
Content-based prediction of
temporal boundaries for events in Twitter

Akshaya Iyengar, Tim Finin and Anupam Joshi
Department of Computer Science and Electrical Engineering

University of Maryland, Baltimore County
Baltimore, Maryland 21250

email: {akshaya1,finin,joshi}@umbc.edu

Abstract—Social media services like Twitter, Flickr and
YouTube publish high volumes of user generated content as a
major event occurs, making them a potential data source for
event analysis. The large volume and noisy content of social media
makes automatic preprocessing essential. Intuitively, the event-
related data falls into three major phases: the buildup to the
event, the event itself, and the post-event effects and repercus-
sions. We describe an approach to automatically determine when
an anticipated event started and ended by analyzing the content
of tweets using an SVM classifier and hidden Markov model.
We evaluate our performance by predicting event boundaries on
Twitter data for a set of events in the domains of sports, weather
and social activities.

I. INTRODUCTION

The increased use of social media websites like Twitter
has created vast amounts of content generated by people
from different countries and diverse backgrounds. Due to its
broad reach, Twitter has been effectively used not only for
commercial purposes but also for social causes. The power
of this medium was seen during the 2011 Egyptian protests
where it was one of the primary modes of communication for
both participants and organizers of the protest.

The popularity and dynamic nature of Twitter allows us to
chronicle events in real-time. In many cases the tweets are by
users who are participating in or immediately affected by the
event. For events that transpire over time and space, such as the
dispersal of an oil spill, a hurricane or a spreading wildfire,
we can use this data to analyze how the event progressed,
traveled geographically and identify its major sub-events. We
can also study the reactions of people to disaster relief efforts.
For such analysis, due to the large volume of tweets, automat-
ically categorizing the information into temporal classes is an
important preprocessing step.

Our goal is to automatically determine when an event starts
and when it ends, segmenting the event-related data into three
major phases: the buildup to the event, the event itself, and
the post-event effects and repercussions. In this study, we have
focused on what we can learn by analyzing the content of the
tweets about the event. The message volume also provides an
important and valuable signal, but is largely independent of
the content signal, which is the focus of this study. Future
work will combine content, volume and context features for
the event segmentation task.

We present a system that classify event data into temporal
classes and then uses a hidden Markov model and other meth-
ods to predict event boundaries. We identify key challenges
that arise due to the noisy nature of data on Twitter and similar
social media systems.

II. BACKGROUND AND RELATED WORK

In this research, we analyze the data, not only during an
event but also before and after it. Most of the current research
has been in detecting events by continuously monitoring the
Twitter data stream. To our knowledge, this is the first research
on detecting temporal boundaries from content for anticipated
events like sports games, public events and weather events
in large pre-collected datasets. Since approach uses only the
content of tweets and does not depend on volume information,
it is applicable when accurate estimates of volume are not
readily available.

There has been some research on detecting and analyzing
events on Twitter. Shamma et al. [1] analyzed the Twitter
time line to identify the structure of broadcast events. Event
summarization using HMMs to provide better search results
is described by Chakrabarti et al. [2]. Sakaki et al. [3] detect
a target event in Twitter using Kalman filter and particle
filters. A system to analyze social media data to understand
events in described in Sheth et al. [4]. Early work by Java et
al. described techniques to automatically classify a person’s
intent in publishing a tweet [5]. The use of social media in
disaster events and emergency response has also been studied
by several groups [6]–[8].

III. DATA COLLECTION AND LABELING

We applied our techniques on multiple events from different
domains, including sports (e.g., football and cricket), weather
(e.g., hurricane) and social events (e.g., the 2011 UK royal
wedding). The data collection, storage and preprocessing was
done using TweetCollector, a twitter data management system
that developed by our research group.

