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Abstract—Mobile Ad-hoc Networks (MANETs) are extremely
vulnerable to a variety of misbehaviors because of their basic
features, including lack of communication infrastructure, short
transmission range, and dynamic network topology. To detect and
mitigate those misbehaviors, many trust management schemes
have been proposed for MANETs. Most rely on pre-defined
weights to determine how each apparent misbehavior contributes
to an overall measure of trustworthiness. The extremely dynamic
nature of MANETs makes it difficult, however, to determine a
set of weights that are appropriate for all contexts. We describe
an automated trust management scheme for MANETs that uses
machine learning to classify nodes as malicious. Our scheme is
far more resilient to the context changes common in MANETs,
such as those due to malicious nodes altering their misbehavior
patterns over time or rapid changes in environmental factors,
such as the motion speed and transmission range. We compare
our scheme to existing approaches and present evaluation results
obtained from simulation studies.
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I. INTRODUCTION

In general, a mobile ad hoc network (MANET) is composed

of a dynamic set of nodes that rely on each other to relay

packets due to the lack of a fixed networking infrastructure.

MANETs have been widely used in a variety of military

scenarios, such as soldiers exchanging information for situa-

tional awareness on the battlefield, search teams coordinating

in combat search and rescue efforts, and real-time enemy

detection around a troop station.

Compared with traditional infrastructure-based networks,

MANETs are more susceptible to malicious attacks and ran-

dom failures due to their unique features such as constrained

node energy, error-prone communication media, and dynamic

network topology. Therefore, security is a key concern for

MANETs. Security threats in MANETs come from both

malfunction of mobile devices and subversion to these devices

by enemies.

To cope with the security threat posed by misbehaving nodes

in MANETs, a variety of solutions have been studied in the

past decade, such as misbehavior detection mechanisms [1],
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Fig. 1. This figure depicts a scenario where the use of a fixed formula with
pre-defined weights is not sufficient to accurately evaluate node trust.

[2], [3] and trust management schemes [4], [5], [6]. Trust

management schemes are used to evaluate a node’s behavior

and determine whether it is trustworthy or not in terms of how

cooperative it is. The majority of the current trust management

schemes rely on a pre-defined formula to determine the

trustworthiness of each node. However, a fixed formula is

not able to accurately distinguish the difference on a node’s

trustworthiness in many scenarios. Figure 1 depicts such a

scenario in which a fixed formula with pre-determined weights

cannot precisely describe the trustworthiness of mobile nodes.

In Figure 1, we find that the observer uses a fixed formula

with pre-defined weights to evaluate node trust. According

to the formula, node 1, 2 and 3 are equally trustworthy

in this scenario. However, it is true that nodes 1, 2 and 3

are equally trustworthy because they have exhibited different

types of misbehaviors with varying frequencies. In addition,

the weights ought to be adjusted according to the nature of

the misbehavior and the context in which the misbehavior

occurs, which is not feasible because of the dynamic nature

of MANETs. Thus, we argue that a pre-determined formula

cannot precisely indicate the trustworthiness of mobile nodes

in MANETs.

We describe SAT, SVM-based Automated Trust Manage-

ment, as an approach to evaluating the trustworthiness of

MANET nodes that uses the support vector machine technique

to learn how to combine evidence. Unlike the traditional trust



management schemes such as [7], [4], [5], [8], the SAT scheme

neither uses a fixed formula to calculate the trustworthiness of

mobile nodes, nor does it rely on a set of pre-defined weights

to punish various misbehaviors at different paces. Instead, a

SVM classifier is trained in SAT scheme and then used to

determine the trustworthiness of the nodes in an automated

manner.

This work offers two contributions. The first is the use of an

automated trust management scheme using the Support Vector

Machine (SVM) technique [9] to automatically determine

how each misbehavior should be punished and what the

trustworthiness is for each mobile node according to various

contexts. The second is the articulation of a set of sophisticated

attack patterns of the adversaries, which rarely have been

discussed in previous trust management schemes [4], [5], [8].

The SAT scheme assumes that adversaries can alter their

attack patterns from time to time. In addition, adversaries can

choose to conduct misbehaviors for various length of time.

By this means, we believe that the attack patterns used in

the simulation can better represent the actual behaviors of

adversaries in practice.

II. RELATED WORK

In the past decade, many research efforts have been made

to address the security needs for MANETs by means of trust

management [10]. The main goal of trust management is to

evaluate the actions of other nodes, and build a reputation for

each node based on the node evaluation result. The reputation

can then be used to determine the trustworthiness for other

nodes. The trustworthiness can be utilized to make choices on

which nodes to cooperate with, or even take action to punish

an untrustworthy node if necessary.

