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Abstract
We describe work on representing and using a rich notion of
context that goes beyond current networking applications fo-
cusing mostly on location. Our context model includes loca-
tion and surroundings, the presence of people and devices,
inferred activities and the roles people fill in them. A key
element of our work is the use of collaborative information
sharing where devices share and integrate knowledge about
their context. This introduces a requirement that users can
set appropriate levels of privacy to protect the personal infor-
mation being collected and the inferences that can be drawn
from it. We use Semantic Web technologies to model context
and to specify high-level, declarative policies specifying in-
formation sharing constraints. The policies involve attributes
of the subject (i.e., information recipient), target (i.e., the in-
formation) and their dynamic context (e.g., are the parties co-
present). We discuss our ongoing work on context represen-
tation and inference and present a model for protecting and
controlling the sharing of private data in context-aware mo-
bile applications.

Introduction
Applications for smartphones are rapidly evolving to take
advantage of features available on the devices, especially lo-
calization capabilities. While location awareness is an im-
portant aspect of context-aware systems, context encom-
passes more aspects because other things of interest are also
mobile and changing. Examples include ambiance, nearby
people and resources, and the activities in which they are
engaged. In previous work (Chen, Finin, and Joshi 2005;
Chen and Joshi 2003) we presented an ontology to represent
various types of contextual information in pervasive com-
puting environments, specifically, smart meeting rooms. We
have further generalized the model to a light-weight, upper-
level context ontology (the Place ontology) that can be used
to reason about a general notion of context, as well as to
share contextual knowledge.

Our work is motivated by our vision of collective con-
text determination where devices share and integrate knowl-
edge about their context. In-situ P2P communication among
(fixed and mobile) wireless devices based on opportunistic
gossiping is used for sharing place information. Fixed de-
vices such as sensors and APs can be used to summarize sta-
tistically the place information overheard from passing-by
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mobile devices. Collaborating participants cannot always be
statically pre-identified; they frequently form dynamic ad-
hoc coalitions. This paper includes a general architecture for
these type of systems. Under these settings, users need sup-
port for appropriate levels of privacy to protect the personal
information their mobile devices are collecting including the
inferences that can be drawn from the information. For ex-
ample, in a healthcare scenario, if a user has an accident,
it might be right to disclose relevant information (medical
records, history, etc.) to the paramedics on the scene and
only while they are providing their services.

We advocate the adoption of semantic Web technologies
in mobile, collaborative context aware systems for two main
purposes: (i) creation of models for representing and reason-
ing about a high-level notion of context and (ii) specification
of expressive policies to control the sharing of contextual in-
formation. We are developing a system to integrate all these
ideas together.

We built a prototype system for a university environment
which aggregates information from a variety of sensors on
the phone (Google Android platform), online sources, as
well as sources internal to the campus intranet, and indi-
vidually infers the dynamic user activity using existing ma-
chine learning algorithms. For high-level, general activities,
the accuracy of our system is better than existing works.
For fined-grained, lower-level activities our system accuracy
lowers. We expect this to improve as we incorporate models
that allow for collaborative context inference. As a first step,
the system allows sharing of contextual information directly
between devices or through a server. To achieve this, each
device has a knowledge base (KB) that aligns with our Place
ontology. The system also implements a model for specify-
ing and enforcing privacy through declarative policies. The
policies allow users to specify situations under which they
allow sharing of their context information as well as the level
of accuracy at which such information should be shared. In
the next section we describe in more detail a general archi-
tecture for mobile collaborative context aware systems on
which we base our work, including a semantic model of con-
text. In section 3, we discuss our work on individual activity
recognition. In section 4, we present a model for specifying
and enforcing privacy through semantic Web-based declar-
ative policies. Finally, we discuss related work and future
directions of our work.
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General Architecture
Our focus is on semantic context representation for collabo-
rative, mobile context-aware systems where the devices, i.e.,
smartphones, share and integrate knowledge about their con-
text. Peer to peer communication among co-located nearby
wireless devices based on opportunistic gossiping is used
for sharing place information. Fixed devices such as sen-
sors and access points (APs) can be used to reposit, share,
and even summarize statistically the place information over-
heard from passing-by mobile devices.

