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Abstract

Most open government data is encoded and published
in structured tables found in reports, on the Web, and in
spreadsheets or databases. Current approaches to gener-
ating Semantic Web representations from such data re-
quires human input to create schemas and often results
in graphs that do not follow best practices for linked
data. Evidence for a table’s meaning can be found in its
column headers, cell values, implicit relations between
columns, caption and surrounding text but also requires
general and domain-specific background knowledge.
We describe techniques grounded in graphical models
and probabilistic reasoning to infer meaning (seman-
tics) associated with a table using background knowl-
edge from the Linked Open Data cloud. We represent
a table’s meaning by mapping columns to classes in an
appropriate ontology, linking cell values to literal con-
stants, implied measurements, or entities in the linked
data cloud (existing or new) and discovering or and
identifying relations between columns.

Introduction
Most of the information found on the Web consists of text
written in a conventional style, e.g. as news stories, blogs,
reports, letters, advertisements, etc. There is also a signifi-
cant amount of information encoded in structured forms like
tables and spreadsheets, including stand-alone spreadsheets
or table as well as tables embedded Web pages or other doc-
uments. Cafarella et al. (2008) estimated that the Web con-
tains over 150 million high quality relational tables. In some
ways, this information is easier to understand because of its
structure but in other ways it is more difficult because it lacks
the normal organization and context of narrative text. Both
integrating or searching over this information will benefit
from a better understanding of its intended meaning.

A wide variety of domains that are interesting both tech-
nically and from a business perspective have tabular data.
These include medicine, healthcare, finance, e-science (e.g.,
biotechnology), and public policy. Key information in the
literature of these domains, which can be very useful for in-
forming public policy, is often encoded in tables. As a part
of Open Data and transparency initiative, fourteen nations
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including the United States of America share data and infor-
mation on websites such as www.data.gov in structured for-
mat like CSV, XML. As of May 2011, there are more than
390,000 raw and geospatial datasets available. This repre-
sents a large source of knowledge, yet we do not have sys-
tems that can understand and exploit this knowledge.

Many real world problems and applications can benefit
from exploiting information stored in tables including evi-
dence based medical research (Sackett et al. 1996). Its goal
is to judge the efficacy of drug dosages and treatments by
performing meta-analyses (i.e systematic reviews) over pub-
lished literature and clinical trials. The process involves find-
ing appropriate studies, extracting useful data from them and
performing statistical analysis over the data to produce a ev-
idence report.

Key information required to produce evidence reports in-
clude data such as patient demographics, drug dosage infor-
mation, different types of drugs used, brands of the drugs
used, number of patients cured with a particular dosage etc.
Most of this information is encoded in tables, which are
currently beyond the scope of regular text processing sys-
tems and search engines. This makes the process manual and
cumbersome for medical researchers. By adding semantics
to such tables, we can develop systems that can easily corre-
late, integrate and search over different tables from different
studies to be combined for a single meta-analysis.

In this paper, we present techniques to automatically gen-
erate high quality linked data by jointly inferring the se-
mantics of column headers, table cell values (e.g., strings
and numbers), relations between columns, augmented with
background knowledge from open data sources such as the
Linked Open Data cloud (Bizer 2009). Our framework maps
column headers to classes from an appropriate ontology,
links cell values to literal constants or entities in the linked
data cloud (existing or new) and discovers or and identifies
relations between columns. The interpreted meaning is rep-
resented as machine understandable linked RDF assertions.
We motivate our work, by its application on Open Govern-
ment Data and how it can be used to generate high quality
linked data from existing raw datasets.