The gold standard training data for each event was annotated
by hand to identify the temporal boundaries. Individual tweets
were treated as data instances which were ordered by their
timestamp and labeled as either before, during or after. Table I
shows some sample of labeled tweets from the SuperBowl
XLV dataset. It is observed that for many events, close to

TABLE I
SAMPLE TWEETS FROM SUPER BOWL DATASET WITH CLASS LABELS

Label Tweets

Before Guess ima hop in the shower and stay home for the
superbowl...
Go Packers ! Best wishes to all the supporters in
Spring Green WItonight. http://bit.ly/aYyj6O

During Touch Down Packers Booooooooooom!!7-0
:’(49 secs left and the packers are winning.
#nobueno

After Packers won #superbowl http://myloc.me/htWYp
PACKERS!!! yay! Steelers lost!!!

TABLE II
NUMBER OF TWEETS IN EVERY CLASS BY EVENT

Event Before During After Total
Superbowl XLV 3863 3893 3889 11645
India v Australia CWC 2792 2615 3310 8717
India v Pakistan CWC 11393 13732 10444 35569
India v Sri Lanka CWC 7571 10464 9952 27987
Royal Wedding 3413 5275 4238 12926
Hurricane Igor 4547 5124 4768 14439

the transition points, it is hard to identify a single accurate
separation point. Due to space constraints, details of how we
resolve this issue, can be found in [9].

Additionally, there are many tweets which cannot be clas-
sified into either of the classes, merely by looking at the
content alone. Some of the causes for this may be because
they do not contain any temporal indicators or because they are
spam. Since we would always find such instances in the real
world data stream, we believe it is important that our system
performs well despite being given such noisy data. Hence we
assign classes to them as well. An alternative would be to
ignore tweets containing no temporal information.

After deciding the event boundaries on the entire data for
a particular event, we sample the data to get reasonably sized
dataset with fairly balanced classes . All samplings were done
while maintaining the chronological order of the tweets. Thus
if we reduce the dataset to one-tenth, we do so by taking every
tenth instance in a bucket. Table II shows details of the some
of our datasets.

IV. APPROACH AND SYSTEM ARCHITECTURE

In order to estimate temporal boundaries, our aim is to learn
from the datasets, the general features that are most indicative
of the time of occurrence of a tweet relative to the event. We
explored possible features like bag-of-words and verb phrases.
We trained a multi-class support vector machine (SVM) to
classify the event data into the three temporal buckets and used
different algorithms to estimate the boundaries. Figure 1 shows
our high level system architecture. The following sections give
a brief overview of each component of our system.

A. Feature Generation

Once the datasets were labeled, we converted each data
instance into a feature vector containing feature number and
value. The feature number is fixed for the entire dataset. Due to
large number of null valued features, we used a sparse feature

Fig. 1. We use supervised learning to construct a classifier that predicts
whether a tweet occurs before, during or after an event. The final event
boundaries are determined by analyzing the tweet stream using a simple local
error-minimization algorithm or a hidden Markov model.

vector (SFV) where all the null values are assumed implicitly.
The following sections discuss the features we used and how
their values were calculated.

Bag of Words. Bag of words (BOW) is a very commonly
used feature. In this method, each instance is treated as group
of words. We build an index of all words seen in the dataset.
Every word has a unique id which is also used as a feature
number. A word count is calculated for every word present
in a tweet. Every word from the unigram index, not present
in the current instance gets a zero value. For the experiments
discussed in this paper, we consider only unigram features.

Before splitting the tweets into words, we get rid of URLs,
retweet symbols (denoted by RT) and user mentions (starting
with @user-name) as these are not words. We keep hashtags
(denoted by #mytag) as they are a valuable feature and are
query terms in many cases. Presently we are not dealing with
punctuation in any special way.

The Twitter data is extremely noisy. Users use many ab-
breviations, both standard and ad hoc, to accommodate the
short message length. The informality of the genre results in
the common use of special characters and terms (e.g., URLs,
hashtags, emoticons) and the presence of many uncorrected
errors in spelling and grammar. The following examples of
tweets from the cricket datasets demonstrates the need for
specialized parsers that can handle the noise that is typical
of user generated content on social media websites.

