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CHAPTER 7: KNOWLEDGE-BASED SYSTEMS AND OTHER AI 
APPLICATIONS FOR TABLETING 

 
Y. Peng and L. Augsburger 

 
I.   INTRODUCTION AND THE SCOPE OF THE CHAPTER 
 
The pharmaceutical industry is under continual pressure to speed up the drug 

development process, reduce costs, and improve process design.  At the same time, 

FDA’s new Process Analytical Technology (PAT) initiatives encourage the building of 

product quality and the development of meaningful product and process specifications 

that are ultimately linked to clinical performance. Together, these two issues present 

significant challenges to formulation and process scientists because of the complex, 

typically non-linear, relationships that define the impact of multiple formulation and 

process variables (independent variables) and such outcome responses (dependent 

variables) as drug release, product stability, and others.  The number of variables that 

must be addressed is substantial and include, for example, the level of drug substance, the 

types and levels of various excipients, potential drug-excipient interactions, and their 

potential positive or negative interactions with a host of process variables.  Often, the 

relationships between these variables and responses are not understood well enough to 

allow precise quantitation.  And, since an optimal formulation for one response is not 

necessarily an optimal formulation for another response, product development is further 

confounded by the need to optimize a number of responses simultaneously.   
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Clearly, formulation scientists work in a complex, multidimensional design space.  In 

recent decades, scientists have turned more and more to such tools as multivariate 

analysis and response surface methodology, knowledge-based systems and other artificial 

intelligence applications to identify critical formulation and process variables, to develop 

predictive models, and to facilitate problem solving and decision making in product 

development.  The goal of this chapter is to address artificial intelligence applications and 

describe their role in supporting formulation and process development. 

A knowledge-based system (KB) [1, 2, 3] , also known as expert systems, is an intelligent 

computer program that attempts to capture the expertise of experts who have knowledge 

and experience in a specific domain or area (e.g., granulation).  A KB system is designed 

to simulate the expert’s problem solving process or to achieve problem solving to the 

level similar to or better than domain experts.  The use of KB systems in support of 

formulation or process development is relatively new in pharmaceutical technology, with 

applications appearing around the mid-1980s.  Among these pharmaceutical applications 

are KB systems for formulating tablets and capsules, process troubleshooting, and the 

selection of equipment.  Such systems have the potential to shorten development time 

and simplify formulations.  Moreover, KB systems can provide the rationale for the 

decisions taken, serve as a teaching tool for novices, and accumulate and preserve the 

knowledge and experience of experts.  However, KB systems suffer from the limitation 

that they literally are not creative.  That is, they can deal only with situations that have 

been anticipated in the program.   

A neural network (NN) [3, 4, 5] is a computer program that attempts to simulate certain 

functions of the biological brain, such as learning, abstracting from experience, or 
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generalizing. Designed to discern relationships or patterns in response to exposure to 

facts (i.e., “learning”), the models developed through a NN may be viewed simply as 

multiple non-linear regression models.  NNs thus enable data developed in the laboratory 

to be transformed into pattern recognition models for a specific domain, such as tableting 

or granulation, which would make it possible for formulators to generalize for future 

cases within certain limits.  One limitation of NN is that the effectiveness of a model is 

limited by the training data itself.  Another limitation is that in most cases, NNs lack 

explanation capabilities, making it difficult or impossible to obtain a justification for the 

results.  Although they have been used in other applications for more than 50 years, NNs 

have only been applied to pharmaceutical development since the early 1990s.  Over the 

past 15 years or so, NNs have demonstrated a substantial applicability in a number of 

product development situations, such as predicting granulation and tablet characteristics 

and predicting drug release from immediate release formulations and controlled release 

formulations.  The development of hybrid systems that integrate NNs and knowledge-

based systems potentially can take advantage of the strengths of both NNs and 

knowledge-based systems while avoiding the weaknesses of either.  

In the sections that follow, we will discuss the design of knowledge-based systems, 

neural networks, and other artificial intelligence systems, and demonstrate their practical 

application to product development. The focus will be on oral solid dosage forms in 

general and on tablets in particular.  

II. KNOWLEDGE-BASED (KB) SYSTEMS 

Knowledge-based systems are intelligent systems that explicitly encode, store, and make 

use of domain knowledge in problem-solving. Knowledge-based system, when they first 
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appeared in the early 1970s, were often called “expert systems” because either the 

domain knowledge they had was a direct encoding of the expertise of domain experts or 

their performances reached the level of human experts. For example, MYCIN, a medical 

diagnostic expert system developed at Stanford University in the 1970s, was able to make 

correct diagnoses for blood infections with the accuracy comparable to physicians 

experienced in infectious diseases [6]. As depicted in Fig. 1 below, a typical knowledge-

based system has two major components, the knowledge-base (KB) where the encoded 

domain knowledge is stored and the inference engine which uses the knowledge in KB to 

draw new conclusions or to initiate new actions based on the case input and according to 

certain inference rules. Some KB systems also have a learning component, which learns 

new knowledge or revise existing knowledge based on case data, sometimes with the help 

of feedback on the inference results. 

------------------------------------------------------------------ 

Figure 1 about here 

------------------------------------------------------------------ 

The defining feature of KB systems is how domain knowledge is represented in the KB. 

The issue of knowledge representation (KR) includes both the syntax of the language in 

which the knowledge is encoded and the language’s semantics which connects the 

encoded knowledge with the real world objects it is intended to represent. Moreover, KR 

is closely related to the inference engine of the system; each type of KR often requires its 

own set of inference rules and the reasoning procedure for using these rules.  

Most modern KB systems are based on formal logics, more specifically on the type of 

logic known as first order predicate logic or first order logic (FOL), a formal system for 
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deductive reasoning. Therefore this section will start with a brief introduction to FOL 

before getting into specific KB systems. As representatives, we have chosen to cover 

only two types of KB systems, rule-based systems and decision trees, for their relative 

maturity and their popularity in practical applications. 

II.1 FIRST ORDER LOGIC 

First order logic (FOL) formalizes deductive reasoning [1]. It models classes of objects 

and their properties by a type of special functions known as predicate. Each predicate has 

a name and a list of arguments. For example, predicate Human(x) stands for the class of 

humans and Red(y) for things that have color red. For any particular object, a predicate 

can only have one of the two values, True (1) and False (0), depending on whether the 

object is an instance of that class. For example, Human(Confucius) = True and 

Human(Tweety) = False. More complex expressions or sentences can be formed by 

connecting predicates with logical operators such as And (), Or (), Not (), and If-then 

()1. Special means are provided for stating whether a statement is true for all objects or 

only for some; they are universal quantifier ( ) and existential quantifier ( ). With 

some syntactic rules, one can write FOL sentences articulating the meaning of often 

ambiguous English sentences. For example, “All humans are mortal” can be written as 

)()( xMortalxHumanx  . 

“Not all roses are red” can be written as either 

)()( xRedxRosex  , or alternatively )()( xRedxRosex  . 

                                                 
1 These operators are also known in logic literature as conjunction, disjunction, negation, and implication, 
respectively. There are other logical operators, which are less popular and can be expressed by the 
operators listed here.  
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FOL uses deductive rules to derive new sentences representing new conclusions. For 

example, if knowing “All humans are mortal” (the major premise) and “Confucius is a 

human” (the minor premise), then one can draw a new conclusion according to the 

syllogism of deduction that “Confucius is mortal”. This in the formal system of FOL can 

be done as follows: 

(1) )()( xMortalxHumanx    

(2) )(ConfuciusHuman  

(3) )()( ConfuciusMortalConfuciusHuman      

(4) )(ConfuciusMortal        

where the new sentence at step (3) comes from (1) by the rule of Universal Instantiation, 

the final conclusion at step (4) from (2) and (3) by the rule of modus ponens.  

Techniques have been developed to support automatic deductive reasoning. The most 

noted technique is the resolution rule, a single rule that replaces all other deductive rules 

such as “universal instantiation” and “modus ponens” if the FOL sentences are 

transformed into the disjunctive normal form2.  

FOL-based intelligent systems solve problems by deductive proofs. To use such a system, 

one first encodes the domain knowledge (e.g., “All humans are mortal”) in FOL 

sentences and stores them in the knowledge base. Then the goal of the problem solving 

(e.g., to show “Confucius is mortal”) is posted as a theorem or query (also in FOL 

sentences). The system’s inference engine (a deductive reasoner) is then trying to 

                                                 
2 Any FOL sentence can be transformed into a disjunctive normal form, which is a conjunction of 
disjunctions. A disjunction, called a clause, can be written either as a disjunction of literals, for example, 
(a  b  c), or as an implication (a  b  c). 
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automatically prove this theorem from the given case specific input (e.g., “Confucius is a 

human”) using the knowledge in the KB.  

FOL is very powerful in terms of expressing precisely the domain knowledge. 

Furthermore, it has been established that if the theorem is indeed true, the system will 

prove it in a finite number of steps. However, this great expressiveness comes with a 

price. First of all, automatic deduction is very expensive because it is in essence a search 

process to find a particular sequence of deductions leading to the theorem among a huge 

number of possible deductive sequences without much of guidance. To make things even 

worse, the search process may proceed indefinitely if the theorem is in fact not true. This 

so-called semi-decidable problem happens rarely in practical applications, but it cannot 

be avoided completely, as shown by Gödel's incompleteness theorem. 

The rigidity of the syntax and semantics of the language also cause problems. First, it is 

not always easy or even appropriate to encode knowledge in FOL sentences since not 

every piece of knowledge one knows is logical. For example, it is difficult to represent 

uncertain relations which are often measured by numerical values (e.g., 80% of flu 

patients have sore throat) and to represent actions (e.g., if the pressure in the container is 

higher than 100 then set off the alarm). Secondly, it is difficult to learn domain 

knowledge in the form of FOL sentences from case data except some simple relations. 