Motivation
While there are more than 390,000 raw datasets
on data.gov, only a fraction (279 or (0.071 %)) of



<rdf:Description rdf:about=“#entry1”>
<value>6444</value>
<label>Number of Farms</label>
<group>Farms with women principal operators</group>
<county fips>000</county fips>
<state fips>01</state fips>
<state>Alabama</state>
<rdf:type rdf:resource=“http://data-gov.tw.rpi.edu/2009
/data-gov-twc.rdf#DataEntry”/>
</rdf:Description>

Figure 1: A part of RDF from dataset 1425 - Census of
Agriculture Race, Ethnicity and Gender Profile Data from
data.gov

the raw datasets are available in RDF format (see
http://www.data.gov/semantic/data/alpha). Figure 1
shows a part of RDF representation of dataset 1425 -
Census of Agriculture Race, Ethnicity and Gender Profile
Data from data.gov (Dataset ). The property names in the
representation are column headers from the raw dataset and
the values of the properties represent row values (in this
case values from row one) for the respective columns.

The problem with a representation like this is it does not
using existing vocabulary to annotate the raw data. Most of
the column headers are mapped to properties that are local to
the RDF file. Mapping column headers to classes and prop-
erties say for example from the linked data cloud, will pro-
vide more richer description as compared to the local prop-
erties. Such a representation often uses string identifiers for
table cell values instead of linking them to existing entities
in the linked data cloud. Linking the string cell values can
further enrich the semantic representation of the data.

In the domain of open government data, Ding et al.(2010)
present techniques to convert raw data (CSV,spreadsheets)
to RDF. However the generated RDF does not use existing
classes or properties for column headers, nor does it link
cell values to entities from the linked data cloud. To gener-
ate a richer, enhanced mappings, users will need to manually
specify a configuration file. Their focus has been on generat-
ing massive quantity linked government data rather quality
linked government data.

Several systems have been implemented to generate Se-
mantic Web data from databases (Sahoo et al. 2009) and
spreadsheets (Han et al. 2008; Langegger and Wob 2009).
Virtually all are manual or semi-automated and none have
focused on automatically generating linked RDF data. Cur-
rent systems on the Semantic Web either require users to
specify the mapping to translate relational data to RDF or
systems that do it automatically focus only a part of the ta-
ble (like column header strings). These systems have mainly
focused on relational databases or simple spreadsheets.

The key shortcoming in such systems is that they rely
heavily on users and their knowledge of the Semantic Web.
Most systems on the Semantic Web also do not automat-
ically link classes and entities generated from their map-
ping to existing resources on the Semantic Web. The output

of such systems turns out to be just “raw string data” rep-
resented as RDF, instead of generating high quality linked
RDF.

Wang et al.(2011) present a table understanding system
which identifies a concept to be associated with the table
based on the evidence provided by the column header and
strings in the “entity column” of the table. The concepts
come from their knowledge base Probase (Wu et al. 2011)
created from the text on the World Wide Web which can be
noisy and “semantically poor” as compared to concepts from
the Linked Open Data cloud.

Venetis et al.(2011) identify concepts to be associated
with the column headers in a table based on the evidence
provided by strings in a given column. They also identify
relations between the “subject column” and other columns
in the table. However they also rely on a isA database they
create from the text on the Web which can be noisy as well
as “semantically poor”.

Limaye, Sarawagi, and Chakrabarti(2010) present a prob-
abilistic graphical model based framework that identifies
concepts to be associated with the column headers, links ta-
ble cell values to entities and identifies relations between
columns with Yago as a background knowledge base.

None of the current table understanding systems propose
or generate any form of linked data from the inferred mean-
ing. A key missing component in current systems is tack-
ling literal constants. The work mentioned above will work
well with string based tables. To the best of our knowledge,
no work has tackled the problem on interpreting literals in
tables and using them as evidence in the table interpreta-
tion framework. The framework we present is complete au-
tomated interpretation of a table that focuses on all aspects
of a table - column headers, row values, relations between
columns. Our framework will tackle strings as well as liter-
als.

Approach
Consider the table shown in Figure 2. Its presents a subset
of rows and column header from the raw format of dataset
1425, the 2007 Census of Agriculture Race, Ethnicity, and
Gender Profiles which contains county level census data pre-
sented by the race, ethnicity, and gender of farm operators.
The column headers suggest the type of information in the
columns: State and County might match classes in a target
ontology such as DBpedia (Bizer et al. 2009); State FIPS
and County FIPS could match properties in the same or re-
lated ontologies.