Watchin cricket is sooooo borin http://bit.ly/aYyj6O
... & I.N.D.I.A. is in F.I.N.A.L.S. for Cricket World Cup
2011 - against Sri Lanka, a strong team indeed. Looking
forward to Saturday.
RT @Mariyaaa H Yeh it is :(even am watchin #cricket
dis time its quite intrestin u kno lmfao

Verb-based Features. When human annotators determine
which class, before, during or after an event, a given instance
belongs to, we look at the tense of the sentence relative to the
event. The verb phrases used in a sentence and their types,
are an important indicator of the tense of the sentence. We
use this idea to generate verb-based features using a two step
process.

1) Identifying verbs. We first annotate each instance with
its part-of-speech (POS) tags using the pre-trained

TABLE III
A SUBSET OF THE PENN TREEBANK POS TAGS FOR VERBS

Tag Description
MD Modal
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present

left3words-wsj-0-18 model from the Stanford Log-linear
POS Tagger [10]. This tagger uses the Penn Treebank
Tagset (PTB) discussed in [11]. AN example of the
tagged output is: the/DT doctor/NN is/VBZ examin-
ing/VBG the/DT effects/NNS that/WDT the/DT treat-
ment/NN has/VBZ on/IN the/DT patient/NN ./.

2) Identify verb tag phrase. We identify any sequence of
verbs in terms of their tag phrases. Table III shows the
subset of the tags from [11] that have been used for our
verb features. In the above example we have two such
phrases: VBZ VBG (is examining) and VBZ (has).

We experimentally chose 36 verb features as described in the
sections below.

Grammatically correct Verb Features. In order to identify
the commonly occurring verb phrases, we created a set of
grammatically correct sentences encompassing all the different
kinds of tenses occurring in the language. For each of the three
tenses Present, Past and Future, we used sample sentences
from the simple, perfect, progressive and perfect progressive
tenses. We found a total of 18 unique verb tag phrases across
all the tenses. We then tagged a test set of grammatically cor-
rect sentences and found that these 18 tag phrases accounted
for all the verb phrases occurring in the test set. Hence we
treat these as our “gold standard” verb features.

Verb Features from Twitter. Twitter status updates often
consist of sentence fragments or otherwise ungrammatical
sequences and are rife with mis-spellings, odd abbreviations,
URLs, hashtags and other non-word terms. Moreover, the
standard conventions for capitalization and punctuation are not
followed. As a result, there are common phrases occurring
in tweets which are consistently mis-tagged by the Stanford
POS Tagger, which was trained on well formed text from
Wall Street Journal articles [10]. To overcome this, we find
additional verb tag phrases occurring in the our datasets. We
apply the tagger on a dataset created by combining tweets
from events mentioned in Table II to select 18 verb phrases
that each occur more than 50 times.

Calculating Feature Values. For the bag-of-words features,
we use unigram id as feature number and word count in an
instance as feature value . However since we rarely found a
verb phrase occurring multiple times in an instance, for the
verb feature we use a boolean value of 1 or 0 depending on
whether the verb phrase occurred in the instance.

go packers ! bep was lame at 1/2 time.

TABLE IV
CLASSIFICATION ACCURACIES WITH DIFFERENT FEATURE SETS

Dataset BOW BOW+gold BOW+all
Superbowl XLV 62.02% 61.85% 61.62%
India v Australia CWC 72.79% 72.69% 72.91%
India v Pakistan CWC 66.57% 66.48% 66.52%
India v Sri Lanka CWC 70.87% 70.80% 71.00%
Royal Wedding 55.29% 55.34% 56.16%
Hurricane Igor 71.62% 71.55% 71.58%

1:1 2:1 77:1 166:1 178:1 310:1 665:1 3897:1 4952:1
6304:1 17704:1

B. Training Classifiers

After converting the datasets into SFV format, we used this
data to train models that can classify a given tweet into one
of our three classes: before, during or after. Since there are
three classes, we use the multiclass support vector machine
provided in SVM Light [12]. A separate SVM for each of the
seven datasets mentioned in Table II. We evaluate accuracies
for different values of parameter C, which is the tradeoff
between training error and margin. Increasing C increases the
complexity of the model allowing it to handle more complex
datasets. After trying values of C from 1 to 100,000, we
empirically determined 30,000 to be a good value.