Trust is divided into direct trust and indirect trust [11].

Direct trust stems from the first-hand observations locally ob-

tained by a node itself, while indirect trust refers to the second-

hand observations released by other nodes. In MANETs, direct

trust cannot always provide comprehensive evaluation of the

target node due to exterior circumstances such as channel

conditions, temporary unavailability, interference, etc. At this

time, indirect trust is used to provide secondary information

to help evaluate the actual trustworthiness of the target node.

In [4], Buchegger et al. proposed the CONFIDANT protocol

to encourage the node cooperation and punish misbehaving

nodes. Michiardi et al. [5] presented a mechanism with the

name CORE to identify selfish nodes, and then compel them

to cooperate in the following routing activities. Patwardhan et

al. [8] studied an approach in which the reputation of a node

is determined by data validation.

In our previous research work [7], [12], we proposed a

multi-dimensional trust management scheme for MANETs. In

this framework, the trustworthiness of a node is judged from

different perspectives (i.e., dimensions), and each dimension of

the trustworthiness is derived from various sets of misbehav-

iors according to the nature of those misbehaviors. However,

each dimension of trustworthiness is still derived from a pre-

defined formula with a set of fixed weights, which still cannot

Fig. 2. The SAT Scheme

well adapt to complicated scenarios or context changes.

III. SAT: SVM-BASED AUTOMATED TRUST

MANAGEMENT

The SAT framework has two functional modules: Behavior

Data Collection and Trust Management as shown in Figure 2.

A. Behavioral Data Collection

The behavioral data collection module is responsible for

the collection of node behaviors and formation of behavioral

dataset. In this paper, a node’s behavior is described in terms of

the ratio of the amount of this behavior over the total amount

of packets that the node has received, such as packet drop rate

(PDR), packet modification rate (PMR) and RTS flooding rate

(RTS).

We use network simulations to generate behavioral dataset

and train a SVM classifier. Because the adversaries and

their misbehaviors are pre-defined in these simulations, the

behavioral data are collected and then labeled according to the

ground truth regarding adversaries. The trained SVM classifier

can then be distributed and deployed to mobile devices to

classify nodes in MANETs in which they participate. An

example training dataset is shown in Table I. Here, we create

a m-dimensional feature vector for each node. In the example

shown in Table I, m = 3.

During the testing stage, the Behavioral Data Collection

module on each node first observes and records the behaviors

of their neighbors. It also receives and integrates node behav-

iors reported by other nodes. In this paper, we use Dempster-

Shafer Theory [13] to combine the observations, as discussed

in details in our previous work [14].



Node ID PDR PMR RTS

1 90% 10% 0

2 2% 0 0

3 30% 60% 10%

4 5% 0 0

5 10% 0 90%

· · · · · · · · · · · ·

TABLE I
AN EXAMPLE OF THE TRAINING DATASET USED TO CLASSIFY MANET

NODES AS MALICIOUS OR NON-MALICIOUS.

B. Trust Management Using Support Vector Machine

Support Vector Machine technique [9] is used in our SAT

scheme to evaluate the trustworthiness of nodes in MANETs.

More specifically, we use SVMrank [15] in our experiments

to determine the trustworthiness of nodes in a ranked list.

Initially, each node observes and records neighbor behav-

iors, and these local observations are fed into the SVMrank

classifier to produce the initial trustworthiness in a ranked

list. Because each node can only observe behaviors of its

direct neighbors, the local observations are then exchanged

among nodes so that each node can also know the behaviors

of other nodes that are out of its radio range. The local

observations and foreign observations obtained from other

nodes are fused together using Dempster-Shafer Theory and

thus an updated behavioral dataset is generated. If the updated

behavioral dataset makes SVMrank classifier produce a ranked

list with different order than the previous one, then the updated

behavioral dataset is propagated to all neighbors. Once there

is not any change in the trust evaluation result when they

receive foreign behavioral data, the procedure terminates.

At this point, all the nodes have the same belief of node

trustworthiness.

IV. PERFORMANCE EVALUATION AND ANALYSIS

In this section, we examine the performance of the SAT

scheme, and its performance is compared to that of the

baseline mechanism. The baseline mechanism that we choose

here is the Multi-dimensional Trust management framework

(mTrust) discussed in our prior work [7], and our prior work

has shown that mTrust framework outperforms other well-

known mechanisms [7].