Examining just the column header may not be enough
to disambiguate it correctly. Consider column five - Group.
The string can disambiguate to groups of musicians, blood
group, a group of companies or group of persons bounded
by common social interests. Examining the data values in
the column provides further evidence to what it is represent-
ing. The values African American, American Indian, Alaska
Native, women suggest that the column is representing a set
of census and ethnic groups in the United States.

The evidence that the strings are representing ethnic
groups can be obtained by linking the strings to entities from



State State
FIPS County County

FIPS Group Label Value

Alabama 1 Macon 87 Farms with Black or African
American operators

Value of sales of grains, oil
seeds, dry beans, and dry
peas (farms)

5

Arizona 4 Navajo 17 Farms with Spanish, His-
panic, or Latino operators

Value of sales of vegetables,
melons, potatoes and sweet
potatoes (farms)

8

Arkansas 5 Union 139 Farms with women principal
operators

Total value of agricultural
products sold (farms) 56

California 6 Humboldt 23 Farms with American Indian
or Alaska Native operators Days worked off farm - none 19

Figure 2: Subset of rows from the raw dataset 1425, which is from the 2007 Census of Agriculture Race, Ethnicity, and Gender
Profiles and contains county level census data presented by the race, ethnicity, and gender of farm operators.

the linked open data cloud. African American would map to
dbpedia:African American, Alaska native would map to db-
pedia:Alaska Natives. Once the entities are linked, we can
easily infer from DBpedia that all the strings are types of
US ethnic and census groups and hence the column is repre-
senting US ethnic and census groups.

Consider column two - State FIPS. The data values in the
column are literals. These literals can map to values of a
property and the property can be associated with some other
entity in the table. In this case the column maps to dbpe-
dia:Federal Information Processing Standard state code.
The string along with the expanded abbreviation can help
infer what the property could be. Further evidence would be
provided by identifying relation between column one State
and column two State FIPS. The knowledge that column
one represent states (dbpedia:AdminstrativeRegion)
further confirms that column two maps to dbpe-
dia:Federal Information Processing Standard state code.
The discovered relation also further helps to associate the
property with the entities in column one.

Producing an overall rich and correct semantic represen-
tation from tabular structures is a complex task that requires
developing an overall understanding of the intended mean-
ing of the table as well as attention to the details of choosing
the right URIs to represent both the schema as well as in-
stances. We break down the process into following tasks: a)
assign every column (or row header) a class label from an
appropriate ontology b) link table cell values to appropri-
ate LD entities, if possible c) discover relationships between
the table columns and link them to linked data properties d)
generate a linked data representation of the inferred data.

Heuristic Baseline System
We first describe a baseline system (Mulwad et al. 2010b)
that we developed to evaluate the feasibility in tackling the
problem. The baseline system is a sequential, multi-step
framework that first maps every column header to a class
from an appropriate ontology. Using the predicted class as
additional evidence, it then links table cell values to entities
from the Linked Data Cloud. The final step in the framework
is discovering relations between table columns and generat-
ing a linked data representation of the table’s meaning.

Mapping column header to class. In a typical well
formed table, each column contains data of a single syntac-
tic type (e.g., strings) that represent entities or values of a
common semantic type (e.g., people, places, yearly salary
in USD). The column’s header, if present, may name or
describe the semantic type or perhaps a relation in which
the column values participate. The algorithm determines the
class for a table column based on the class of the individual
strings in the column. For all the cell values in every column
of the table, the algorithm submits a complex query to the
Wikitology (Syed and Finin 2011) knowledge base to deter-
mine the type of each cell value in the column. For every
query, the KB returns a set of entities; each entity has a set
of classes associated with it. Combining the classes of all
the entities, produces a set of candidate classes for a col-
umn. Each class label from the set of candidate class labels
is scored. The class label with the highest score is chosen
as the class label to be associated with the column. We pre-
dict class labels from four vocabularies: DBpedia Ontology,
Freebase, WordNet, and Yago.