We performed a ten fold cross-validation for each event
dataset. Since we are dealing with temporal aspect of data, all
our datasets are chronologically ordered by their time stamp.
We want to maintain this relative ordering or data through
the entire process. Hence we do not shuffle out data while
making the split. For dividing into ten folds, we put every
10th instance in the same bucket. We use the accuracies of
each fold to calculate the total accuracy of the system. We
then combine all the ten test folds back into the original order
before the split. Thus for each dataset we get a new predicted
class labels for all instances.

For evaluating the usefulness of the different features we
built models using three groups of features: bag of words, bag
of words and “gold verbs”, and bag of words and all verbs.
We found that the verb features did not provide any significant
boost to accuracy as seen in Table IV. This may be due to the
noisy data and we intend to use Twitter specific POS taggers
in the future [13]. Hence, in this paper we present results
obtained using only the bag-of-words feature for all further
experiments. Detailed experimental results using all the feature
sets have been provided in [9]. We believe that our analysis of
verbs and their potential use as features is a small step in the
direction. We could add more features that are specific to a
domain like sports (e.g., wins, lost, playing) that give temporal
clues about a tweet. We could also use temporal terms (e.g.,
tonight, tomorrow, today, now, later) in conjunction with the
verbs and use their presence as features in the future.

Improving Accuracy using Sliding Windows. We further
improve the classifier accuracy by using a sliding window
approach. In this case we take a window of a fixed size
and slide it over our sequence of predicted class labels. A

Fig. 2. Classification accuracy is improved by computing a simple “moving
average” that labels each tweet with the most common class within a window
around it.

window of size X around a data instance consists of X/2
instances on both its sides. For each data instance we take
a majority vote of class labels in the window and modify its
class label accordingly. This gives us a smoothing over the data
by using the density of predicted labels. Figure 2 shows the
improvement in accuracies observed. We have tried smoothing
with window of different sizes in {1, 10, 20, 30, 50, 100}.

We notice that for each dataset, the accuracy keeps on
increasing significantly till window size 20. After that the
boost in accuracy is low. For window sizes 30, 50 and 100
the difference is less than 1% in most cases. Even though
the number of labels modified increases it does not cause a
significant improvement in the accuracy. Hence we determined
that window sizes of 30 and 50 were reasonable for all our
further experiments.

C. Estimating Temporal Boundaries

The use of sliding windows discussed in previous section
improved our classification accuracies significantly. Once we
get the predicted class labels for the dataset, we develop a
technique to draw the two event boundaries while minimizing
the error. We calculate error for each of the two bound-
aries separately. Error is calculated as the sum of proportion
of misclassified instances. We place each boundary where
its classification error as described above is minimum. We
evaluated two approaches: a simple local error minimization
algorithm applied independently to the two boundaries and a
hidden Markov model applied to the entire stream.

The Cuts Algorithm. Our data consists of three classes,
before, during and after, encoded as 1, 2 or 3. Our classifier
combined with the sliding window gives us a sequence of
labels. We maintain the chronological order or instances
throughout the process. Hence the final predicted labels are
also ordered by time. Thus an ideal prediction sequence would
be a sequence of 1s followed by a series of 2s which is then
followed by series of 3s. Though our smoothing algorithm
improves the accuracy of the classifier, we still have misclas-
sifications. Here we discuss an approach to draw the event
boundaries with reasonable accuracy despite misclassifications
in the sequence.

We present the algorithm below for deciding where to make
a cut:

1) For every point in the sequence count the number of
errors occurring by making the cut at that point

2) Minima := List of indices of points with minimum error
3) Cut Location := midpoint(rightmost minima index,

leftmost mimima index)
The error for the start cut separating the before and during
segments is just the sum of the mis-labeled tweets, i.e. those
labeled with a 2 or 3 to its left and the number labeled with
a 1 to its right. Similarly, the end cut error is the sum of the
tweets labeled with a 3 to its left and the number labeled with
a 1 or 2 to its right.

