0.21858

act 0.065924 -0.13571 -0.16603 1 0.01986 -0.00153 -0.13538 0.151938 0.09876 -0.08286 0.099783

alcohol 0.083023 -0.01607 -0.02693 0.01986 1 -0.15228 -0.10556 -0.11073 -0.17607 -0.03459 -0.36495

pufa -0.02987 -0.0096 0.014164 -0.00153 -0.15228 1 0.240796 -0.01733 -0.0145 0.027912 -0.24036

trans -0.12023 0.110307 0.098798 -0.13538 -0.10556 0.240796 1 -0.41177 -0.14016 0.076315 -0.15797

magn 0.110436 -0.0698 -0.0912 0.151938 -0.11073 -0.01733 -0.41177 1 0.47352 -0.14683 0.202801

ceraf 0.070507 -0.13096 -0.15961 0.09876 -0.17607 -0.0145 -0.14016 0.47352 1 -0.25511 0.506228

heme -0.08586 0.126929 0.164001 -0.08286 -0.03459 0.027912 0.076315 -0.14683 -0.25511 1 -0.38848

gl -0.00612 -0.16615 -0.21858 0.099783 -0.36495 -0.24036 -0.15797 0.202801 0.506228 -0.38848 1  

Genomic Risk Score -> 
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Male dataset 

Coeff. = 0.782 

 

Female dataset 

Coeff. = 0.785 

 

              Figure 4.2. Spearman coefficients amongst phenotypes of male dataset 
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age wt bmi act alcohol pufa trans magn ceraf heme gl

age 1 -0.01507 0.013906 0.084885 0.041758 -0.01917 -0.09111 0.168385 0.092498 -0.02683 0.0535

wt -0.01507 1 0.919223 -0.1669 -0.16856 0.059362 0.106093 -0.05817 -0.11046 0.084622 -0.09988

bmi 0.013906 0.919223 1 -0.18053 -0.20083 0.059064 0.127911 -0.07843 -0.11044 0.087724 -0.0877

act 0.084885 -0.1669 -0.18053 1 0.060617 -0.00562 -0.12659 0.146686 0.056153 -0.04306 0.018368

alcohol 0.041758 -0.16856 -0.20083 0.060617 1 -0.05638 -0.11046 -0.02011 -0.12342 -0.03089 -0.31992

pufa -0.01917 0.059362 0.059064 -0.00562 -0.05638 1 0.477122 -0.00912 -0.00212 -0.04971 -0.2791

trans -0.09111 0.106093 0.127911 -0.12659 -0.11046 0.477122 1 -0.34549 -0.1049 0.097373 -0.20271

magn 0.168385 -0.05817 -0.07843 0.146686 -0.02011 -0.00912 -0.34549 1 0.388513 -0.11433 0.037733

ceraf 0.092498 -0.11046 -0.11044 0.056153 -0.12342 -0.00212 -0.1049 0.388513 1 -0.23363 0.425087

heme -0.02683 0.084622 0.087724 -0.04306 -0.03089 -0.04971 0.097373 -0.11433 -0.23363 1 -0.43348

gl 0.0535 -0.09988 -0.0877 0.018368 -0.31992 -0.2791 -0.20271 0.037733 0.425087 -0.43348 1  

                      Figure  4.3. Spearman coefficients amongst phenotypes of female dataset 

 

Here, values in blue color indicate positive correlation where as those in red 

indicates negative correlation. All the diagonal values are to be ignored.  The strength 

of the correlation is based on the magnitude of value. Coefficient value < 0.5 

represents a mild correlation whereas value > 0.5 represents a strong correlation. 

Following are the significant correlations observed both in male and female datasets. 

Correlation type Variable X Variable Y Correlation Strength

Positive Weight BMI Strong

Magn Ceraf Mild

Gl Ceraf Mild

Negative Alcohol Gl Mild

Heme Gl Mild

Trans Magn Mild  

                                Table 4.1. Spearman coefficients amongst clinical risk factors 

 

Thus we observe a marginal correlation amongst dietary habits. 