Finally, FOL is difficult to use for those who do not have training in logic or AI. 

II.2 RULE-BASED SYSTEMS 

Rule-based systems are probably the most widely used knowledge-based systems in real 

world applications, and most expert systems referred to in the literature are rule-based 

systems [2, 3]. As can be seen shortly, this type of system is very close to FOL systems. 
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The great practicality of rule-based systems comes from relaxation of the rigidity of FOL 

and adaptation of some extra-logical heuristics. 

In many application domains it is very natural for people to express their knowledge and 

experience in the form of “if x then y”. This is what we take to express rules in rule-

based systems. More precisely, a rule has the form of  

C1, C2, … Cn => A1, A2 …Am. 

where C1, C2, … Cn are the conditions, and A1, A2 …Am are consequents which can be 

either new assertions or actions. This rule can be read as “If C1, C2, … Cn are ALL true 

for the current case then take the actions of A1, A2 …Am”. The following is an actual 

example rule written in CLIPS, a popular language for defining rule-base systems:  

(defrule determine-gas-level  

   (working-state engine does-not-start) 

   (rotation-state engine rotates)  

   (maintenance-state engine recent) 

        => (assert (repair "Add gas."))). 

Here the reserved word “defrule” indicates that this paragraph defines a rule named 

“determine-gas-level”. This rule has three conditions, each of which can be understood as 

an “attribute/value” pair (e.g., the attribute “engine’s working state” has the value “does 

not start”). Note that these conditions can also be viewed as predicates of FOL. The 

consequent part is a repair action of “Add gas”.  

The next example rule was taken from a hybrid intelligent system for the formulation of 

BCS Class II drugs in hard gelatin capsules [7]:  

bcs_Class(Id, 2) :- dose_value/Sol_value>250,  

                    Perm_value > 0.0004. 
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This rule, written in Prolog, says that a drug with the given “Id” belongs to BCS Class II 

if the ratio of its dose and solubility is greater than 250 and its permeability is greater 

than 0.0004. 

The knowledge base of a rule-based system is called the Rule Base (RB) where the rules 

are stored. The case specific input data is given as a list of assertions about the case 

which are also in the form of predicates or attribute/value pairs. These assertions are put 

in the Working Memory (WM) and are referred as WM elements. The inference starts 

with an attempt to match the WM with the condition part of any rules in the RM. If a 

match is found, that is the current WM can make all conditions in that rule true, then this 

rule is considered applicable to this case (or can be fired). Firing a rule may cause 

changes to WM (remove/add/change some elements there), and the match-fire process 

repeats with the new WM. 

It is often the case that a WM may match more than one rule. Rule-based systems adopt 

some heuristics to select one of the matched rules to fire at the time. This makes the 

inference process a depth-first search. When the search reaches a dead end (where the 

WM cannot match any rule) or it goes too far along a path, the inference engine back 

tracks for other paths. 

The reasoning process described here is called forward chaining because it follows the 

direction of the arrow (from conditions to consequents) when rules are used. It is also 

called data driven because the process starts with the input data in WM and can 

potentially derive all consequents implied by the input data. This kind of inference mode 

is suitable for applications such as monitoring a patient or a nuclear power plant and 

deciding appropriate actions to take based on the monitors’ readings.  
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One problem for this forward chaining reasoning is its lack of attention. The search space 

(the set of all consequents derivable from the input data) is in general very large, and 

many consequents derived may be completely unrelated to the goal of the problem 

solving. To ease this problem, a different procedure, called backward chaining, was 

developed. In contrast to forward chaining, backward chaining starts with the goal G one 

wants to establish, and it tries to match G with the consequent side of any rules in the RB. 

Suppose a match is found with the rule C1, C2, C3 => G. From this rule we know that to 

show G is true we only need to show that C1, C2 and C3 are true. In other words, the 

goal G is replaced by three sub-goals C1, C2, and C3. We then repeat this process for 

each of these sub-goals until a true fact (either in the RB or in the case input) is reached 

in each thread. Since this kind of inference starts with the goal and proceeds with sub-

goals, it is also called goal driven. As an example, according to the rule given earlier, the 

query of whether a given drug belongs to BCS Class II in backward chaining reasoning 

will be reduced to two subqueries: 

 dose_value/Sol_value>250:-   

Perm_value > 0.0004:- 

To achieve efficiency, rule-based systems circumvent some theoretical difficulties of 

FOL by heuristics. One such heuristic is that if we fail to establish A, then we treat A as 

false. With this so-called “negation as failure”, the semi-decidability problem of FOL is 

avoided. The drawback of adopting these heuristic provisions is that we cannot define a 

formal semantics for the system, the connection between the rules and the real world 

relies on the understanding between the system designer and the user. Consequently, the 

inference result is not guaranteed to be true as is with FOL. 
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Generality and expressiveness are also sacrificed for efficiency. For example, all 

variables in the rules are assumed universally quantified, there is no way to express 

existential qualification, and the predicates on either side of the arrow are restricted to be 

conjunctions (AND relations). Some subtle relations expressible in FOL may not be 

expressed in rules. For example, we may write a rule “if someone is the father of a human 

then he must also be a human” as  

Father(x, y), Human(y) => Human(x). 

However, it is difficult, if not impossible, to write a rule for “every human must have a 

human father” because existential quantification is needed here3.  

Similar to FOL, it is difficult to learn rules from data or to associate uncertainty with 

rules. Research has been conducted, sometimes extensively, on these issues in the past, 

and many approaches and methods have been proposed and experimented [1]. However, 

none has received wide acceptance by AI practitioners. 

II.3. DECISION TREES 

Fig. 2 below depicts a decision tree for a simple classification task: classify given objects 

into two groups, labeled + and –, respectively. The classification is according to three 

attributes of each object: the shape (square or round), size (big or small) and color (green, 

red, or blue). Instead of evaluating all attributes at the same time, the decision tree does 

the classification through a sequence of decisions, each of which is based on a single 

attribute. Each decision is represented by a non-leaf node in the tree, called decision node. 

Branches of a decision node correspond to possible values for that attribute. Leaf nodes 

of the tree are class nodes with the class labels. 

                                                 
3 This can be easily written as a FOL sentence )(),()( yHumanxyFatheryxHumanx  . 
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------------------------------------------------------------------ 

Figure 2 about here 

------------------------------------------------------------------ 

For example, to classify a big red square object, we start with the root (top), which makes 

decision according to the shape of the object. Since the object is square, we go down to 

the left branch and proceed to make the second decision based on the size. The process 

eventually leads to the second leaf node from the left at the bottom and we conclude that 

the given object belongs to class “+”. 

To construct a decision tree, one can start by selecting an attribute for the root, and its 

branches are determined by the attribute. The process is then repeated for each of the 

children of the root, and so on. One of the objectives for tree construction is to make the 

tree short (so that later on the decisions can be made fast). The attributes for decision 

nodes can be selected by experts based on their experiences and their understanding of 

the domain. They can also be learned from sample data. Here each sample is about one 

object, including its values for all of the attributes and the class label this object belongs 

to. For example, a sample for the tree of Figure 2 may look like 

(big, blue, square, “-“). 

The label for each sample can be obtained from observation or assigned by humans. 

Using training samples with known class labels makes decision tree learning a supervised 

learning. 

Among the many proposed methods for decision tree learning, the one that is most 

widely recognized is the ID3 algorithm by Quinlan [9]. ID3 is based on the notion of 

information gain when selecting attributes: choose the one that has the largest expected 
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information gain. For a group of training samples T, the information gain of partitioning 

T based on attribute X is measured by 

Gain(X, T) = Info(T) – Info(X, T).  

Here Info(T)  is measured by the entropy of the T’s probability distribution over the 

classes. To measure Info(X, T), we first partition T by X, then calculate the entropy for 

each subset Ti in the partition, and finally add these entropies together, each weighted by 

the size of Ti. Selecting the attribute that gives the maximum information gain guarantees 

to result in the smallest expected size of the tree. Fig. 3 bellow presents an example of 

decision tree learning. The table on the left of the figure contains 12 samples and their 

class labels. The tree on the right is learned using these 12 samples by ID3 algorithm. 

Comparing with the tree in Fig. 2, which also correctly classifies all of the 12 samples, 

the tree in Fig. 3 is much smaller (10 nodes vs. 13 nodes) and shorter (average height of 

leaf nodes of 2.166 vs. 2.75).  

------------------------------------------------------------------ 

Figure 3 about here 

------------------------------------------------------------------ 

Note that the decision at each node is simple and uses only the information local to that 

decision (e.g., the root of the tree in Fig. 3 only cares about the color of the object without 

concerning with its shape and size), and that the decisions are irrevocable. These are the 

main reasons for its computational efficiency. Also note that this strategy of decomposing 

a large decision into a sequence of small decisions is taken by people everyday in dealing 

with complex problems. For this reason, people often use decision trees as a modeling 
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tool to capture and mimic human experts’ decision process. An example decision tree that 

models the formulation of BCS Class II drugs in hard gelatin capsules can be found in [7]. 

II.4 LANGUAGES AND TOOLS 

Many tool sets are available, both commercially and in public domain, to support the 

various knowledge-based systems, including those reviewed in this section. As 

mentioned earlier, each knowledge representation paradigm is associated with its own 

inference mechanism, so these tools usually include a language for encoding the domain 

knowledge in the given KR and an inference engine. The tool will construct the 

knowledge base from the encoded knowledge, and the inference engine will be evoked by 

either the case-specific input data (for forward chaining) or the goal to be achieved (for 

backward chaining) or both. Many tools come with graphic interface to help interacting 

with the user. 