Figure 1 depicts a general interaction architecture for this
type of systems. Sensors on devices sense the local con-
text of the user, using mobility tracking and ambient sensing
such as light, sound, and motion. The network component
opportunistically gathers and disseminates local context in-
formation to neighboring fixed or mobile wireless devices.
Its policy engine verifies the release policies to ensure con-
text dependent release of information in accordance to the
user preferences. Devices might interact directly or through
services on the Internet. Inferences such as current activity
can be drawn from the information collected by the sensors,
the context information gathered, and additional resources
(e.g., the user calendar and open geolocation KBs). The sen-
sor’s raw data as well as the inferred context knowledge is
stored in a local knowledge base on the device. Context-
aware applications and network components may use this
context knowledge to enhance their functionality. The lo-
cally inferred context knowledge can also be sent to context-
aware services located on the Internet. These services on
the Internet, verify, if needed, the statements (proof) of the
clients against the access policies. Depending on their func-
tionality, these services could also provide context informa-
tion of the user to other users.

Users need to be able to specify policies that provide ap-
propriate levels of privacy to protect the personal informa-
tion their mobile devices are collecting including the in-
ferences that can be drawn from the information. Further-
more, the policies need to be expressive, flexible, and al-
low for context-dependent release of information. Semantic
technologies represent a key building block for supporting
expressive context policy modeling, reasoning and adapta-
tion (Weitzner et al. 2004). We use semantic Web technolo-
gies to model a higher-level notion of context and to specify
high-level, declarative policies that describe users’ informa-
tion sharing preferences under given contextual situations.

Semantic Context Model
We consider elements of context that are particularly related
to mobile computing, and which can be exploited in many
applications including personal agents that proactively con-
trol activities on the phone such as being turned off during
a meeting, downloading relevant information, and enforcing
relevant privacy policies.

In current practice, the user’s location is captured at the
level of position, i.e., geospatial (latitude-longitude) coor-
dinates. A particular position can be mapped to a place or
geographic entity, such as a region, political division, pop-
ulated place, locality, and physical feature. Although posi-

Figure 1: Interaction among entities in a collaborative infor-
mation sharing, context-aware system.

tion and geographic place information are potentially valu-
able on their own, from the standpoint of context, place is
a more inclusive and higher-level notion: a location in con-
ceptual terms such as “at work,” “in a study group meet-
ing,” “at lunch,” “in class” –descriptions that combine a ge-
ographic place with the users activities and surroundings,
and the presence and activities of nearby people and devices.

We built a light-weight, upper level ontology to model
the concept of place in terms of activities that occur at that
place. We adopt description logics (Baader et al. 2003),
specifically the Web Ontology Language OWL (Bechhofer
et al. 2007), and associated inferencing mechanisms to de-
velop the model. OWL supports the specification and use
of ontologies that consist of terms representing individuals,
classes of individuals, properties, and axioms that assert con-
straints over them.

Figure 2 shows the core classes in the ontology and their
relationships. A User is associated with a Device whose
Position maps to a geographic place (GeoP lace) such as
“UMBC” and to a conceptual place (Place) such as “At
Work”. Some Geoplaces are part of others due to spatial
containment and such relationship (partof ) is transitive.
The mapping from Positions to GeoP laces is many to
one and the mapping from Positions to Places is many-
to-many (the same Position may map to multiple Places,
even for the same User; and, many Positions map to the
same Place). Mapping from Positions to Places is done
through GeoP laces (mapsto is a transitive property). An
Activity involves Users under certain Roles, and occurs
at a given Place and Time. Activities have a composi-
tional nature, i.e., fine-grained activities make up more gen-
eral ones. Ambiance encapsulates concepts describing the
environment of the User (e.g., noise level, ambiance light,
and temperature). To support the mapping of positions to
places, we rely crucially on activities. This approach reflects
our pragmatic philosophy that the meaning of a place de-
pends mainly upon the activities that occur there, specially
the patterns of lower-level activities. The idea applies at both
the individual and collaborative level. For a user individu-
ally, the patterns of actions can help identify a place from
that users perspective. The patterns of actions common to
users can help identify a place in a collaborative manner.
For example, a park or a library would see similar patterns



Figure 2: The Place ontology models the concept of place in
terms of activities that occur there.

from multiple users.

The Knowledge Base
The knowledge base (KB) on each device aligns with the
Place ontology. Using this ontology, devices can share infor-
mation about their context. Given the position of the device
(i.e., geospatial coordinates) and the users activity (if avail-
able), we assert the corresponding knowledge in the KB. In
this section we focus on how we populate the KB with geo-
place information. Activity and place inference are covered
in the next section.