4.1.2 Student t-test 

This is one of the most commonly used methods to compare two datasets that 

are collected independently of each other [30]. It determines probability based on a 

hypothesis which states that the two datasets are either same or different with respect 

to a variable or attribute using differences in the means of the two samples. A 



 

 35 

 

probability of 0.05 or less indicates that the two datasets can be distinguished using 

the corresponding variable for which the probability is observed. 

We used this method to determine which risk factors best distinguishes male 

and female population also to determine which risk factors best distinguish cases and 

controls. The following data is from a male and a female dataset each of 1800 records 

with control and cases present in equal proportions.  

 

Risk factor p-value

BMI 0.026

act 2.20E-108

alcohol 1.92E-30

pufa 0.009583

trans 1.84E-10

magn 1.40E-158

gl 4.70E-256

genomic risk score 0.06521             

Male dataset Female dataset

Risk factor p-value p-value

wt 2.96E-36 4.99E-85

act 1.43E-09 0.011241655

bmi 2.13E-52 1.69E-84

age 0.924593144 0.076307588

alcohol 0.062777014 9.92E-12

pufa 0.004374076 0.04547979

trans 0.004374076 0.020922611

magn 0.006933314 0.647760463

ceraf 0.006933314 0.104300913

heme 8.00E-10 9.19E-06

gl 1.04E-08 0.185911334

genomic risk score 2.50E-09 4.65E-05

Cases & Controls from

 
            (1)                                                               (2) 

 

                             Table 4.2 t-test results (1) male vs female (2) cases vs controls 

                (Here p-values > 0.05 are marked in red.) 

This tells us that males and female can be easily distinguished based on their 

phenotype characteristics; however genomic characteristics are not gender biased, 

hence does not help in distinguishing the two datasets. Genomic risk score does not 

differentiate the gender unlike prominent clinical risk factors. However it certainly 

proved to be a distinguishing factor between cases and controls in both males and 

females. Above results also confirm that diabetes is independent of the age. 
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4.2 Supervised Learning (Classification) 

We performed classification to determine analyses that could predict diabetes 

diagnosis in this dataset. Depending upon the nature of the both the male and female 

dataset, we selected Bayesian Network and Decision Tree for performing the 

classification.  

For males, we used a training dataset of 1600 records with 800 cases and 800 

controls. The test dataset is of 200 records.  For females, we used a training dataset of 

2400 records with 1200 cases and 1200 controls. Similar to the males, the test dataset 

is of 200 records. Analyses were performed using two separate datasets, one with 

only phenotypic data and the other with both phenotypic and genotypic data to 

understand whether inclusion of genetic information improves classification 

accuracy. To compare performance of the prediction model obtained using the two 

classification algorithms, we used cross validation method and the ROC area. 

Cross validation: It is a technique to estimate how the prediction model will perform 

in practice when applied to an independent dataset. Cross-validation consists of 

several rounds where in each round, analysis is performed on one subset called as 

training set and the performance is evaluated on another subset called as test set. 

Multiple sets of such rounds reduce variability in the performance. 

We are using 10-fold cross validation, where the original input dataset is 

divided into 10 partitions. At each of the 10 rounds, one non-repeated partition is used 

as a test set and the remaining 9 partitions are used as training sets. The results from 

all 10 rounds are then averaged to give single estimate. 
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ROC Area: ROC curve is a representation of the trade-off between true positive rate 

and false positive rates, false positive rate on the X-axis and true positive rate on the 

Y-axis.  

The area under the ROC curve measures ability of the prediction model to 

accurately classify cases and controls. It is a measure how well a parameter can 

distinguish between two diagnostic groups. 

For example, consider a healthy patient with a score of S1 and a diseased 

patient with a score of S2, then area under the ROC curve is an estimate of P[S2>S1] 

where the larger the value indicates a tendency towards diabetes. 