Linking table cells to entities. Using the predicted class
labels as additional evidence, for every table cell, the algo-
rithm for linking table cell to entities, re-queries our KB.
For every table cell, the KB returns the top N possible enti-
ties. For each of the top N entities, the algorithm generates
a feature vector consisting of the entity’s KB score, entity’s
Wikipedia page length, entity’s page rank, the Levenshtein
distance between the entity and the string in the query and
the Dice score between the entity and the string. The set of
feature vectors for each table cell are ranked using a SVM-
Rank classifier. To the highest rank feature vector from SVM
rank, two more features are added - the SVM rank score of
the feature vector and the difference in SVM-Rank scores
between the top two feature vectors. A second SVM classi-
fier decides whether to link the table cell to this top ranked
entity or not. If the evidence is not strong enough, it is likely
that the table cell is a new entity not present in the KB; this
step is useful in discovery of new entities in a given table. If
the evidence is strong enough, the table cell is linked to the
top ranked entity returned by SVM-Rank.



@prefix dbpedia: <http://dbpedia.org/resource/>.
@prefix dbpedia-owl: <http://dbpedia.org/ontology/>.
@prefix dbpprop: <http://dbpedia.org/property/>.
@prefix dgtwc: <http://data-gov.tw.rpi.edu/2009/data-gov-twc.rdf#>.
”State”@en is rdfs:label of dbpedia-owl:AdminstrativeRegion.
[ a dgtwc:DataEntry;
dbpedia-owl:state dbpedia:Alabama;
dbpedia:FIPS county code 000;
dbpedia:Federal Information Processing Standard state code 001;
dbpedia-owl:ethnicGroup “Farm with women principal operators”@en;
dbpedia-owl:number 6444].

Figure 3: This N3 encoded linked data shows the representation used for a row of the table shown in Figure 2.

Discovering relation between columns. Once the table
cells are linked, the framework identifies relations between
table columns. For every pair of column, the algorithm gen-
erates a set of candidate relations from the relations that ex-
ist between the strings in each row of the two columns by
querying DBpedia. The relation that gets majority vote is
chosen as the relation between the columns.

Linked data representation. We have developed a tem-
plate for annotating and representing tables as linked RDF.
We choose the N3 serialization because it is compact and
readable. Figure 3 shows an example of a N3 representa-
tion of a table. To associate the column header with its pre-
dicted class label, the rdfs:label property from RDF Schema
(Brickley and Guha 2004) is used. The rdfs:label property is
also used to associate the table cell string with its associated
entity from DBpedia. To associate the table string with its
type (i.e. class label of the column header), the rdf:type prop-
erty is used. The properties and relations discovered can be
used to represent every data entry row from the raw datasets.
The example in Figure 3 shows an example of mapping col-
umn header to class and mapping a data entry row to linked
RDF.

Evaluation of the baseline system. The baseline sys-
tem was evaluated against 15 tables obtained from Google
Squared, Wikipedia and from a collection of tables extracted
from the Web. Excluding the columns with numbers, the 15
tables have 52 columns and 611 entities for evaluation of our
algorithms. We used a subset of 23 columns for evaluation
of relation identification between columns.

In the first evaluation of the algorithm for assigning class
labels to columns, we compared the ranked list of possible
class labels generated by the system against the list of pos-
sible class labels ranked by the evaluators. For 80.76% of
the columns the average precision between the system and
evaluators list was greater than 0 which indicates that there
was at least one relevant label in the top three of the sys-
tem ranked list. The mean average precision for 52 columns
was 0.411.For 75% of the columns, the recall of the algo-
rithm was greater than or equal to 0.6. We also assessed
whether our predicted class labels were reasonable based on
the judgment of human subjects. 76.92 % of the class labels

predicted were considered correct by the evaluators. The ac-
curacy in each of the four categories is shown in Figure 4.