CLIPS and Jess 

Early tools are so-called “expert system shells” such as EMYCIN (from Stanford 

University) and OPS5 (from Carnegie Melon University), which, as the term implies, 

came from real expert systems. For example, EMYCIN is the shell of the blood infectious 

disease expert system MYCIN. It retains everything of MYCIN except the content of the 

KB. To build a new expert system for some other application (say car diagnosis), one can 

simply fill the KB with domain knowledge encoded in MYCIN’s language.  

OPS5, a forward chaining rule-based system language, was further developed into CLIPS 

(C Language Integrated Production System) at NASA [10]. CLIPS and its later version in 

Java named Jess (Java Expert System Shell) [11], developed at Sandia National Lab, are 

probably the most widely used tools for constructing and running forward chaining rule-
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based systems. Both CLIPS and Jess are in public domain and can be downloaded from a 

number of websites4. 

Prolog 

Prolog, standing for “programming in logic”, is a language that implements a subset of 

FOL. Sentences in Prolog are restricted to Horn clauses. A Horn clause is a disjunction 

of literals in which at most one literal is positive. Prolog is quite strong in its expressing 

power, it can be used to represent almost all we want to express in most applications. For 

example, a fact that John is a male can be written as  

 :-Male(John)  

where “:-” is for logic operator “implication”. We can also represent the rule that “if x is 

a parent of y and x is male then x is the father of y” as 

 Father(x, y):-Parent(x, y), Male(x); 

and goals we want to prove as 

 Father(John, Bill):- 

and so on. What are not allowed in Prolog are those disjunctive clauses with more than 

one positive (e.g., those on the left side of the implication) such as 

 Father(x, y)  Mother(x, y):-Parent(x, y) 

or 

 Father(John, x)  Mother(Mary, y). 

Prolog systems also adopt some extra-logical provisions for efficiency and convenience. 

For example, the search for the solution is done by depth-first search plus backtracking, 

and “negation as failure” is adopted for circumventing semi-decidability problem. Most 

Prolog systems conduct logical reasoning in the backward chaining fashion, making them 

                                                 
4 For example, http://www.ghg.net/clips/CLIPS.html and http://herzberg.ca.sandia.gov/jess/  



 17

popular tools for constructing backward chaining rule-based systems. Recently, forward 

chaining Prolog systems also have been developed (e.g., XSB [12]).  

Logica’s PFES 

Product Formulation Expert System (PFES) was developed by Logica as a reusable 

software kernel to support a generic formulation task [13] in a number of industrial 

sectors, especially in pharmaceuticals. It was designed to speed up the selection of 

product ingredients, and the subsequent testing, analysis, and adjustment formulation 

procedures. Like CLIPS, PFES also uses exclusive forward chaining in the inference. An 

example of PFES application to tablet formulation can be found in [14] 

Decision Trees 

Because both the structure and its inference logic of decision tree are relatively simple, 

one can afford to implement a decision tree in a number of ways. It can be coded directly 

with any general purpose programming language such as C, C++, Java, or LISP (a 

primary AI programming language). It can also be implemented using expert system 

shells. For example, the Capsugel expert system, which is a decision tree in logic, was 

first implemented in C [15], and later re-implemented in SICStus Prolog (a Prolog system 

developed by Swedish Institute of Computer Science) for added flexibility to introduce 

additional rules [8]. 

If the purpose is to learn a decision tree from a collection of labeled samples, then the 

best available tool is probably a software package called C4.5 [9]. The core of C4.5 is the 

ID3 algorithm described earlier. It extends the basic ID3 learning with capabilities 1) to 

handle missing values in training samples; 2) to accommodate attributes with continuous 
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value ranges; 3) to prune the learned decision trees; and 4) to avoid overfitting5 . It is also 

able to derive implication-like rules from the learned tree. 

III. NEURAL NETWORKS AND NEURAL COMPUTING 

The logic-based approach of knowledge-based intelligent systems was inspired by high 

level human reasoning and cognition activities, and it attempts to model such activities in 

a formal way. In contrast, neural networks take a different approach in solving complex 

problems typically requiring human intelligence. This approach attempts to model the 

low level activities of the nerve systems in human and animal brain. The origin of the 

present day neural networks can be traced back to Pitts and McCulloch’s 1943 model of 

biological neurons [16], which can be shown to be able to realize all Boolean functions. 

Hebbian’s rule [17], a simple rule proposed in 1949 for modifying synaptic strengths in a 

nerve system, is also very influential in learning methods for various neural network 

models. 

III.1. OVERVIEW OF NEURAL NETWORKS 

In essence, a neural network as a computational model can be viewed as the following. 

The network has a large number of nodes connected by weighted links. To some extent, 

one can view a neural network as a simplification of a biological nerve system where 

nodes correspond to neurons and weighted links to synaptic strengths between neurons. 

Each node has certain activation level and can send its activation as output to other nodes 

that are connected to it. It can also receive activations from other nodes and update its 

own activation according to certain rules or functions. This kind of interactive activities 

                                                 
5 Overfitting refers to a common problem for machine learning that the learned model fits the training data 
very well but performs poorly with previously unseen data.  
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between nodes may be triggered by certain external input; the interaction continues until 

a stable state is reached over the network. At this time the pattern of activations over the 

network of nodes provides a solution to the problem.  

Next we briefly describe the main components of NN [4]. 

Nodes 

A node in a NN has one or more inputs from other nodes, and one output to other nodes, 

the values for its input and output can be binary (0 or 1), bipolar (-1 or 1), or continuous 

(either bounded or unbounded). The output represents the current activation level of the 

node and it is determined by the inputs and the activation function (also called node 

function) associated with that node. Typically, as illustrated in Fig. 4, the activation 

function takes the weighted sum of the inputs from other nodes as its input and computes 

the node activation (output) by a simple mathematical function f.  

------------------------------------------------------------------ 

Figure 4 about here 

------------------------------------------------------------------ 

Nodes with nonlinear node function play crucial roles in neural computation. Commonly 

used nonlinear functions include step functions, sigmoid functions, and Gaussian 

functions. The input to the function is nn xwxwx  11 , the weighted sum of node 

inputs, where iw  is the weight associated with the input ix , and the function value 

)(xfy   is the node output. 

A Step function (also known as a threshold function) is a binary function with only two 

possible function values (or two states). Which of the two values will be the output 
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depends on whether x is below or above the given threshold. For example, as depicted in 

Fig. 5 (a) 

  








0 if              1

0 if              1

x

x
y  

is a step function with threshold = 0. A variation of the threshold function is the “Ramp 

function”, as shown in Fig. 5 (b), it provides a linear transition region between the two 

states.  

Sigmoid function. One limitation of the step and ramp activation functions is that they are 

not everywhere differentiable, making mathematical analysis of NN models using such 

node functions very hard. Sigmoid (S-shape) functions overcome this difficulty by 

approximating the shape of the step/ramp functions with differentiable ones. There are a 

few candidates for sigmoid functions, the two most widely used ones are 

 Logistic function: for example 
cxe

y 


1

1
 where c is a constant called slope. 

 Hyperbolic tangent function: 
cxcx

cxcx

ee

ee
y 






 . 

As depicted in Fig. 5 (c), a logistic function is rotationally symmetric about the point (0, 

0.5), and it asymptotically approaches the two extreme values with x of great magnitude 

(to 1 when x  and 0 when x ). Also note that change of x will cause large 

change in y when the magnitude of x is small (e.g., |x| << 1), and cause little change in y 

when |x| >> 1. In the latter case, we say that the function moves into a saturation region, 

where further increases of the magnitude of x would have not effect on the output of the 

function. The shape of the function curve is related to the slop c, smaller c yields flatter 
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curve and larger c leads to steeper curve, and when c is really very large, the logistic 

function approaches the threshold function.  

The hyperbolic tangent function has the same properties as the logistic function except 

that its two extreme values are -1 and 1. 

Another non-linear function with significant applications is the Gaussian function. Its 

curve has a bell shape, the output takes the maximum value at the center and approaches 

zero when the distance to the center goes to infinity.  

------------------------------------------------------------------ 

Figure 5 about here 

------------------------------------------------------------------ 

Links and Link Strengths 

As mentioned earlier, individual nodes in NN have very limited computing power 

because their node functions are very simple. Despite of this, NN have been shown to 

possess great computing power, capable of solving many difficult problems. This power 

comes from the richness of the connectivity of the networks. Put in another way, while 

the KB systems encodes its problem-solving knowledge in the logical sentences and rules 

in the knowledge base, the knowledge in NN is capture by the inter-node connections and 

the associated connection strengths.  

Links have directions, the weights on the links from node A to B and from B to A may 

have different values and even different signs. The weights can be discrete (binary, 

bipolar or other integer values) or real values. There are three kinds of nodes, depending 

on whether the node’s input and output links are within the network or not. They are the 

input nodes (those that receive external input from the environment); output nodes (those 
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that present the output to the environment) and hidden nodes (those that do not have any 

interaction to the environment). Note that input and output nodes may overlap, but not 

with hidden nodes. 

Inter-node connections define the architecture (or structure or topology) of a NN. 

Different NN models are developed for different types of applications, which differ with 

each other often on their architectures. Here are some widely used NN architectures. 

Fully connected NN. Every node is connected by a link to every other node (including 

itself). One renowned example of this architecture is the Hopfield model, widely used as 

a basis for various NN models for associative memories and optimization. A fully 

connected network with randomly generated weights can be viewed as a model of total 

ignorance, and thus can be used as the starting network for learning.  