A. Adversary Model

In this paper, we assume that the adversary can conduct

multiple misbehaviors at the same time, and it can mix these

misbehaviors at any ratio. In addition, the adversary can alter

this ratio over time, and it can carry out the set of misbehaviors

for any arbitrary length of time. For instance, an adversary

A may determine at time t1 that it should equally conduct

the four types of misbehaviors (i.e., RTS flooding, packet

dropping, packet modification, and packet misroute); while at

time t2, A changes its misbehavior pattern to solely perform

RTS flooding attack.

Parameter V alue

Simulation area 600m× 600m

Num. of nodes 50, 100, 200

Transmission range 60m, 90m, 120m

Mobility pattern Random Waypoint

Node motion speed 5m, 10m, 20m

Num. of bad nodes 5, 10, 20

Simulation time 900s

TABLE II
SIMULATION PARAMETERS

Node ID Start End Drop Modify RTS

1 0s 900s 80% 20% 0

2 0s 900s 0 50% 50%

3 0s 900s 30% 30% 40%

4 0s 900s 20% 10% 70%

5 0s 900s 10% 0 90%

TABLE III
AN EXAMPLE OF MISBEHAVIOR SETUP FOR THE TRAINING STAGE.

B. Simulation Setup

We use GloMoSim 2.03 [16] as the simulation platform, and

table II lists the parameters used in the simulation scenarios.

We use four parameters to evaluate the correctness and effi-

ciency of the SAT scheme: Precision, Recall, Communication

Overhead (CO), and Convergence Time (CT). CO and CT are

defined as follows.

CO =
Number of Packets for the Framework

Total Number of Packets in the Network

CT = T ime taken to form a unique global view

Overall, the experiments can be divided into two phases:

the training stage and the testing stage. In the training stage,

there are totally 100 nodes in the simulated MANET, with five

of them being misbehaving nodes and the rest 95 nodes being

well-behaved nodes. These five misbehaving nodes conduct

a mixed set of various misbehaviors including packet drop-

ping, packet modification, RTS flooding, and fake observation

spreading, and the mixture rates for these misbehaviors may

vary among the misbehaving nodes. However, the mixture rate

for each misbehaving node is fixed throughout the training

stage. Table III depicts an example setup of misbehaviors for

our simulation. Note that Start and End denote the start time

and end time for the specified set of misbehaviors respectively.

Each value in the columns of Drop, Modify and RTS stands

for the percentage of the corresponding misbehavior over the

whole set of misbehaviors in the specified time range, and the

percentages of these three misbehaviors sum to one. Just take

the first entry as an example: 80% of misbehaviors conducted

by node 1 will be packet dropping and 20% of that be packet

modification during the time range between 0s and 900s. The

“rumor spreading” misbehavior will be defined separately.

In the testing stage, we vary the number of misbehaving

nodes by 5, 10 or 20 in different experimental scenarios, not

only the mixture rates for different nodes vary, the mixture

rate for the same misbehaving node conducts may also differ



over time. In this way, we guarantee that the training dataset

differs significantly from the testing dataset. In addition, some

adversaries may alter their attack patterns so as to make their

behaviors less deviated from the normal behaviors. We will

further discuss different attack patterns that are considered in

our experiments in Section IV-C2.

Each simulation scenario has 30 runs with distinct random

seeds, which ensures a unique initial node placement for each

run. Each experimental result is the average over the 30 runs

for this simulation scenario.

C. Simulation Results

The performance of SAT is observed and compared to that

of mTrust in several simulation scenarios. The simulation

results show that: (1) In general, SAT achieves a good perfor-

mance in terms of proper evaluation of node trustworthiness,

quickly convergence, and acceptable communication cost; and

(2) SAT outperforms mTrust especially in the scenarios in

which there are some insidious adversaries that periodically

alter their attack patterns. The simulation results are presented

in details below.

1) Overall Performance of SAT: To evaluate the perfor-

mance of the SAT scheme, we observe the performance of

SAT as well as that of mTrust in the following four scenarios:

different number of nodes, different radio ranges, different

percentage of misbehaving nodes, and different node motion

speeds. Given that the simulation area remains the same in all

these scenarios, we can observe from these scenarios the effect

of node density, radio range, percentage of adversary , and

node mobility, respectively. Note that each of the misbehaving

nodes mixes all the misbehaviors with a fixed rate in these

experimental scenarios. In addition, there are 5 adversaries

in the network except for the third scenario (i.e., different

percentage of misbehaving nodes), in which the number of

adversaries is 5, 10 or 20. The simulation results are showed

in the following Figure 3 and Figure 4.