66.12 % of the table cell strings were correctly linked by
our algorithm for linking table cells. The breakdown of ac-
curacy based on the categories is shown in Figure 4. Our
dataset had 24 new entities and our algorithm was able to
correctly predict for all the 24 entities as new entities not
present in the KB. We did not get encouraging results for
relationship identification with an accuracy of 25 %.

Joint Inference
The baseline system makes local decision at each step of
the framework. The disadvantage of such a system is that
error percolates from the previous phase to the next phase
which can lead to an overall poor interpretation of a table.
To overcome this problem, we are developing a framework
that performs joint inference over the evidence available in
the table and jointly assign values to the column headers,
table cell values and relations between columns.

Probabilistic graphical models (Koller and Friedman
2009) provide convenient framework for expressing a joint
probability over a set of variables in a system and per-
form inferencing over them. Probabilistic graphical mod-
els use graph based representations to encode probability
distribution over a set of variables for a given system. The
nodes in such a graph represent the variables of the system
and the edges represent the probabilistic interaction between
the variables. Based on the graphical representation used to
model the system, the graph needs to be parameterized and
then an appropriate inference algorithm needs to be selected
to perform inferencing over the graph.

Thus, constructing a graphical model involves the follow-
ing steps: a)Identifying variables in the system b)Identifying
interactions between variables and representing it as a graph
c)Parametrizing the graphical structure d) Selecting an ap-
propriate algorithm for inferencing. In this paper, we focus
on modeling part of the problem: constructing and parame-
terizing the graphical model.

Variables in the system. The column headers, the table
cell values and the relations between columns in the ta-
ble represent the set of variables in the table interpretation
framework. Each variable will be assigned an initial set of



Figure 4: Category wise accuracy for (a) “column correctness” and (b) entity linking.

values that it can take on. For example the initial set of val-
ues for each of the table cell values can be determined by
querying the Wikitology knowledge base.

Graphical Representation. We choose a Markov net-
work based graphical representation to represent the inter-
action between the variables (see Figure 6), since the inter-
action between the column headers, table cell values and re-
lation between table columns are symmetrical. The interac-
tion between a column header and cell values in the column
is captured by inserting an edge between the column header
and each of the values in the column in the graph. To cor-
rectly disambiguate what a table cell value is, evidence from
the rest of the values in the same row can be used. This is
captured by inserting edges between every pair of cell val-
ues in a given row. Similar interaction exists between the
column headers and is captured by the edges between every
pair of table column headers. For simplicity of the figure,
we show only one example of interaction between values in
a given row and interaction between a column header and
values in that column.

A parameterized Markov network. To represent the dis-
tribution associated with the graph structure, we need to pa-
rameterize the structure. One way to parameterize a Markov
network is representing the graph as a factor graph. A factor
graph is an undirected graph containing two types of nodes:
variable nodes and factor nodes. The graph has edges only
between the factor nodes and variable nodes. A factor node
captures and computes the affinity between the variables in-
teracting at that factor node. Variable nodes can also have
associated “node potentials”. Our parameterized graph (Fig-
ure 5) consists of two node potentials (associated with each
of the column headers and table cell values) and three factor
nodes.

The node potential for column header variable computes
the affinity between the string in the column header and the
class its being mapped to. The node potential for table cell
variable computes the affinity between the string in the ta-
ble cell and the entity its being linked to. The function of
the three factor node is as follows: the first factor node com-

putes affinity between the class being assigned to the col-
umn header and the entities linked to the cell values in the
column; the second factor node computes the affinity be-
tween the classes that have been assigned to all the column
headers; and the third factor node computes the affinity be-
tween the entities linked to the cell values in a given row.
We are presently working on defining the functions in the
factor node that will compute the affinity between the values
assigned to the various variables in the system.

Discussion
The results of the baseline system show feasibility in tack-
ling the problem. An evaluation of the system, also presented
issues in the baseline system which we are address by work-
ing on framework grounded in graphical models and prob-
abilistic reasoning. In the following sections, we present is-
sues that will help us build a better framework to deal with
open government data.