We use the Android Location API to obtain the position
of the device. Position on Android phones is determined
through location providers such as the device’s GPS and the
network (which is based on availability of cell tower and
WiFi access points). Given the Position of the user’s de-
vice, we assert the corresponding triples into the KB (see
Figure 3). Then, we use additional online resources, specif-
ically GeoNames spatial KB (RDF version) and its associ-
ated services, to infer the user’s GeoP lace by:

1. Using reverse geocoding services to find the closest
GeoNames entity to the current position

2. Querying GeoNames through SPARQL to get further in-
formation about that entity

3. Applying transformation rules to the data obtained from
GeoNames (see Figure 3)

4. Using OWL inference to obtain the triples corresponding
to the spatial containment of entities (transitivity of the
partof relationship)

5. Using ad-hoc property chains (Figure 4) to infer knowl-
edge about a user’s geoplace based on the places his/her
associated device is observed.

Activity and Place Inference
The system uses machine learning algorithms to recognize
activity (e.g., ”sleeping”, ”walking”, ”sitting”, ”cooking”),
coarse-grained geographic place, and conceptual place (e.g.,
”at work”, ”at home”) at different levels of granularity. The
current experiments are confined to a University domain and

Figure 3: An excerpt of the assertions made to the KB (left)
in Turtle syntax and an example of a Jena rule used to inte-
grate knowledge from GeoNames (right)

Figure 4: Property chain axioms to assert knowledge about a
user’s location. a) Device is observed at the place whose lo-
cation maps to; b) User’s location is the place where his/her
associated device has been observed at; c) Generalization of
user location based on spatial containment (part of ).

the users are students and faculty. Furthermore, the experi-
ments are focused on learning to recognize an individual’s
context (activity and place). The general architecture (see
section 2 —General Architecture), however, is planned for
collaborative context inference. For high-level, general ac-
tivities, we obtained a high accuracy but with more coarse-
grained ones the accuracy drops. We expect this to improve
as we incorporate more complex models that allow for col-
laborative context inference.

The Dataset
We collected data for five users over the course of two weeks
using Android smartphones and an interactive data collec-
tion program (Figure 5. Three users are students and two
are faculty in the UMBC Computer Science Department.
The information we are collecting includes location, am-
biance light and noise, wifi scanning, bluetooth scanning,
current calendar event (if any), sensors readings (accelerom-
eter, magnetic field, orientation, and proximity), call statis-
tics (missed calls, answered calls, and duration), and phone
state (idle, in use, etc.). We collect the data every two, five,
or twelve minutes (set by the user according to current ac-
tivity duration) for a period of one minute. At the beginning
of each collection, the user is asked to enter the current loca-
tion (which includes coarse-grained geographic place, and
conceptual place) and activity. This information is used as
ground truth for the learning task. Multiple labels can be
selected to capture different levels of granularity (e.g., At
work:In Office:In Meeting). Hierarchy is currently not spec-
ified since we preprocess the data for each particular learn-
ing task we try and we know the hierarchy. Figure 6 shows



Activity Accuracy
At Home, At Work/ School, Elsewhere 99.0%
In Meeting, In Class, Elsewhere 94.94%

Table 1: Recognition accuracy for high-level, general activ-
ities using Decision Trees.

a user’s activity pattern on a Sunday, a weekday, and during
a week. Such visualizations help us understand the range of
activities performed by a user and could also be used to help
people plan their activities.

Experiments and Results
Different machine learning algorithms were used to clas-
sify the place and activity of the user given the particular
values for location, ambiance attributes, wifi and bluetooth
scannings, calendar data, etc.; in general, all the information
obtained from the phone (after some preprocessing). Using
the Weka Machine Learning Algorithms Toolkit (Witten and
Frank 2002), we have conducted several experiments vary-
ing the classification task to different combinations of place
and activity at different levels of granularity. High accuracy
is observed for high-level, general activities (see Table 1).
Our 99% accuracy for “At Home vs. At Work vs. Elsewhere”
is higher than the one reported in (Eagle and (Sandy) Pent-
land 2006) where they used a simple Hidden Markov Model
conditioned on both the hour of day as well as weekday or
weekend for the same classification task.