Recurrent NN. A network not necessarily fully connected but containing at least one 

directed cycle. Therefore, a node can influence itself via the cycle, and the network forms 

a dynamic system. Mathematical analysis of recurrent networks is often complicated. 

Acyclic NN. A network without a directed cycle. This type of network is easier to analysis 

than recurrent networks. 

Layered NN. Nodes in a layered NN are grouped into layers, two nodes are connected 

only if they are either in the same layer or in adjacent layers. 

Two-layer recurrent NN. There is no intra-layer connection, and nodes between the two 

layers are often fully connected. AS a dynamic system, outputs of nodes in one layer 

become inputs to the nodes in the other layer, and the interaction takes iterations to reach 

equilibrium, a state in which no node will change its activation. Example NN models 

with this kind of architecture include bidirectional associative memories in which 
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patterns in one layer can be recalled by patterns presented to the other layer, and  Self-

organizing maps (SOP) that can be trained so that the topological relations existing in the 

input layer is preserved in the output layer. 

Multi-layer feedforward NN. A network that is both acyclic and layered (with at least two 

layers, not counting the input layer). In addition, there is no connection between nodes in 

the same layer. This architecture is the basis for the most widely used NN model in 

practical applications, the celebrated backpropagation model, which we will give a much 

more thorough coverage short. 

Neural Network Learning 

One of the noted strengths of neural networks is their ability to learn problem-solving 

knowledge from the sample data. What makes learning relatively straightforward is that 

learning in NN is basically a process of modifying the connection strengths by repeated 

presentations of training samples. Learning in most NN models is kind of a variation of 

the Hebbian learning rule, which says the strength between nodes A and B shall be 

increased if both A and B are excited (both are positive) when the given training sample 

is presented to the network. 

One type of learning is called supervised when each training sample include both the 

input pattern describing a problem and the desired or target pattern representing the 

correct solution to the problem with the given input. In other words, the learning is seen 

as being supervised by a teacher, who for each input pattern provides the desired output 

pattern. During the training, the input pattern of a sample is presented to the input nodes, 

then the network’s internal computation generates an output based on its current 
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connection weights. This output is compared with the desired output, the difference then 

drives a modification to the current weights in the network. 

In contrast, unsupervised learning learns associations and regularities from training 

samples without the benefit of answers or even any hints of correct answers from the 

teacher. The third type of learning, the reinforcement learning, is in between of these two. 

Similar to unsupervised learning, each training sample for reinforcement learning 

contains only the input pattern, not the desired output. When an input pattern is presented, 

the computed output is fed to a judge or arbitrator which will provides a feedback of 

either this output is good (and the system is awarded, say, keeping the current weights 

unchanged) or bad (and the system is punished by requesting a change of the weights). 

The difficulty here is, when change is called for, one has to figure out which of the 

weights shall be changed and how much the change should be. 

III.2 BACKPROPAGATION NETWORKS 

The name of the Backpropagation (BP) network comes from its error backpropagation 

learning algorithm [4, 18). Due to its popularity in real world applications, many people 

take BP networks as the synonym of neural networks. BP networks also find a variety of 

applications in the area of drug formulation [3]. 

BP Network Architecture 

As mentioned earlier, a BP network is a multi-layer feedforward network. In addition, it 

must have at least one layer of nonlinear hidden nodes with sigmoid node functions6. Fig. 

6 below depicts a two layer BP network. Note that the input layer is not counted here 

                                                 
6 Some people refer BP network as multi-layer perceptron for historical reasons because it is a 
generalization of a famed early neural network model Perceptron. Strictly speaking, a multi-layer 
perceptrons use threshold node functions, not sigmoid ones. 
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because nodes in input layer are not processing units, they are merely place holders for 

the external input without performing any computation. Most of the discussions in this 

subsection are based on two layer networks (with only one hidden layer), the key results 

can be easily generalized to networks with more than one hidden layer.  

------------------------------------------------------------------ 

Figure 6 about here 

------------------------------------------------------------------ 

We adopt the following convention for notations. Values of all nodes on each of the 

layers form a vector, we denote the vectors on input, hidden, and output layers 

),,,,( 1 ni xxxx  , ),,,,,( )1()1()1(
1

)1(
mj xxxx  , and ),,,,( 1 lk oooo  , respectively. 

We denote the two weight matrices as )1(W  (from input to hidden) and )2(W  (from hidden 

to output). Each weight matrix is a set of weight vectors, one for each node, so for 

example, ),,,,( )1()1()1(
1

)1(
mj wwwW  , and the weight vector 

),,,,( )1(
,

)1(
,

)1(
1,

)1(
njijjj wwww  is a collection of weights from each of the input nodes to 

hidden node j.  

The computation in a BP network is simple and straightforward. When an input pattern or 

vector ),,( ni xxx   is presented to the input layer, it is passed through input nodes to 

the hidden layer. Each hidden node computes its output value by 

(1)     )( )1(
,

)1(
jijij xwSx  , 

where S(.) denotes the sigmoid function. Taking )1(
jx  from all hidden nodes as inputs, 

each output node computes its output in a similar fashion  

(2)     )( )1()2(
, jjkjk xwSo  . 
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General Function Approximator 

It is clear that a BP network defines a multi-variant function )(xfo  , for an given input 

vector x , the function value of f  is computed according to Eqs. (1) and (2). Changes of 

weights in )1(W  and )2(W  will change function f . An interesting question is, what kinds 

of mathematical functions a BP network can compute, or put it in another way, for an 

arbitrary mathematical function F, does there exist a set of weights so that 

)()( xFxf  for all inputs x. It has been proven mathematically that feedforward 

networks with at least one hidden layer of non-linear nodes are able to approximate any 

L2 functions (all square-integral functions, including almost all commonly used 

mathematical functions) to any given degree of accuracy, provided there are sufficient 

many hidden nodes. In this sense, BP networks are called General function approximators.  

This representational power of BP networks lies primarily on the nonlinearity of the 

hidden nodes. Nonlinear output nodes alone cannot play the trick, as has been shown that 

a perceptron (a single nonlinear output node with weighted links from inputs) cannot 

solve problems that are not linearly separable (for example weights can be found for a 

perceptron to solve logical functions AND and OR, but not Exclusive-Or). It can be 

shown easily that adding linear hidden nodes, no matter how many layers, to a perceptron 

does not increase its computing power.   

Knowing the representation power of BP networks is only half of the story, a follow up 

question is, for a given (L2) function F, how can we construct a feedforward network and 

find a set of weights so that the network approximates F well? Brutal force search for the 

weights is computationally intractable because the search space (of all possible weights) 
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is a multi-dimensional continues one. Backpropagation algorithm is a learning algorithm 

that can quickly find a good set of weights from a set of training samples. 

BP algorithm is an example of supervised learning. A training sample therefore consists 

of two parts: an input pattern ),,( ,, npipp xxx   and its desired output pattern 

),,( ,, lpipp ooo  . From the function approximation point of view, we can think that the 

set of P samples are taken from a unknown function F, i.e., for each px , )( pp xFo  . 

BP algorithm is also an example of error driven learning. For each px , we can compute 

the output pattern po  based on the current weights. Then the learning is to be guided by 

the difference between the desired and the actual outputs: ppp od   in vector notation 

and kpkpkp od ,,,   for individual output nodes. The general principle is that we want to 

modify the weights in such a way that the error kp,  gets reduced. To see this intuitively, 

consider )2(
, jkw  in )2(W  (from hidden node j to output node k) and )1(

,ijw  in )1(W  (from input 

node i to hidden node j) in Fig. 7 below.  

------------------------------------------------------------------ 

Figure 7 about here 

------------------------------------------------------------------ 

It is straightforward to see how )2(
, jkw  should be changed with the error kpkpkp od ,,,  . 

If both kp,  and )1(
jx  are positive then we increase )2(

, jkw  (which increases kpo ,  and in turn 

decreases kp, ). The same goes when both kp,  and )1(
jx  are negative. On the other hand, 

)2(
, jkw  should be reduced when the signs of kp,  and )1(

jx  are different. The update for )2(
, jkw  

outlined here is seen clearly an application of Hebbian rule. 
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It is not so easy for updating weight )1(
,ijw  because we do not have the desired output value 

for hidden node j and thus cannot directly compute the error for node j. The novice idea 

behind BP learning is its way to compute the error for hidden nodes. Since )1(
,ijw  

influences )1(
jx  (Eq. (1)), and )1(

jx  is taken as input by all output nodes (see Fig. 7), )1(
,ijw  

affects errors kpkpkp od ,,,   for all output nodes and thus its update should be 

determined by all of these errors. Specifically, BP algorithm calculates the error for 

hidden node j as a weighted sum of errors on all output nodes. 

The actual weight update rules for BP learning are derived following the mathematical 

approach known as gradient descent. This approach determines the change to each weight 

in isolation (as if all other weights remain unchanged) and along the direction that 

maximizes the reduction to the total error )( ,,, kpkpkkpkp odE   . Specifically, 

for each weight w (either in )1(W  or )2(W ), the change, w  is determined as 

  (3) )( ,, kpkpk od
ww

E
w 








  , 

i.e., the change to w is proportional and negative (thus the name of gradient descent) of 

the partial derivative of E. Here   in (3) is a constant known as the learning rate, which 

determines the size of changes at each step of learning. Partial derivatives wE  /  for 

individual weights can be derived from (3) since E is a function of these weights (see Eqs. 

(1) and (2)). Specifically, let )(,
lnet  denote the total weighted input to node l, we have  

  (4) )1()2()2(
, jkjk xw    

for all weights in )2(W , where 

(5) )(')( )2(
,,

)2(
kkpkpk netSod    
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is the error term on output node k and )(' )2(
knetS  is the derivative of its activation 

function. And for weights in )1(W , we have 

(6) ijij xw  )1()1(
,   

where 

  (7) )(')( )1()2(
,

)2()1(
jjkkkj netSw    

is the error term for hidden node j, which can be calculated by first back propagating the 

errors from the output nodes, weighted with the corresponding weights in )2(W , and then 

multiplying with the derivative of the node’s activation function. 