Literals. Many datasets in the domain of open government
data have literal constants like numerical data. Literals are
not entities that can be linked to entities from a knowledge
base; but rather represent values of properties. The proper-
ties themselves can be associated with other entities in the
table. The numbers in a given column also can be used as
evidence in the table interpretation framework. They can be
used as evidence to disambiguate the property to which the
column will map to. For example if all the numbers are in
the range of 0 - 100 then they could be representing age or
percentage; if they are all ten digit numbers, then they could
be telephone numbers and so on. We could refer to a set of
rules or a knowledge base to extract this kind of information.
For complete table interpretation, it will be important to take
literals into consideration.

Meta data. Tables and spreadsheets often have meta data
providing additional information about its meaning. This ad-
ditional meta data is in the form of captions and text sur-
rounding the table. In the case of open government data, it
is in the form of dataset landing page (see (Dataset ) for an
example). Such meta data can prove to be useful source of



Figure 5: This parameterized Markov network consists of
two node potentials (associated with each of the column
headers and table cell values) and three factor nodes (rep-
resented as squares).

evidence in a table interpretation framework. Table captions
often encode the context in which tables need to be inter-
preted as well as the expanded form of abbreviations used
in tables. In certain cases, captions encode units information
associated with literal values in the table. Such information
also can be found in the text surrounding the table.

In the case of open government data, the dataset landing
page provides valuable information related to the dataset.
Dataset name, description, tags, owner (agency) provide
important context information for interpreting the dataset.
The dataset landing page also point to additional documents
which provide a detailed description of the dataset. Such
documents often describe complex abbreviations used in
the dataset. Parsing such documents will be useful in un-
derstanding and expanding abbreviations commonly used in
government data.

We need to extend our framework to incorporate this ad-
ditional evidence and context. One possible approach would
incorporating it in our Wikitology query module. Using ad-
ditional evidence, Wikitology can serve better results, which
can lead to an improvement in the performance of the algo-
rithms.

Human in the Loop. While we have proposed an auto-
matic framework for interpreting and representing tabular
data as linked data, it may be helpful to develop a frame-
work with human in the loop to make the linked data more
useful and customized for certain applications.

Depending upon the application wants to exploit the gen-
erated linked data, users may wish the modify the generated
interpretation. Some applications may wish to have more
general classes and properties describing the data as com-
pared to specific classes. If our framework chooses a more
general class, user may be able to correct it by selecting a

Figure 6: Interaction between variables in a table

more specific class.
The intended meaning of the table maybe encoded in the

structure of the table. The reasoning behind structuring the
table in one form over the other is because the creator of the
table intends to convey the context in which the table should
be interpreted. Presently our framework does not take struc-
ture into consideration and works well with simple tables
(m columns and n rows). A human in the loop will allow
modifications to any incorrect interpretation generated by
the framework.

Sampling and Interpreting. Datasets from open govern-
ment data tend have large number of data rows. Dataset
1425, for example, has more than 425,000 data rows. Per-
forming either the heuristic techniques or our joint inference
process over such a large table is not feasible. However, in
most cases it will not be necessary since a good model of the
table’s meaning can be developed by looking at a modest-
sized sample. This model can then be used in conjunction
with separate techniques to process the rows that were not
part of the sample. The details of how large a sample is
needed, how to select it, and how to subsequently process
the rows outside the sample remain to be determined.

Conclusion
Open government data must be converted from its native
form to linked data before we can obtain the many bene-
fits of a semantic representation. Doing so even for simple
tables is a complex process that currently requires human
input. Major tasks include discovering the table’s implicit
relations and properties, identifying the semantic classes as-
sociated with columns, and mapping cell values into ap-
propriate literals, class instances and existing entity objects.
We described preliminary work on automating these steps to
produce a linked data representation of the table relative to
a background linked data knowledge base. The results are
promising and can be used as a component in an interac-



tive environment that would allow a person to offer advice
to improve the accuracy of the translation.
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