Decision Tree (J48) Baysian Network Decision Tree (J48) Baysian Network

Only phenotypes Male dataset 66.81 67.25 64.64 67.78

Female dataset 71.42 72.6 68.63 71

Phenotyps + Genotypes Male dataset 66.7 68.38 58.57 67.14

Female dataset 70 72 69.4 71.36

Using 10 fold cross validation Using test data

 

                                      Table 4.3 Comparison of classification accuracy 

 

Bayesian Network gives slighly better accuracy as compared to J48 (C 4.5 

implementation). To further determine whether genomic data affects the the accuracy 

of classification, we calculate the ROC area. The following graph shows change in 

the ROC area when different risk factors are subsequently added to the input. The 

primary phenotypes are added in the ascending order of their information gain rank. 
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                                           Figure 4.4. ROC Area against risk factors 

 

It was observed that when TCF7L2 gene information or the genomic risk 

score is included, the ROC area increases by 5-6%. Secondary phenotypes such as fat 

intake, cereal fiber intake, magnesium intake, glycemic load, etc. do not produce any 

change in the ROC area. 

4.3 Unsupervised Learning (Clustering) 

Clustering methods are selected that best differentiate between cases and 

controls, and identify other groups present in the dataset. The following dataset was 

selected for clustering purposes. 

Total records Cases Controls

Male dataset 1994 915 1079

Female dataset 2835 1539 1296  

Clusters are selected that have good validity index and are best representative 

of meaningful groups in the dataset. 
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4.3.1 Cluster validation and accuracy 

Cluster validation using silhouette: The silhouette validation technique [31] 

calculates the silhouette width for each sample, cluster and the whole dataset. It is a 

combined measure of: 

 Intra-cluster distance a(i): average dissimilarity of sample i to all the other 

samples from the same cluster (how close the samples are within the same 

cluster). 

 Inter-cluster distance b(i): minimum of average dissimilarity of sample i to all 

the samples in the other cluster (how far the samples are between different 

clusters). 

The silhouette S(i) is given by, 

            - 1 <= S(i) <=1 

S(i) close to 1 => the sample is well clustered to the appropriate cluster. 

S(i) close to 0 => the sample could belong to another cluster. 

The average of all silhouette values of sample of a particular cluster 

determines the validity of the cluster. 

Clustering accuracy: The centroid of a cluster is its center of gravity. Tightness of a 

cluster is determined by average distance of every sample in the cluster with respect 

to its centroid.  

Consider two centroids C1 and C2 of two clusters obtained. We focus on 

distance of every sample from the centroid of the cluster it belongs as well as from 

the centroid of other clusters. Consider the figure below. 
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                                            Figure 4.5. Sample to centroid distances 

 

Sample S1, S2 and S3 are at distances d1, d2 and d3 respectively   from the 

centroid of the clusters they belong to i.e. Cluster 1 and are at distances D1, D2 and 

D3 respectively from the centroid of neighboring Cluster 2. 

We calculate,  

i. Average of distances of samples from the centroid of its own cluster, 

D = avg(d1+d2+…dn)/n  

ii. Average of distances of sample from the centroid of another cluster, 

D’ = avg(D1+D2+…..Dn)/n 

4.3.2 Selection of number of clusters 

We use silhouette values to determine number of clusters that possess 

maximum validity index.  

          
  

                          Figure 4.6. Silhouette indices vs number of clusters 
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From this it was observed that for k>4, the silhouette index drops below 0.68. 

Since our aim is to identify different groups within the dataset, k>2 and k<=4 is the 

preferred choice. Considering good silhouette value as well as clinical significance of 

the resulting groups, k=4 is the selected choice for number of clusters. 

 

4.3.3 Input data selection 

Significance of genomic data: To assess whether inclusion of genomic data affects 

clustering performance, we compare validity of the clusters using silhouette indices. 

We select primary clinical risk factors as the phenotypes. We take average of the 

silhouettes obtained using both biased and unbiased SNP selection.         

 

 

 

 

         

                        

                                           Table 4.4. Silhouette indices comparison 

  

Silhouette index considerably improves (by ~ 0.1) when genetic information 

is used along with phenotypes for clustering.  

SNP data representation for clustering: 

When using risks associated SNPs along with phenotypes for clustering, there are two 

ways to represent the genomic details (explained earlier in 3.3.2). 