The learning process repeats the following steps, starting from an initial set of weights for 

)1(W  and )2(W :  

1. pick up a training sample ),( pp ox ; 

2. calculate the output pattern po  by Eqs. (1) and (2); 

3. calculate errors ppp od   at output nodes; 

4. update weights in )1(W  by Eqs. (4) and (5); 

5. update weights in )2(W  by Eqs. (6) and (7). 

This process continues until all weights stop to change (i.e., the process converges) or 

other termination criterion is satisfied. 

The process outlined above is called a sequential learning because training samples are 

selected one at a time in a sequence and weights are changed per each selected sample. 

Learning can also be conducted in another mode, known as batch learning, which is the 

same as the sequential learning except that actual weight changes do not occur with each 

sample, instead, the calculated w  for each of the P samples are cumulated. When all P 
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samples are processed, the cumulated  w  are averaged (over P) and used to make actual 

changes to the weights.  

Properties of BP Learning 

It has been proved mathematically that the BP learning always converges if the learning 

rate is sufficiently small. This is because the gradient descent guarantees that the total 

error pp EE   can only decrease at each step of learning. However, it is not guaranteed 

to converge to a set of weights that reduces the total error to zero. That is, it is only 

guaranteed that the learning converges to a local minimum error state, i.e., any small 

change of the learned weights will always cause E to increase. We can compare the 

gradient descent approach of BP learning with hill-climbing. If one, when climbing a hill, 

always moves along the steepest direction, he will certainly reaches the top of the hill, 

which is higher than its immediate vicinity but not necessarily higher than summits of 

other hills and mountains.  

Several features of BP learning make it very attractive to practical applications. First, as 

discussed earlier, any L2 function can be represented by a BP network, and in many cases 

such a network can be trained using BP learning with great accuracy. Secondly, it is 

fairly easy to apply BP learning to problems at hand. Unlike other formalism such as 

those logic-based approaches, BP learning does not require substantial prior knowledge 

or deep understanding of the domain itself, it only requires that a good set of training 

samples is available. This makes it a powerful modeling tool for ill-structured, ill-

understood problems. Thirdly, the implementation of the core BP algorithm is very 

simple. And finally, like many other NN models, BP learning naturally tolerates noise 

and missing values in training samples. In most of the cases, noise and missing values 
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only degrade the learning quality, not lead to a completely wrong model nor disrupt the 

learning itself (graceful degrading). 

On the other hand, BP learning can be frustrating, even when one has a good set of 

training samples. First, the learning often takes a long time to converge when there are 

many hidden nodes in the network and the sample set is large. Secondly, there is not 

much one can do if the learning converges with a large total error E except possibly to re-

run the learning with a different set of parameters and initial weights and pray for a better 

result.  

Quite a few proposals have been made to speedup the learning process. For example, one 

proposal suggests that the weight update rules not only include the terms caused by the 

error as given in Eqs. (4) and (6) but also the changes of previous steps (called 

momentum terms). This method avoids sudden change of directions of weight update, 

smoothens and often speeds up the learning process. Another widely used method is 

called Quickprob [19]. Instead of slowly approaching the final weights through many 

iterations of (4) and (6), this method, whenever possible, calculates (by some simple 

procedure) the weights that are close to a local minimum error state. Other methods 

speedup the learning by manipulating the learning rates in different ways. 

Another problem with BP learning is that what can be learned (i.e., the weights) are 

merely operational parameters, not general, abstract knowledge of the domain. As such, a 

trained BP network behaves like a black box, it produces an answer (in the form of the 

output pattern) for any given problem (as specified by the input pattern) but is not able to 

explain why the answer is correct or how good this answer is. 
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Finally, like many learning methods that build models from data, we are facing the 

problem of overfitting. That is, the trained network may fit the training samples perfectly 

(i.e., the total error E is very close to zero) but it does not produce correct or good outputs 

for previously unseen inputs. If overfitting happens we say the trained network 

generalizes poorly. Overfitting problem can be eased by moving the weight matrices 

slightly away from the local error state. This can be done by adding noise into the sample 

set or stopping the learning earlier before the minimum error state is reached. The most 

widely used strategy in dealing with overfitting is known as cross-validation. Instead of 

using all samples for training, this strategy leaves a small portion (say 10%) of them as 

test data. The learning periodically pauses and checks the error over the test data, and it 

stops when error over test data starts to increase. 

Parameter Selections and Other Practical Concerns 

Learning algorithm is only part of the task of implementing BP learning, the other, more 

subtle part, is how to initialize the network and how to select learning parameters. Since 

the number of nodes in input and output layers are determined by the problem one 

intends to solve, so the initialization of the network topology involves only the 

determination of the number of hidden layers and their size. Theoretically, a single 

hidden layer is sufficient for any complex problems, however, there is no theoretical 

result on minimum necessary number of nodes in that hidden layer. The practical rule of 

thumb is to have twice as many hidden nodes as the input nodes for binary/bipolar data 

and many more for real value data. It has been reported in the literature that networks of 

multiple (2 – 4) hidden layers with fewer nodes may be trained faster for similar quality 



 33

in some applications. After the hidden layers are decided, the weights for all links in the 

network are usually set to some small randomly generated initial values. 

Besides the network topology, the quality of learning is also depending on the quality and 

quantity of training samples. The samples should be a good representation of the domain, 

they should be randomly sampled or guided by the domain knowledge if such knowledge 

is available. There is no theoretically ideal number for the samples, intuitively this 

number is dependent of the number of weights in the network and the accuracy desired 

for the results. Some has suggested the number of samples can be estimated as |W| / e 

where |W| is the total number of weights in the network and e is the acceptable error 

bound.  

Another important parameter is the learning rate . The gradient descent requires   be as 

small as possible, however, too small rate makes the learning extremely slow. Common 

practice suggests to start with   less than or equal to 1.  

Finally, we need to select a criterion for terminating the learning. One obvious criterion is 

when eE   if the acceptable error e is given. This criterion may not always be practical 

because of the “local minima” discussed earlier. Instead, people often stop the learning 

when w , the weight change, becomes very small for every weight. Finally, one can set a 

maximum number of iterations for the learning and stop the process when this number is 

reached.  

III.3. OTHER NEURAL NETWORK MODELS 

A large number of neural network models have been developed in the past few decades, 

with different mechanisms and often for different types of applications. Here we list a 
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few representative NN models for their popularity and potential for pharmaceutical 

applications.  

RBF Networks 

RBF network is perhaps the most widely used NN model, after only the backpropagation 

networks [20]. A RBF network is very similar to the BP network, the main difference is 

that it uses radial basis function (RBF), not the sigmoid function, as the node function. A 

typical RBF for this type of networks is the Gaussian function. As can be seen in Fig. 5 

(c), the output of a RBF node depends on the distance of the input vector to the vector 

stored in the node; and the output is maximal if the distance is zero. Similar BP network, 

RBF network is also a universal function approximator, and can be trained by supervised 

learning. It has been found that RBF networks often performed better than BP networks 

in function approximation and classification.  

Competitive Learning and Self-Organizing Map 

Competitive learning is a kind of unsupervised learning often involves a single layer of 

output nodes. When a training sample is presented as the input vector to the network, all 

output nodes compete with other, and the node whose weight vector is closest to the input 

vector wins. The winner then has its weight vector updated (moving further closer to the 

input vector) while all other output nodes will have their weights unchanged. Competitive 

learning learns regularity, clustering, similarity among the training data without the 

supervision of a teacher. 

Self-organizing map (SOM) is a special competitive learning network with the aim of 

preserving the topological order (neighborhood relation) among the training samples [21]. 

SOM differs from other competitive learning networks on how the weights shall be 
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updated after the winner is determined for a given training sample. Not only the winner 

but also its neighboring output nodes will have their weight vectors changed toward the 

training sample. As the result, when two input vectors that are similar to each other are 

applied to the trained SOM, the corresponding output nodes will be close to each other, 

thus the topological order is said to be preserved. SOM model is motivated by sensory 

maps in biological nerve systems (e.g., retinotopic map) which preserve topological 

orders, but its applications go far beyond the simulation of biological maps. 

Support Vector Machine (SVM) 

Single layer NNs have limited computing power. This is demonstrated by the problem of 

linear separability. Suppose we want to build a two class classifier for data points. For 

some datasets, a linear separator (a line for 2D data and a hyperplane for higher 

dimensional data) is sufficient to separate the data points in the two classes. For other 

datasets there is no linear separator, rather the separators must be non-linear 7.  

Multi-layer NNs such as BP networks overcome the linear separability problem by   

including a layer of hidden nodes of non-linear functions. The price paid for the greatly 

increased computing power is the time it takes to train the network. 

Support vector machine (SVM) [22] is a relatively new supervised learning method that 

overcomes this problem: it is able to learning non-linear separators at a much faster speed. 

This nice property helps SVM to quickly gain popularity since mid-1990. A full coverage 

                                                 
7 A well known linear non-separable problem is the logical operation of “Exclusive Or”, denoted . A  B 

= true if and only if either A and B are both true or both false. The four possible value assignments of A 

and B can be represented as four data point (1, 1) (0, 0), (1, 0), and (0, 1) in a 2-dimensional space. Then  

put the four points into two classes, those with truth value 1 ((1, 1) and (0, 0)), and those with truth value 0 

((1, 0) and (0, 1)). It is clear that there is no line on the 2D space that can separate these two classes.  
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of SVM is beyond the scope of this chapter, readers interested in this method can start 

from the detailed tutorial by Burger [23]. Roughly speaking, SVB is based on a simple 

property: if data points are not linearly separable in a given space, then they can become 

linearly separable if they are mapped into a space of sufficiently higher dimension.  