Table 2 shows the accuracy for a mid-level detailed ac-
tivity recognition task for a particular user and ten everyday
activities using different classifiers and with 10 cross fold
validation and 66% split validation testing options. Accu-
racy levels are comparable to those reported on (Lu et al.
2010) and (Bao and Intille 2004), although the focus on
those works is mainly recognition of a limited subset of nine
or fewer everyday activities consisting largely of ambulatory
motions. Overall, recognition accuracy is highest for deci-
sion tree classifiers, which is also consistent with (Bao and
Intille 2004). This might be due to the fact that rule-based
activity recognition appears to capture conjunctions in fea-
ture values. The Naive Bayesian assumptions of conditional
independence between features and normal distribution of
feature values may contribute to the weaker performance of
the approach. Furthermore, Bayesian algorithms usually re-
quire more training data to accurately model feature value
distributions.

We are currently studying to what extent activity and
place recognition can be generalized across users by train-
ing the classifier with one person’s data and testing it with
other’s. However, this requires more data than we currently
have which we are in the process of collecting.

Privacy Reasoning and Enforcement
In our prototype system, the context is shared among devices
by means of queries sent directly between them or through a
server. The integration occurs at each device and is currently
a simple operation where the results are added to the knowl-
edge base. Our prototype system has three privacy enforce-

Classifier 10 Fold 66% Split
SVM (LibSVM) 76.9231% 79.5699%
Decision Tree (J48 Trees) 91.97% 93.3133%
Naive Bayes 47.9638% 50.5376%

Table 2: Accuracy of different algorithms for activity recog-
nition of a particular user and ten everyday activities.

Figure 5: Our in-house Context Data Collection Program

ment points. Users specify privacy policies that regulate the
disclosure of (i) sensor information to the server (e.g., GPS
information), (ii) inferred context information to the server
(e.g., activity information), and (iii) inferred context infor-
mation to other users.

A central part of our policies is the definition of groups.
A user defines groups of contacts such as friends and fam-
ily which are stored in the KB too. The user also specifies
context dependent privacy policies and sharing preferences
for each group. Privacy policies are expressed as logic rules
over the KB. Our focus is currently not on the protocol used
by devices to exchange information, but on the privacy con-
trol mechanisms. Therefore, requests are simple messages
with the required information embedded in them. Whenever
a request is received, either at the server or at a device, the
privacy control module fetches the static knowledge about
the user (e.g. personal information and defined groups), the
dynamic context knowledge and the user specified privacy
preferences. Access rights are obtained by performing back-
ward reasoning confirms conclusions by verifying condi-
tions. Additionally, when access is allowed and according to
the user defined sharing preferences, certain pieces of the in-
formation mioght be obfuscated in order to protect user pri-
vacy. The implementation makes use of Jena semantic web
framework (Carroll et al. 2004). Privacy rules are defined as
Jena rules and Jena reasoning engine is used to perform the
reasoning. For the devices, we use AndroJena (Jena Android
porting) (Lorecarra 2009) which is a porting of Jena to the
Android platform.

Policies for Information Sharing
Privacy policies are represented as rules that describe which
information a user is willing to share, with whom, and un-
der what conditions. Conditions can be defined based on
attributes like a user’s current location, current activity or
any other dynamic attribute. We rely heavily on the notion
of group to define the subjects who are allowed to access



Figure 6: These three graphs show data collected about a
user’s activites on a Sunday, a weekday and during a week
respectively.

certain information. A user can manage different networks
of friends, and assign a variety of group level privacy pref-
erences accordingly. Example policies are: “share detailed
contextual information with family members all the time,”
“share my activity with friends all the time except when I
am attending a lecture,” and “do not share my sleeping ac-
tivity with Teachers on weekdays from 9am to 5pm.”. Fig-
ure 7 shows the representation of the first rule as a Jena rule
(left) and the results on a test screen we provide to observe
the results of the reasoning engine (right).

Policies for Obfuscating Shared Information
In a context-aware system users need to be in control of the
release of their personal information at different levels of
granularity, from raw sensed data to high level inferred con-
text information. Besides being able to specify which infor-
mation a user is willing to share, we can specify how that in-
formation should be shared. A user can disclose information
with different accuracy levels; for instance, she may be will-
ing to reveal to her close friends the exact room and build-
ing on which she is located, but only the vicinity or town to
others. Furthermore, a user may decide not to disclose her
location to advertisers.

We have built generalization models for location and ac-
tivity which are simple sumbsumption hierarchies over loca-

Figure 7: Left: Jena rule for expressing the policy “share
detailed contextual information with family members all the
time.” Right: Android device screen with reasoning results.
It shows access levels for requester “Ron” who is a member
of the group family.

tion and activity entities (e.g., City is subclass of State which
is subclass of Country).