 Biased SNP selection (ternary representation) 

 Unbiased SNP selection (binary representation) 

No. of clusters Phenotype+Genotype Only Phenotype

Females k=3 0.711 0.599

k=4 0.687 0.563

k=5 0.652 0.554

k=6 0.642 0.593

Males k=3 0.76 0.76

k=4 0.657 0.632

k=5 0.617 0.526

k=6 0.571 0.487
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Clustering on male and female datasets using both these methods produced 

similar silhouette indices in the range of ~ 0.65 to ~ 0.68 for k=4. To further compare 

these two methods, we compared the clusters based on goodness with respect to the 

centroid as explained in 3.1.  

Male dataset: 

Biased methodUnbiased method

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Avg. distance from centroid

Cluster 1 0.344406 1.78361 1.81165 1.63885 0.21613 1.64505 1.978 2.17418 (for the respective cluster)

Cluster 2 2.002976 0.56378 1.8525 1.86461 1.82689 0.39797 1.96813 2.13288 Avg. distance from centroid

Cluster 3 2.025806 1.84728 0.55856 1.82871 2.21223 2.02051 0.45036 2.04275 (for the other cluster)

Cluster 4 1.7745 1.7809 1.75021 0.48006 2.35361 2.13047 1.98795 0.39556

0.3650.487

Biased method Unbiased Method

1.83 2.04

 

Female dataset: 

Biased methodUnbiased method

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Avg. distance from centroid

Cluster 1 0.308342 1.77525 1.05581 1.97528 0.11342 2.23848 2.04278 2.36923 (for the respective cluster)

Cluster 2 2.038396 0.57149 2.08805 1.84991 2.46235 0.33729 2.04233 1.9606 Avg. distance from centroid

Cluster 3 1.1159 1.88499 0.36843 1.85223 2.24011 2.01579 0.31075 2.26389 (for the other cluster)

Cluster 4 2.232111 1.84359 2.04897 0.56517 2.58916 1.95666 2.2865 0.33336

Biased method Unbiased Method

0.453 0.273

1.813 2.205

 

                     Figure 4.7. Sample to centroid distances in the resulting clusters 

 

The colored values indicate average distance of samples from centroid of the 

same cluster it belongs. The sample-to-centroid distance (with respect to its own 

cluster) is greater using biased SNP selection as compared to the unbiased SNP 

selection. Thus unbiased SNP selection reduces the intra-cluster distances. The 

sample-to-centroid distance (with respect to other cluster) is greater using unbiased 

SNP selection as compared to the biased SNP selection. Thus unbiased SNP selection 

increases the inter-cluster distances. From this we infer that clustering accuracy 

improved due to unbiased selection of SNPs. 
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4.3.4 Clustering results 

Previous analysis indicated following specifications for obtaining valid and 

meaningful clusters: 

 Number of clusters = 4 

 Inclusion of both clinical and genetic information. 

 Unbiased SNP selection. 

Using these specifications, we produced following clusters. 

 

Cluster no. No of individuals avg(bmi) % of cases avg(wt) avg(act) % of individuals % of individuals % of patients avg(magn) avg(gl)

with prev. family history with high bp with high chol

1 553 30.5306 65.28 95.07827 22.30938 24.59 49.55 21.16 367.4416 121.885

2 538 25.21871 48.33 79.29542 28.83889 3.29 36.99 100 400.7305 130.7379

3 326 25.20908 53.07 79.45916 42.08585 100 23.62 7.67 381.6779 127.0399

4 577 24.18882 20.97 77.09223 40.88804 0 10.57 0 380.6042 130.9948  

  Figure 4.8. Clusters obtained using male dataset 
 

Cluster no. No of individuals avg(bmi) % of cases avg(wt) avg(act) % of individuals % of individuals % of individuals avg(magn) avg(gl)

with prev. family history with high bp with high chol

1 675 33.07832 61.19 86.7219 9.7211 9.1 61.19 2.52 295.0392 96.3077

2 971 23.36554 14.83 62.72051 16.69475 0.3 7.72 0.3 301.5977 97.6618

3 463 28.05971 64.58 74.68562 15.81659 42 56.37 97.84 315.5749 100.467

4 726 27.40678 60.61 73.10778 14.28593 100 27.13 0.4 304.0099 98.0085  

  Figure 4.9. Clusters obtained using female dataset 
 

We then assess the genomic risk associated with each cluster based on % of 

individuals carrying the risk allele.  
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     Figure 4.10. Risk associated SNPs characterizing different clusters of the male dataset 

 

 

      Figure 4.11. Risk associated SNPs characterizing different clusters of the female dataset 
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Clustering resulted in groups of individuals based on their clinical and genomic risk 

similarity. Details of the clusters as follows. 