Directly finding a linear separator in the high dimensional space (called the feature space 

F of the given data) is time consuming and is in danger of serious overfitting. SVB 

overcome these as follows. Since finding a separator can be cast as a quadratic 

programming problem that is based on the inner product of very pair of data points ii xx  , 

then it is based on the inner product becomes )()( ii xFxF   for the feature space F. SVM 

does not directly work with )()( ii xFxF   but utilizes some function called kernel 

function that computes )()( ii xFxF  from ii xx  . An example kernel function 

is 2)()()( iiii xxxFxF  . Efficient learning methods based on kernel functions have 

been developed and implemented in various SVM packages.  

III.4. NEURAL NETWORK DEVELOPEMNT TOOLS 

Many dozens of NN development tools have been developed in the past two decades or 

so. Many of them are in public domain (e.g., DPD++, JavaNNS, SNNS, etc.), others are 

commercial products (e.g., BrainMaker, NeuralMaker, NeuralShell, etc.). The set of NN 

models included in each tools package may be quite different, but almost all of them 

include BP networks. Most of tools in public domain were developed by academic 

research groups, and they often come with the source code. This allows the users to 

modify the NN models to their particular needs, and facilitates the integration of a NN as 

a component into a larger system. Commercial products, on the other hand, usually come 
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with much better user interface and many auxiliary tools (e.g., statistical analysis 

procedures, procedures for pre and post processes). Some products offer API 

(Application programming interface) via which the modules can be accessed and 

executed by the user’s own program. This is very important for users who may need to 

modify the NN models in the package or integrate them with other programs. 

Two NN toolkits are worth specially mentioning. The first is MATLAB Neural Network 

Toolbox8 from The MathWork, which extends MATLAB “for designing, implementing, 

visualizing, and simulating neural networks”. Since MATLAB itself is a numerical 

computing environment and a programming language, one can call NN models like any 

other MATLAB functions, and can easily build interface between NN models and other 

computing modules written in MATLAB. The second tool is CAD/Chem and its 

successor INForm by Intelligensys, which is specialized in formulation modeling and 

optimization for chemists and product designers and has found wide pharmaceutical 

applications9. Using BP neural networks, CAD/Chem helps the product design by 

automatically learning the underlying relationships between product ingredients, process 

parameters and resulting properties. It also provides modules for fuzzy logic and genetic 

algorithms (which will be introduced shortly in the next section) and statistical analysis 

tools that are needed for formulation optimization. 

IV. OTHER MODELS FOR INTELLIGENT SYSTEMS 

Other models, based on different principles and theories, have been developed for 

building intelligent systems. In this section we briefly introduce a few of them, the 

                                                 
8 http://www.mathworks.com/products/neuralnet/. 
9 http://www.intelligensys.co.uk/models/inform.htm. 
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Bayesian networks, fuzzy logic, and evolutionary computing. These models have quite 

different characteristics than the logic-based systems and neural computing, and they all 

have found a wide range of applications. 

IV.1. BAYESIAN NETWORKS 

Bayesian networks (BN), also called Bayesian belief networks, belief networks, or 

probabilistic causal networks, are a widely used mathematical model for knowledge 

representation and reasoning under uncertainty [24. In this graphical model, nodes 

represent random variables and the probabilistic interdependencies between random 

variables are represented by their interconnections. The joint probability distribution of 

these variables is decomposed into a set of conditional probability tables, one for each of 

these variables.  

Formally, a BN of n variables },...,{ 1 nXXX   is a directed acyclic graph (DAG) of n 

nodes and a set of directed arcs, with conditional probability tables (CPT) attached to 

each of the n nodes. Nodes correspond to random variables, denoted ).,,1( niX i   Each 

variable is associated with a finite set of mutually exclusive states. The lower case ix  

denotes an instantiation of iX  to a particular state, and },...,{ 1 nxxx   represents a joint 

assignment or an instantiation to all variables in X . An arc  ji XX , , represents a direct 

causal or influential relation from iX  to jX . This arc also indicates that iX  and jX  are 

probabilistically dependent of each other. The quantitative part of the interdependence is 

modeled by the CPT )|( iiXP  of each variable iX  where i  is the set of all parent 

nodes of iX . If iX  is a root in the DAG which has no parent nodes, then )|( iiXP   
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becomes )( iXP , the prior probability of iX . A conditional independence assumption is 

made for Bayesian networks:  

(8) )|(),|( iiii XPSXP   ,  

where S is any set of variables that are not descendants of iX . Based on this 

independence assumption, the joint probability distribution of X can be computed from 

local conditional probability tables (CPT) by the following chain rule: for any xX  , 

(9) )|()( 1 ii
n
i xPxP  . 

With the joint probability distribution, BN supports, at least in theory, any probabilistic 

inference in the joint space. In other words, any probabilistic query concerning these 

variables can be computed from the joint distribution through Bayesian conditioning. 

Fig. 8 below gives a simple example BN, including its DAG, CPTs and the joint 

distribution. 

------------------------------------------------------------------ 

Figure 8 about here 

------------------------------------------------------------------ 

The conditional independence assumption can also be described by the notion of d-

separation in terms of the network’s topology. Fig. 9 below depicts examples of d-

separation for the three types of connections in the network. In the situation of a serial 

connection, A and C can influence each other in either direction unless B is instantiated 

(A and C are said to be d-separated by B). In the diverging connection case, B and C are 

dependent of each other unless A is instantiated (B and C are said to be d-separated by A). 

In a converging connection, influence can only be transmitted between B and C if either 
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A or one of its descendants is instantiated, otherwise, B and C are said to be d-separated 

by A. 

 ------------------------------------------------------------------ 

Figure 6 about here 

------------------------------------------------------------------ 

If A and B are not d-separated, they are d-connected. In a BN, if A and B are d-separated, 

they are in independent of each other, and the changes in the belief of A have no impact 

on the belief of B.  

From the above three cases of connections, it can be shown that the probability 

distribution (or belief) of a variable iX  is only influenced by its parents, its children, and 

its children’s parents, these variables form the Markov Blanket iM  of iX . If all variables 

in iM  are instantiated, then iX  is d-separated from the rest of the network, i.e., 

)|(}){\|( iiii MXPXXXP  . 

A typical probabilistic reasoning with BN is known as belief update: what would be the 

probability (or belief) of a variable if some other variable(s) are known to be in (or be 

instantiated to) certain state(s). If we denote the instantiated variables as e (called 

evidence), then what we are looking for is the posterior distribution )|( eXP i  for any 

uninstantiated variable iX . Other, more complicated probabilistic queries can also be 

answered. One example is the maximum a posteriori problem )|(max eyPy , i.e., finding 

the most probable instantiation of a set of variables XY  , given e. 

Solving these problems directly using the joint distribution )(XP  is practically infeasible 

because the size of the distribution grows exponentially with the size of the network (in 
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the order of ||2 X ). Various efforts have been made to explore the graph structure and d-

separation in developing more efficient computation. The most noted is the junction tree 

algorithm. This algorithm groups together those BN nodes that are tightly related into 

“cliques” and converts the BN into a tree of cliques called junction tree. CPTs are also 

converted into potentials for cliques. The junction tree significantly lowers the time 

complexity for probabilistic reasoning (from ||2 X  to || max2 C  where maxc , the largest clique 

in the junction tree, is usually a small subset of X). 

Almost all BN packages (commercial or in public domain) implement the junction tree 

algorithm to support exact reasoning. However, even  || max2C  is a huge number when the 

network is really large and dense, making exact solution computationally intractable. For 

these large networks, people turn to methods for approximate solutions. The most widely 

used are various stochastic simulation techniques [25]. These techniques aim to reduce 

the time complexity of exact solutions via a two-phase cycle: local numerical 

computation followed by logical sampling, which yields increasingly accurate results 

when the iteration continues. Different sampling methods have been investigated, 

including for example forward sampling, importance sampling, Gibbs sampling, etc [1]. 

BN is powerful as a modeling tool for domains in which the relationship among their 

entities and components are not certain or cannot be described logically, and it provides 

efficient methods for probabilistic inference. However, construction of a BN is not an 

easy task. For small and simple problems, it might be possible to draw the network 

structure (i.e., the DAG) based on domain experts’ knowledge and understanding of the 

causal relations between the entities of interest. However, it is difficult to obtain CPTs 

from the experts even for small BNs because people do not think things in terms of 
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probability tables. Alternatively, we can construct the BN by learning both the DAG and 

the CPTs from the data [26]. 

It is easier to learn CPTs if the DAG is already known, it is much harder to learn DAG. 

Some methods separate these two tasks, learning DAG first and then CPTs [27]; others 

learn both at the same time [28]. For most of the existing BN learning methods, a training 

sample is required to be an full instantiation of xX  . Techniques have been developed 

to deal with missing values (some variables in some samples do not have a value) and 

missing variables (variables not in X, if present then a simpler probabilistic model can be 

built for the samples). Two criteria are followed by most learning methods. The first one 

is fidelity, the model (the learned BN) must be consistent (or with as little inconsistency 

as possible) to the training samples. This criterion is often judged by how close the 

probability distribution of the BN is to the distribution exhibited by the samples 

according to some distance measure (e.g., Kullback-Leibler distance or cross entropy). 