Hidden Markov model. In this case we assume our system
to be a Markov process, where we cannot observe the actual
states. We observe the outcomes based on each state which is
the sequence of predicted states. According to our assumption
our system has 3 states, before (B), during (D) and after (A).
In our state diagram, B can be followed by B or D. D can be
followed by D or A. A can be followed by A only or reach
end. Each state is a series of 1s , 2s and 3s. Ideally state B
would contain all 1s, followed by state D which contains only
2s which is then followed by state A which contains only 3s.

We use the Viterbi algorithm to predict the most likely
sequence of states, given a sequence of observations of 1s,
2s, and 3s. We use the hmmviterbi function available in the
statistics toolbox in Matlab. This needs a transition matrix and
an emission matrix in addition to the observed sequence. We
obtain the emission matrix from SVM confusion matrix. The
transition matrix T(i,j) is the probability to transition from
state i to j. For approximating the transition probabilities, we
have roughly 1/3 before, 1/3 during and 1/3 after data. But
the probabilities have to be scaled, to the number of tweets,
since they represent the probability of transitioning to a new
state after each tweet. So if the data set to be analyzed has
N tweets and P = 3/N, then the transition matrix for Before,
During, After would as shown in Table V.

Before (B) During (D) After (A)
Before (B) 1-P P 0
During (D) 0 1-P P
After (A) 0 0 1

TABLE V
TRANSITION MATRIX FOR HMMVITERBI FUNCTION

The function returns a sequence of likely states, based on the
transition matrix, the emission matrix and observed sequence.
Due to the transition matrix specified we get a sequence
of Before followed by During which is followed by After.
Hence we can estimate at which observation to draw the event
boundaries.

V. RESULTS AND EVALUATION

We evaluate our system by training individual event clas-
sifiers and predicting the boundaries for six different real

TABLE VI
ACCURACY OF BOUNDARY PREDICTIONS FOR INDIVIDUAL EVENT

CLASSIFIERS. TABLE A (TOP) USING CUTS ALGORITHM WITH SMOOTHING
BY SLIDING WINDOW SIZE = 30. TABLE B (BOTTOM) USING HMMS WITH

NO SMOOTHING

Tweets % Tweets Time Difference
Dataset Cut

1
Cut
2

Cut
1

Cut
2

Cut 1 Cut 2

Superbowl
XLV 2011

88 99 0.76% 0.85% 9m 20s 51s

India vs Aus-
tralia CWC

7 135 0.08% 1.55% 35s 10m 55s

India vs Pak-
istan CWC

35 41 0.10% 0.12% 50s 32s

India vs Sri
Lanka CWC

766 8 2.74% 0.03% 25m 8s 5s

Royal
Wedding

1430 915 11.06% 7.08% 1h 40m
15s

51m 40s

Hurricane Igor 68 2181 0.47% 15.10% 12m 51s 22h 58m

Tweets % Tweets Time Difference
Dataset Cut

1
Cut
2

Cut
1

Cut
2

Cut 1 Cut 2

Superbowl
XLV 2011

76 101 0.65% 0.87% 7m 50s 51s

India vs Aus-
tralia CWC

0 94 0.00% 1.08% 0s 7m 10s

India vs Pak-
istan CWC

28 1 0.08% 0.00% 36s 1s

India vs Sri
Lanka CWC

368 13 1.31% 0.05% 9m 17s 7s

Royal
Wedding

159 178 1.23% 1.38% 9m 34s 7m 59s

Hurricane Igor 69 1684 0.48% 11.66% 12m 51s 18h 46m
22s

world events. We demonstrate the general applicability of our
approach by building a domain specific classifier for sports
that performs as well as our individual classifiers.We propose
three metrics to compare the predicted and the true temporal
boundaries an event. In this section present the results for the
cut made to datasets smoothed by window of size 30.