Figure 3 shows that SAT yields an overall higher precision

than mTrust in all these four cases.We also find from Figure

4 that SAT outperforms mTrust in all cases in terms of recall.

Moreover, we also observe the performance of SAT and

mTrust in terms of communication overhead and convergence

time. The simulation results show that SAT produces a good

performance in that it converges in a short period of time with

a small communication overhead.

2) Effect of Various Attack Patterns: In this simulation sce-

nario, We compare the performance of SAT and mTrust under

different attack patterns. In the traditional trust management

schemes, adversaried are generally supposed to conduct a fixed

set of misbehaviors throughout the simulation. However, in

practice an insidious adversary may choose to periodically

alter its attack pattern so that its trustworthiness are harder

to get punished. For example, an adversary can change the

duration as well as the mixture rate of its misbehaviors from

time to time, which makes its behaviors not so diverse from

the normal behaviors. More specifically, we identify two novel

attack patterns, namely Short-term and Everchanging, in our

Node ID Start End Drop Modify RTS

16 0s 100s 30% 60% 10%

33 150s 300s 0 10% 90%

34 50s 250s 40% 30% 30%

44 400s 680s 50% 50% 0%

45 650s 820s 20% 0 80%

TABLE IV
AN EXAMPLE OF Short-term ATTACK PATTERN

Node ID Start End Drop Modify RTS

16 0s 200s 10% 70% 20%

16 200s 600s 30% 0% 70%

16 600s 900s 90% 10% 0

33 0s 500s 0 10% 90%

33 500s 900s 30% 30% 40%

· · · · · · · · · · · · · · · · · ·

TABLE V
AN EXAMPLE OF Everchanging ATTACK PATTERN

simulation scenarios. Table IV and V give an example of

Short-term and Everchanging attack patterns, respectively.

To observe the possible effects of various attack patterns on

trust management, we deploy these two novel attack patterns

in our simulation. To the best of our knowledge, traditional

trust management mechanisms assume that the adversaries

generally do not change their attack patterns. Therefore, the

Comprehensive attack pattern is used as the baseline for com-

parison purpose, in which each adversary chooses a different

mixture rate of misbehaviors and keeps this rate unchanged

throughout the whole simulation. The simulation results are

shown in Fig. 5.

From Fig. 5(a) and Fig. 5(b) we observe that SAT always

achieves a better performance than mTrust in terms of a

higher precision score as well as a higher recall score. Fig.

5(c) depicts that it generally takes less time for SAT than

mTrust to converge. Moreover, we see from Fig. 5(d) that

SAT usually introduces a smaller communication overhead

than mTrust does under all three attack patterns. Therefore, we

can conclude from Fig. 5 that when compared to mTrust, SAT

always yields a better performance under all attack patterns in

that SAT achieves higher precision and recall in shorter time

and with lower communication cost. Given that these novel

attack patterns can help adversaries better hide themselves

from being caught, it is more likely that the SAT scheme will

work better in practice.

V. CONCLUSION

The purpose of trust management schemes is to prop-

erly evaluate the trustworthiness of nodes and thus identify

and mitigate misbehaviors. We presented an automated trust

management scheme for MANETs that uses an SVM-based

classifier to assess the trustworthiness of nodes. In addition,

we have studied several novel attack patterns that have rarely

been discussed by the traditional mechanisms. Simulation

results have proven that our approach outperforms the previous

schemes and is more resilient to some extremely adverse cases,
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Fig. 3. Precision of SAT V.S. mTrust

such as networks with a large fraction of misbehaving nodes

or where nodes are moving quickly, as in a highway-based

vehicular MANETs.

REFERENCES

[1] Y. Zhang and W. Lee, “Intrusion detection in wireless ad-hoc networks,”
in MobiCom ’00: Proceedings of the 6th annual international conference

on Mobile computing and networking. New York, NY, USA: ACM,
2000, pp. 275–283.

[2] S. Marti, T. J. Giuli, K. Lai, and M. Baker, “Mitigating routing
misbehavior in mobile ad hoc networks,” in MobiCom ’00: Proceedings

of the 6th annual international conference on Mobile computing and

networking. New York, NY, USA: ACM, 2000, pp. 255–265.
[3] A. Patwardhan, J. Parker, A. Joshi, M. Iorga, and T. Karygiannis, “Secure

routing and intrusion detection in ad hoc networks,” in Proceedings of

the Third IEEE International Conference on Pervasive Computing and

Communications, 2005. PerCom 2005. IEEE, March 2005, pp. 191–
199.