Since there are many BNs whose distributions are equally close to that of the samples, the 

quality of a learned BN is further judged by the second criterion, simplicity because a 

simpler BN runs faster in reasoning. The often used measure for simplicity is the 

maximum or average number of parents per node in the learned network. Many learning 

methods consider the fidelity the hard criterion and must be satisfied first, others try to 

strike a balance or compromise between the two [29].  

Since there are too many possible BNs for a given set of variables (e.g., there are 25 

different DAG of 3 variables, and the number jumps to 1810  with 10 variables), it is 

computationally intractable to guarantee finding the best BN according to any criteria. 

Therefore, the learning methods all follow some heuristic rules to focus the attention in 
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search for a good but not necessarily the best BN. Even with these heuristics, BN 

learning, like backpropagation learning in neural networks, usually takes a long time to 

complete. 

IV.3 FUZZY LOGIC AND POSSIBILITY THEORY 

Like probability theory, fuzzy logic is another formalism widely used to deal with 

uncertainty [30, 31]. However, as shall be seen shortly, the kinds of uncertainty these two 

formalisms attempt to model are conceptually quite different. Probability theory is based 

on the set theory; likewise, fuzzy set theory sets the mathematical foundation for fuzzy 

logic. In the ordinary set theory, a set A is associated with a Boolean membership 

function (.)Af : for any object x, 1)( xf A  if Ax , and 0 otherwise. If x is a random 

variable such as those representing outcomes of random experiments, then the chance 

that it is a member of A is the probability )( AxP  . Please note that the uncertainty here 

is about the outcome before the experiment (we are not certain whether it will be head or 

tail before a coin is tossed). However, the outcome becomes certain after the experiment 

(the coin can only land on one face).  

In contrast, we often face vague linguistic terms such as “tall person” and “fast car”. If 

one tries to build a set that contains objects satisfying such a term, he will find it difficult 

to define a line to separate members and non-members. For example, it is easy to say a 

person with the height of 210 cm a member of “tall person” and of 140 cm not a member. 

However, it would be difficult to judge a person of 175 cm, because he is kind of tall but 

not really very tall.  Fuzzy set theory is invented to characterize this kind of uncertainty, 

which is about facts (height = 175cm), not chances of things in the future. By extending 

the membership function of the ordinary set theory, the fuzzy membership function 
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becomes yxFA )(  where 10  y  is the degree that x is thought to belong to set (or 

concept) A.  

Fig. 10 below depicts three examples of fuzzy membership functions for the sets of 

young people, teenagers, and mid-aged people. The degree that a particular person is in 

such a set depends on that person’s age and the set’s membership function. For example, 

according to these functions, a thirty year old person is definitely not a teenager, and is 

more of a mid-aged person than a young.  

------------------------------------------------------------------ 

Figure 10 about here 

------------------------------------------------------------------ 

Similar to predicates in logic and prior distributions in probability theory, membership 

functions for sets of interest quantify one’s understanding of the domain. Like other 

knowledge representations, these functions can be obtained from the domain experts and 

can also be learned from data. 

Fuzzy logic treats fuzzy membership functions as (fuzzy) predicates, and defines logical 

operators. For example, we have  

 negation:  )(1)( xFxF AA  ; 

 conjunction: )}(),(min{)()( xFxFxFxF BABA  ; and 

 disjunction:  )}(),(max{)()( xFxFxFxF BABA  . 

Fuzzy logic is a natural choice for constructing expert systems with rules of vague terms. 

For example, consider the statement concerning drug formulation that disintegrants can 

be added to increase the drug’s soluability. This piece of knowledge can be easily 

encoded as a fuzzy rule:  
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 IF not soluable THEN add more disintegrant. 

Note here that both “soluble” and “add more” are linguistically vague and thus can be 

represented as fuzzy predicates (with their particular fuzzy membership functions).  

Two interesting observations can be made in comparison with the rule based systems. 

First, recall that it is often the case that more than one logical rule can match their 

conditional parts with the current working memory content. It is difficult to select one 

over others since logically they match the current WM equally well. However, the 

matches with fuzzy rules are fuzzy (a value between 0 and 1 not either 0 or 1) and often 

not equal, so we can rank the rules according to the numerical values of their matches and 

select the highest ranked one. In our drug formulation rule above, if the current 

formulation has very low solubility, then it matches the rule’s conditional part (“not 

soluble”) with a very high degree (close to 1), making it very likely to be selected and 

more disintegrant is added.  

Second observation is also related to the numerical nature of the function values. In a 

rule-based system, if a rule is applied it will very unlikely to be applied again to the same 

data items because whatever actions this rule calls for has already been done. However, 

this is not the case for fuzzy rules. For example, application of the solubility rule once 

may only increase the solubility to a degree (say from 0.1 to 0.2), leaving the rule still 

applicable. What we see here is an iterative process in which the solubility of the drug 

increases at each iteration with more disintegrant added into the formulation. It is these 

features that make the fuzzy logic based expert system a popular choice for process 

control with wide variety of applications from home appliance control to subway 

locomotive auto piloting.  
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The relation between fuzzy logic and probability theory remains controversial. Some, 

including the inventor of fuzzy logic Lotfi Zadeh, consider they are two separate 

formalisms for different types of problems. Zadeh has created the possibility theory from 

fuzzy logic, which can be viewed as parallel to probability theory [. Many others consider 

fuzzy logic as a new way to express probabilities, and some went even further as 

claiming that everything one can do with fuzzy logic can be done by probability theory. 

A minority felt another way around and consider fuzzy logic is more expressive and it 

includes probability theory as a subtheory. 

IV.3 EVOLUTIONARY COMPUTING 

Evolutionary computing is a computational paradigm that seeks the globally optimal 

solutions for complex problems. Typically this kind of problem has many solutions, some 

of which are considered good or better than others according to certain criterion 

represented as an objective function. The goal here is to find the best from a huge 

solution space according to the objective function. Evolutionary computing is based on 

the technique called genetic algorithm (GA), which emulates the biological evolution 

process [33, 34]. As shown in Fig. 11 below, GA starts with an initial population of 

individuals. Each individual represents a solution, the information it carries, including a 

description of the solution and features/attributes that contribute to the goodness of the 

solution, can be viewed as a sequence of chromosomes characterizing this solution. The 

goodness of an individual is computed by the fitness function, a name borrowed from the 

Darwinian evolutionary principle of “survival of the fittest”. From the optimization point 

of view, the fitness function is a realization of the problem’s objective function. Two 

computational procedures are executed in producing the next generation of population. 
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The first is the one that selects parents for reproduction, this is a random process, but with 

higher probabilities for the individuals with better fitness function values. The selected 

parents are then paired and sent to the second procedure, reproduction, where cross-over 

generates offspring, each of which taking half of its chromosomes from each of the two 

parents. The hope is that by combining the features of both parents, some of the children 

may be better solutions than their parents. The mutation during reproduction makes 

random changes to some chromosomes. This is necessary because, among other things, it 

allows introduction of new, previously unknown chromosomes. The reproduction 

continues with more and more individuals produced for the new generation until the 

population size limit is reached. The process then repeats with the new generation of 

population.  

------------------------------------------------------------------ 

Figure 11 about here 

------------------------------------------------------------------ 

Evolutionary computing can be viewed as a stochastic search process because the 

randomness involved in the parent selection and mutation. It can be shown that if 1) the 

size of the population is allowed to be sufficiently large, 2) the process is allowed to run 

for a sufficiently long time, and 3) the true randomness is followed in the process, then 

the globally optimal solution is guaranteed to be generated. 

Since usually we do not know what the best solution looks like or its fitness function 

value, there is no way one can tell the best solution is already generated and the process 

should terminate. Therefore we use other criteria for termination. One such criterion is if 

the objective (fitness) function value of the best solution in the current population falls 
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into the acceptable range (if such a range is provided); another is when the fitness of the 

best individual does not improve for a large number of generations. In either case, the 

global optimality is likely but not guaranteed. 

V.  SOME PRACTICAL APPLICATIONS IN PRODUCT AND PROCESS 

DEVELOPMENT 

V.1 APPLICATION OF KNOWLEDGE-BASED SYSTEMS 

The reader is referred to Lai’s useful 1991 review [35] for an earlier discussion of the 

application of expert systems to pharmaceutical technology.   

Immediate Release oral Solid Dosage Forms 

A few examples of the application of KB systems to immediate release tablet formulation 

have appeared in the open literature.  Podczeck [36] described a system based in part on 

rules constructed from laboratory experiments designed to study the relationship between 

independent and dependent variables.  These rules were combined with others in the 

expert system to determine the formulation composition.    

The Cadila System (Cadila Labortories, India) for tablet formulation was developed by 

Ramani et al. [37].  Written in Prolog, this interactive menu-driven program first requires 

the user to enter information on the drug properties. The system then consults its 

knowledge bases and selects compatible excipients with the required properties and gives 

their recommended proportions.  A best formulation may be selected from among several 

feasible alternative formulations that can be generated by the expert system.  The system 

can be queried for explanations of the decisions taken in arriving at formulations.  

Rowe [38, 39] described a tablet formulation expert system that uses Logica’s PFES 

(Product Formulation Expert System) shell.  Similar to the Cadila System, the user inputs 
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the basic information on a new drug substance, e.g. physicochemical and mechanical 

properties, dose, strategy based on number of fillers.  The formulation may be optimized 

based on the results of testing the initial formulation.  The optimization is interactive with 

the formulator who, based on experience and expertise, can override and modify the 

recommendations of the expert system within a relatively broad range.  The selection of 

ingredients and their proportions for the initial formulation are based on algorithms and 

production rules determined from an extensive study of previously successful 

formulations and certain other rules.   

Related Applications   

Expert systems have also been developed for certain related applications.  In one of the 

earliest examples, Lai [40] described a prototype expert system for selecting a mixer.  