1) Number of tweets between true and predicted boundary
2) Number of tweets between true and predicted boundary

as percentage of size of dataset
3) Difference in time between true and predicted boundary

A. Individual classifier

Table VI presents the accuracy with which we are able to
detect event boundaries.We notice that the HMM approach
is more accurate than the cuts algorithm in many cases and
almost similar is the rest. This is because the HMM model uses
more information from the data sequence. It accounts for the
sequences of transitions and bases the state change upon that.
On the other had the cuts algorithm, only minimizes the error.
It does not learn anything from the sequence data. Since the
cuts algorithm tries to minimize error, it does better prediction
on smoothed data. For HMM using unsmoothed data proves
to be a better option. We find sliding window of size 30 to be
a good estimate for the cuts algorithm whereas for the HMM
technique we directly use class labels predicted by the SVM.

Overall our system does very well for sporting events. In
most cases we can predict within one minute of true boundary.

However it does not do as well for the Royal Wedding and
Hurricane Igor. We believe this is due to the nature of those
events. Sporting events have only one major event and there
are no parallel events occurring. In the Royal Wedding there
were many major sub-events like the red-carpet, arrival of
The Queen, the bride and groom and the actual ceremony.
Hurricane Igor traveled a few days hitting different geographic
locations, causing the transitions to be very unclear. Hence it
is hard even for humans to decide the true boundaries in these
events. Figure 3 shows us the accuracies in predicting time
boundaries for some events using a time line.

Fig. 3. Boundary bucket numbers are indicated at the top of each boundary
line. Figure shows the boundaries for the Royal Wedding. Fig.c (Bottom)
shows the boundaries for Hurricane Igor.

B. Domain specific classifier

To evaluate the general applicability of our approach we
build a domain specific classifier for sports using our four
sports datasets. We trained on three events and tested on
the fourth. Table VII compares the accuracies in predicting
time boundaries using the time difference metric. It compares
performance on each event by the event specific classifier with
the domain model. We notice that the results are accurate with
some predictions being less than 1 minute in real time. Another
observation is that, we can detect the event end boundary
accurately in all cases. This is because there are terms specific
to victory and loss like won, lost, congratulations which occur
in only after the game is over and in high volumes allowing
the classifier to be very accurate. Figure 4 shows that we
are very close in predicting the Super Bowl event boundaries,
despite being trained on data from three cricket games. This
demonstrates the fact that our approach is general in nature

TABLE VII
COMPARING ACCURACY OF INDIVIDUAL MODEL WITH SPORTS DOMAIN

MODEL USING TIME DIFFERENCE METRIC FOR CUTS ALGORITHM

Event Individual Model Sports Domain Model
Dataset Duration Cut 1 Cut 2 Cut 1 Cut 2
Superbowl
XLV 2011

11h
30m

9m 20s 51s 17m 1s 3m 18s

India vs Aus-
tralia CWC

24h 35s 10m
55s

8m 26s 1m 13s

India vs Pak-
istan CWC

25h 50s 32s 13h
31m

9s

India vs Sri
Lanka CWC

24h 25m 8s 5s 42m
57s

1m 52s

and can be applied from specific events as well as abstracted
to a domain level.

Fig. 4. Figure shows the boundaries for the Super Bowl XLV. Boundary
bucket numbers are indicated at the top of each boundary line.

We also built a preliminary general classifier for events. Our
current general classifier is highly biased due to its very low
accuracy makes it difficult to detect change. We need more
datasets from different kinds of events to be truly general.
Our domain specific classifier is evidence that our approach is
applicable to the general problem.

VI. CONCLUSION AND FUTURE WORK

Determining the temporal boundaries of an event is required
by several tasks. In some cases, we may know that an event,
such as the outbreak of an infectious disease, has occurred
but do not have reliable estimates of when it began or ended.
In other situations, it can serve as a preprocessing step to
select tweets from a larger collection to drive the analysis of
an particular event. As a final example, we might track the
spread of a moving event, such as a wildfire or hurricane, by
treating its location in different regions as separate events.

We have described a machine-learning approach to predict-
ing the beginning and end of an event from the content of
Twitter status updates about it. This evidence can be combined
with other information such as the volume of tweets about an
event to produce more accurate results.