[4] S. Buchegger and J.-Y. Le Boudec, “Performance analysis of the
confidant protocol,” in MobiHoc ’02: Proceedings of the 3rd ACM

international symposium on Mobile ad hoc networking & computing.
New York, NY, USA: ACM, 2002, pp. 226–236.

[5] P. Michiardi and R. Molva, “Core: a collaborative reputation mechanism
to enforce node cooperation in mobile ad hoc networks,” in Proceedings

of the IFIP TC6/TC11 Sixth Joint Working Conference on Commu-

nications and Multimedia Security. Deventer, The Netherlands, The
Netherlands: Kluwer, B.V., 2002, pp. 107–121.

[6] Q. He, D. Wu, and P. Khosla, “Sori: a secure and objective reputation-
based incentive scheme for ad-hoc networks,” in Proceedings of 2004

IEEE Wireless Communications and Networking Conference, WCNC

’04., vol. 2, March 2004, pp. 825–830 Vol.2.
[7] W. Li, A. Joshi, and T. Finin, “Coping with node misbehaviors in

ad hoc networks: A multi-dimensional trust management approach,” in
Proceedings of the Eleventeenth International Conference on Mobile

Data Management, 2010. MDM ’10. IEEE Computer Society, May
2010.

[8] A. Patwardhan, A. Joshi, T. Finin, and Y. Yesha, “A data intensive
reputation management scheme for vehicular ad hoc networks,” in
Proceedings of the 3rd Annual International Conference on Mobile and

Ubiquitous Systems - Workshops, Mobiquitous ’06., July 2006, pp. 1–8.
[9] N. Cristianini and J. Shawe-Taylor, An introduction to support vector

machines : and other kernel-based learning methods, 1st ed. Cambridge
University Press, March 2000.

[10] J. Cho, A. Swami, and I. Chen, “A survey on trust management for
mobile ad hoc networks,” Communications Surveys Tutorials, IEEE,
vol. PP, no. 99, pp. 1 –22, 2010.

[11] G. Theodorakopoulos and J. S. Baras, “Trust evaluation in ad-hoc
networks,” in WiSe ’04: Proceedings of the 3rd ACM workshop on

Wireless security. New York, NY, USA: ACM, 2004, pp. 1–10.
[12] W. Li, J. Parker, and A. Joshi, “Security through collaboration and trust

in manets,” ACM/Springer Mobile Networks and Applications (MONET),
pp. 1–11, 2010 (Online First).

[13] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ, USA:
Princeton University Press, 1976.

[14] W. Li and A. Joshi, “Outlier detection in ad hoc networks using
dempster-shafer theory,” in Proceedings of the Tenth International

Conference on Mobile Data Management: Systems, Services and Mid-

dleware, 2009. MDM ’09. IEEE Computer Society, May 2009, pp.
112–121.

[15] T. Joachims, “Training linear svms in linear time,” in Proceedings

of the 12th ACM SIGKDD international conference on Knowledge

discovery and data mining, ser. KDD ’06. New York, NY, USA:
ACM, 2006, pp. 217–226. [Online]. Available: http://doi.acm.org/10.
1145/1150402.1150429

[16] X. Zeng, R. Bagrodia, and M. Gerla, “Glomosim: a library for parallel
simulation of large-scale wireless networks,” ACM SIGSIM Simulation

Digest, vol. 28, no. 1, pp. 154–161, 1998.



50 100 200
70%

75%

80%

85%

90%

95%

100%

Number of Nodes

Rec
a

ll

 

 

mTrust

SAT

(a) Effect of Node Density

60 M 90 M 120 M
70%

75%

80%

85%

90%

95%

100%

Radio Range

Rec
a

ll

 

 

mTrust

SAT

(b) Effect of Radio Range

5 % 10 % 20 %
70%

75%

80%

85%

90%

95%

100%

Percentage of Misbehaving Nodes

Rec
a

ll

 

 

mTrust

SAT

(c) Effect of Adversary Percentage

5 M/S 10 M/S 20 M/S
70%

75%

80%

85%

90%

95%

100%

Node Motion Speed

Rec
a

ll

 

 

mTrust

SAT

(d) Effect of Node Mobility

Fig. 4. Recall of SAT V.S. mTrust
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Fig. 5. Effect of Various Attack Patterns on SAT and mTrust