 High risk cluster:  

- high in weight 

- enrichment of obesity genes; high % of individuals with obesity gene 

variants – MC4R in case of males and FTO in case of female  

- cases present > 60%. 

 Low risk cluster:  

- low values for clinical and genomic risk factors  

- cases present <=20%. 

 Intermediate risk cluster 1:  

- high cholesterol associativity 

- high % of individuals with TSPAN8 variant 

- cases present ~50-60%. 

 Intermediate risk cluster 2:  
- previous family history associativity 

- enrichment of TCF7L2 gene; high % of individuals with TCF7L2 

variant 

- cases present ~50-60%. 

 

We also performed using different combinations of input parameters on male and 

female datasets separately.  

Input dataset Observations 

Secondary phenotypes 

(dietary habits) 

+ genotype 

Silhouette < 0.6 for k> 3. Obtained clusters are poor 

representative of the knowledge. 

 

Only phenotypes 

For k>2, silhouette drops considerably below 0.6. 

For k=2, two basic clusters indicative of cases group 

and controls group can be obtained. 

 

Only genotypes 

Very poor validity index. Max. Silhouette of 0.45. 

Use of only genotypes adds confusion to the 

clustering. Cannot identify similarity between 

individuals based only on genotypes. 
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Chapter 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

We proposed and described analytical methods to study clinical-genomic risk 

factors of Type II Diabetes in a white American population. Use of risk associated 

SNPs gave us an exposure to the genetic determinants in diabetes. Data analysis using 

student t-tests indicated genomic risk score as potential differentiating factor amongst 

cases and controls along with other prominent clinical risk factors. This was also 

confirmed by a strong positive correlation observed between the genomic risk score 

and the occurrence of cases.  

In case of predictive analysis, Bayesian Network proved to be a suitable 

classifier with the classification accuracy of ~71%. Inclusion of genotype data to the 

phenotype showed marginal improvement in the classification accuracy. We observed 

effect on ROC area with respect to different risk factors. Type II Diabetes associated 

genes such as TCF7L2 over dietary habits showed considerable increase in the ROC 

area proving significance of genetic risk in differentiating cases and controls. In case 

of clustering, we analyzed effect of variations in the input risk factors, SNP 
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representations, and the number of clusters on the clustering performance. We 

compared resulting clusters based on these parameters and their clinical significance. 

Use of genomic data with unbiased SNP selection improved the clustering validity as 

well as accuracy.  

From the results it was evident that genomic risk plays a role in determining 

Type II Diabetes risk. The clusters yield interesting hints for potentially relevant 

combinations of clinical-risk factors that would certainly benefit researcher for 

analyzing case-control groups, gain more insight into the genetic behaviors and 

generate biological hypotheses. Thus the overall goal of assessing genetic risk along 

with clinical risk in the development of Type II Diabetes is achieved.  

5.2 Future Work 

While performing clustering, it was observed that some steps of the spectral 

clustering steps such as calculating degree matrix from the similarity matrix, 

eigenvectors from the laplacian matrix were running slow due to large sizes of 

matrices.  In the future, we plan to design a faster implementation of matrix 

computations and scale the infrastructure to accommodate larger datasets. 

The interpretation of genomic risk from the clusters is at present limited to 

prominent genes. We would like to now focus on a larger set of risk associated SNPs 

and try to find if clusters can be produced that are suggestive of association between 

genes and environmental factors. We also plan to extend our study to ethnically 

diverse populations susceptible to Type II Diabetes that would help us investigate 

clinical and genomic risk factors amongst different groups. 
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