We trained an SVM classifier for temporal classification
and then applied boundary estimation techniques. Our results
show that this is an effective approach, with domain playing
an important part in the accuracy. Our system did better for
sporting events than it for the Royal Wedding. This shows

the difference in the nature people talk about different events.
We compared the results of a classier developed for an
individual event to general one trained on a collection of
events. In the future we aim to extend this work to learn a
better cross-domain model, with the intention of a possible
domain independent temporal classification model.Currently
only Twitter data is being used to build the model but we are
looking to use other sources as well.

Our approach assumes that the data covers the entire event
history, including periods before the event begins and after it
ends. We can use techniques described in [14], adapting the
approach to work on dynamic streams in real time.

ACKNOWLEDGMENT

This work was done with partial support from the Office of
Naval Research. We thank Ross Pokorny and Will Murnane for
TweetCollector and Professor Tim Oates for machine learning
advice.

REFERENCES

[1] D. Shamma, L. Kennedy, and E. Churchill, “Tweetgeist: Can the twitter
timeline reveal the structure of broadcast events?” in CSCW 2010, 2010.

[2] D. Chakrabarti and K. Punera, “Event summarization using tweets,” in
Proc. 6th AAAI Int. Conf. on Weblogs and Social Media, 2011.

[3] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twitter users:
real-time event detection by social sensors,” in Proc. 19th Int. Conf. on
the World Wide Web. New York: ACM, 2010, pp. 851–860.

[4] A. Sheth, H. Purohit, A. Jadhav, P. Kapanipathi, and L. Chen, “Un-
derstanding events through analysis of social media,” Kno.e.sis Center,
Wright State University, Tech. Rep., 2010.

[5] A. Java, X. Song, T. Finin, and B. Tseng, “Why We Twitter: Under-
standing Microblogging Usage and Communities,” in Proc. Joint 9th
WEBKDD and 1st SNA-KDD Workshop, August 2007.

[6] J. Sutton, L. Palen, and I. Shlovski, “Back-channels on the front lines:
Emerging use of social media in the 2007 southern california wildfires,”
in Proc. 2008 ISCRAM Conf., Washington, D.C., 2008.

[7] M. Latonero and I. Shlovski, “Respectfully yours in safety and service
emergency management and social media evangelism,” in Proc. 7th Int.
ISCRAM Conf., 2010.

[8] J. Rogstadius, V. Kostakos, J. Laredo, and M. Vukovic, “Towards real-
time emergency response using crowd supported analysis of social
media,” in Proc. CHI Workshop on Crowdsourcing and Human Compu-
tation: Systems, Studies and Platforms, 2011.

[9] A. Iyengar, “Estimating temporal boundaries of events using social
media data,” M.S. thesis, Dept. Comp. Sci. Elect. Eng., Univ. Maryland,
Baltimore County, Baltimore, MD, 2011.

[10] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich
part-of-speech tagging with a cyclic dependency network,” in Proc. HLT-
NAACL, 2003, pp. 252–259.

[11] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Building a
large annotated corpus of english: the penn treebank,” Computational
Linguistics, vol. 19, pp. 313–330, June 1993.

[12] T. Joachims, “Making large-scale SVM learning practical,” in Advances
in Kernel Methods - Support Vector Learning. MIT Press, 1999.

[13] K. Gimpel, N. Schneider, B. O’Connor, D. Das, D. M. J. Eisenstein,
M. Heilman, D. Yogatama, J. Flanigan, and N. A. Smith, “Part-of-speech
tagging for twitter: annotation, features, and experiments,” in In Proc.
Annual Meeting of the ACL, 2011.

[14] D. Kifer, S. Ben-David, and J. Gehrke, “Detecting change in data
streams,” in Proc. 30th Int. Conf. on Very Large Data Bases. Morgan
Kaufmann Publishers Inc., 2004, pp. 180–191.

[15] T. Finin, W. Murnane, A. Karandikar, N. Keller, J. Martineau, and
M. Dredze, “Annotating named entities in Twitter data with crowdsourc-
ing,” in Proc. NAACL Workshop on Creating Speech and Text Language
Data With Amazon’s Mechanical Turk. ACL, June 2010.