The generalization models for location and activity take
advantage of the hierarchical nature of location information,
which is evident by the part-of or contained relations be-
tween location entities. The policies specify at which level
they which their location information to be revealed. When a
query for location information is received, the reasoner will
not only conclude whether the information can be shared
or not, but also at what level in the hierarchy the informa-
tion should be shared and only the corresponding triples
are shared. For example, if location information should be
shared at the City level, then triples containing location in-
formation with instances of entities below City in the hierar-
chy are not shared.

Related Work
The works in [1][2][3][4] present probabilistic approaches
to recognize user activity based on observations from dif-
ferent types of sensors. We refer the reader to [5] for an
extensive survey of various context-aware systems seen in
literature. Most of those works, rely on the use of special
equipment such as sensors embedded in the user’s body (i.e.,
accelerometers) and in objects (RFID sensors). Specific ap-
plications in mobile phone devices are focused mainly on the
localization and include location-aware tour guides [6] [7],
which provided tourists with information depending on their
location, and universities mobile applications [8][9], which
provide location-based services aimed at enhancing every-
day campus life at a university.

There has been several works [10] to [20] that deal with
declarative formalisms and semantic Web technologies for
security, privacy policies representation, reasoning, and en-
forcement, role-based access control to control access to re-
sources, proof checking, proof-carrying authorization, and
related areas. The importance of adopting a high level of ab-
straction for representing the different components in poli-
cies (such as subjects, actions, and elements of context)
has been widely recognized by al. these works. Three well-
known policy frameworks are Rein [16], Kaos [18], and
Ponder [20]. A comparison of these can be found in [17].

The work in [12] is probably the most closely related work



to ours. They present a system that makes use of semantic
technologies to enable dynamic adaptation of policies de-
pending on context changes. In particular, the paper shows
how ontologies and logic programming rules can be used to
leverage policy adaptation. One difference with our work is
that they do not have a model for a general notion of context.
They present a model to represent context elements for the
particular case of work meetings.

Furthermore, there is no collaborative sharing of knowl-
edge about context, one of our main goals which has been
contemplated in our design and is currenly being addressed.
Finally, adaptation is done through specification of alter-
native situations and actions under those situations. In our
case, context is inferred by observing sensed data on smart
phones, as well as integrating context information from
nearby devices. [21] presents a model to capture, represent
and apply trust policies of an agent in the scenario of Se-
mantic Web knowledge bases, while preserving real-world
semantics of trust. In [22], the authors present an approach
that extended traditional role-based access control to include
the notion of an environment role. The focus was on solv-
ing the problem of securing context-aware applications in a
ubiquitous computing environment.

Conclusion
We presented an architecture for collaborative context aware
systems where devices share and integrate knowledge about
their context. We addressed collective context inference and
privacy issues related to it. Our current status is on individual
activity recognition but we make use of information about
nearby devices (through bluetooth and wifi scanning) and
are working on a collaborative approach. Performance for
recognizing place at a general level (home vs work vs else-
where) is higher than that reported in existing works.

The inferred context knowledge is stored in a local knowl-
edge base on the device and can also be sent to context-
aware services located on the Internet. Context-aware ap-
plications, network components, and sensors may use this
context knowledge to enhance their functionality. We plan
to create a few simple applications for Android devices that
will exploit this knowledge.

We built on existing work in policy languages to address
the need for providing users with privacy to protect the per-
sonal information their mobile devices are collecting. Our
release policies ensure context dependent release of infor-
mation in accordance to the user preferences. Additionaly,
we extended existing work by introducing the notion of poli-
cies for obfuscating shared information. Our policies are
mainly centered on the concept of groups. We are extend-
ing our prototype implementation to allow for a more flex-
ible way to specify the subjects (instead of fixed groups).
We have used Jena rules in combination with OWL and
SPARQL to achieve our goals. Our current implementation
has some ad-hoc mechanisms to make it possible to integrate
the ontology with rules and queries to open KBs. However,
as we look to generalize the process, we raise the question
whether a new policy language is needed to make policy
declaration and enforcement integration more seamlessly.
Further, we want to be able to express richer policies at the

triple level. It seems that a mix of rich pattern matching such
as SPARQL and rules, together with first order semantics of
existing approaches is needed, which we are studying. Fi-
nally, we plan to address the issue of privacy beyond pro-
tecting only the sharing of information and including the
inferences that can be drawn from the information that is
shared.
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