The system was written in TURBO Prolog which used a backward-chaining inference 

mechanism.  Production rules were developed from a knowledge base obtained from 

published papers.  In another example, Murray [41] described an expert system for 

trouble-shooting and diagnostics of a Korsch rotary tablet press. A detailed decision-tree 

structure was developed for each major subsystem of the tablet press, e.g. hydraulic force 

overload, automatic lubrication, main drive, force feeding, tablet weight verification and 

others.  The user’s answers to a series of questions enables the decision-tree structure to 

ascertain the symptoms or circumstances related to a specific problem and determines in 

what direction the diagnostic process should be approached.  The system then prompts 

the user through a series of diagnostic or remedial measures that previously have been 

shown to be effective. This knowledge base is intended to be updated periodically with 

information derived from recent problems that have been solved and documented. A KB 
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system designed to diagnose and provide solution to defects in film coated tablet has also 

been described [42, 43].   

Hard Shell Capsules   

KB systems have also been developed to support formulation development for hard shell 

capsules.  This topic is relevant to this discussion because modern capsule fillers for 

powder or granular formulations resemble tablet presses in that they employ both 

compression and ejection processes, i.e. capsule plugs are formed from the powder or 

granular formulation by a gentle compression or tamping process and the plugs are 

ejected into empty capsule shell.  Moreover, the formulations for hard shell capsules 

typically employ the same excipients, such as fillers, lubricants, glidants and others as 

found in tablet formulations [44].   Bateman [45] described an expert system developed 

using Logica’s PFES shell.  This is a customized system that incorporates the practices 

and policies of the Sanofi Research Center.  Knowledge acquired through a coordinated 

series of meetings with formulators was incorporated by software engineers by encoding 

an appropriate set of rules that reproduce the formulation experts’ decision making.  

Another part of the system important to making formulation decisions is the excipients 

database.  The formulation experts identified the most important properties to consider, 

e.g. particle size, bulk density, acid-base reactivity, amine reactivity, aqueous solubility, 

hygroscopicity and others.  Because the information on these properties found in the 

literature is based on different analytical methods and therefore couldn’t be correlated, it 

was decided to make these measurements in-house.  In a preliminary validation, three 

chemical entities were selected to challenge the system.  The formulations generated by 
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the KB system were judged by experienced formulators to be acceptable for manufacture 

and initial stability evaluation.  

Unlike the Sanofi system, Capsugel’s CAPEX expert system is a centralized system that 

incorporates worldwide industrial experience to support the formulation of powders in 

hard gelatin capsules [15, 46].  Development of the system was initiated at the University 

of London under the sponsorship of Capsugel, a division of Pfizer, Inc.  The Capsugel 

expert system consists of three databases. One of these is ‘past knowledge’ which was 

collected from the published literature and includes information on excipients used in 

many marketed formulations in Europe and the US.  The second database contains 

experiential and non-proprietary information acquired from industrial experts through 

classical knowledge engineering techniques. The third database consists of information 

generated through statistically designed laboratory studies aimed at filling knowledge 

gaps and providing quantitative information.  These databases provided the knowledge 

base from which the facts and rules were derived to construct the decision trees and 

production rules that comprise the expert system.  The system was programmed in 

Microsoft C and the core system was linked to a dBase driven database.  The system has 

since been converted to a Microsoft Windows–based platform that significantly enhances 

its ease of use.  

Under Capsugel’s continuing sponsorship, the program created at the University of 

London was further developed and enhanced by the efforts of the University of Kyoto 

and the University of Maryland through additional laboratory research and a series of 

panel meetings in Europe, Japan, and the United States with industrial, regulatory, and 

academic experts.   
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V. 2 APPLICATION OF NEURAL NETS 

Interest in the use of NNs in pharmaceutical technology and product development has 

been growing and has been the subject of several reviews [47 – 50].  This interest in the 

non-linear processing ability of NNs as a way to manage and solve pharmaceutical 

problems should not be surprising.  The relationships that exist between formulation and 

process variables and desired outcomes are complex and typically non-linear.  The non-

linear processing ability and unique structure of NNs offer substantial promise in dealing 

with the problems we face in pharmaceutical product development and technology.   The 

primary goals of applying NNs to pharmaceutical problems are optimization and 

prediction.  The NN model that predominates in these areas is the feed forward/back 

propagation network, which often is simply referred to as the backpropagation network 

[51].   

Powder Properties and Unit Operations 

Several applications have been reported that deal with powder properties and certain unit 

operations. For example, Kachrimanis et al. [52] evaluated the effects of bulk, tapped and 

particle density, particle size and particle shape on the flow rate of three common 

excipients (Emcompress, Starch and Lactose) through circular orifices.  Four sieve 

fractions were studied.  The experimental data were modeled using a backpropagation 

NN.  They found that the predictions of the NN were superior to those of a classic flow 

equation since the NN does not require a separate regression for each experiment and its 

predictive ability was higher.  Behzadi et al. [53] reported on the validation of a modified 

fluid bed granulator.  Sucrose was granulated under different operating conditions and 

their effects on the size distribution, flow rate, repose angle, and tapped and bulk volumes 
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of the granulation were measured.  A generalized regression neural network (GRNN, a 

variation of radial basis function networks) was used to model the system.  A good 

correlation was found between the predicted and experimental data.    

Immediate Release Oral Solid Dosage Forms    

A few reported studies employing NNs have addressed immediate release oral solid 

dosage forms. Using a backpropagation algorithm to build the NN, Kesevan and Peck [54] 

attempted to predict tablet and granulation characteristics from material and process 

variables.   The variables considered were granulation equipment, diluent, method of 

addition of binder, and binder concentration.  Although the prediction of granulation 

properties (geometric mean particle size, flowability, bulk and tapped densities) were 

found satisfactory, predictions of the hardness and friability of the resultant tablets were 

less than satisfactory.  However, the NN prediction in all cases was found better or 

comparable to conventional regression methods.  The authors suggested that the NN 

prediction of hardness and friability may be improved by providing more data and 

additional independent variables.    

Bourquin et al. [55] carried out a study aimed at investigating the influence of a number 

of formulation and compression parameters on tablet crushing strength, percent dissolved 

after 15 minutes, and time to 50% dissolution.  The drug substance was granulated in two 

different formulations. Compression parameters consisted of three levels each of matrix 

filling speed, precompression force, compression force and rotation speed.  The dataset 

was mapped using three techniques:  (1) a generalized feed forward NN employing a 

hyperbolic tangent function as an arbitrary non-linear activation function for all 

processing elements, (2) a hybrid network composed of a self-organizing feature map, 
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and (3) classic response surface methodology. NN models using an arbitrary function 

were found to have better fitting and generalization abilities than the response surface 

technique.  The arbitrary hyperbolic tangent function was chosen to represent non-

linearity in the data.  

Ebube et al. [56] found that a NN accurately predicted in vitro dissolution based on 

several experimental variables, provided the NN variables were optimized and training 

and validation sets were appropriately selected. 

Working with a high-dose plant extract, Rocksloh et al. [57] optimized the crushing 

strength and disintegration time of the tablets after substantial experimentation.  Best 

results were found with a plant extract that had been granulated by roller compaction 

prior to tableting.  In an attempt to learn more about the different effects, feedforward 

NNs and a partial least squares multivariate method were used to analyze the data, with 

the result that NNs were found more successful in characterizing the effects that affect 

crushing strength and disintegration time.  Shao et al. [58] found both NNs and 

neurofuzzy logic to successfully develop predictive models for the crushing strength and 

dissolution of an immediate release formulation, but the latter logic had the additional 

advantage of generating rule sets for the cause-effect relationships in the experimental 

dataset.  

Peng et al. [59] used trained NN models to predict the dissolution profiles of immediate 

release beads loaded with 40% acetaminophen.  The beads were prepared by extrusion 

and spheronization.  The training set consisted of 18 batches that were prepared based on 

a full-factorial design.  The variables were extruder type, screw speed, spheronization 
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speed and spheronization time.  The NN model trained with a genetic algorithm exhibited 

better predictability than that trained with a neural algorithm.   

Kuppuswamy et al. [60] used a back propagation network to model the relationship 

between the hardness and friability of direct compression tablets produced from nine 

mixtures of varying compactibility and tableting indices (Hiestand).  The goal was to 

predict the hardness and friability of tablets from the index values.  It was concluded that 

tableting indices did not have a general ability to predict compactibility since quantitative 

prediction was only possible when the model was trained with similar materials.  

Different materials having closely similar indices could have widely differing 

compactibility.  

Modified Release Oral Solid Dosage Forms  

A review of the literature suggests a strong interest on the part of researchers in applying 

NNs to the development of modified release oral solid dosage forms.  One of the earliest 

reports in this application area is that of Hussain et al. [61] who used a backpropagation 

network to discern the complex relationship between certain formulation variables and 

the in vitro release of chlorpheniramine maleate from a hydrophilic matrix capsule 

system.  They found that NN analysis could predict the response values for a series of 

validation experiments more precisely than response surface methodology.  In a later 

study, Hussain et al. [62] describe the use of a non-linear feed forward network to 

recognize the relationships between the drug, formulation properties and the in vitro 

release of the drug from hydrophilic matrix tablets.  Eleven drugs were studied in three 

different ratios with hydroxypropyl cellulose.  The drugs were characterized by their 

intrinsic dissolution rate, salt type, pKa, and molecular weight.  Three polymer molecular 
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weight grades were characterized by their hydration times.  The NN developed from this 

dataset was used to predict the in vitro release profile of the drugs, and the prediction 

error (RMS) was found acceptable for most, but not all, of the drugs and polymer ratios.  

The authors concluded that even though the formulation examples and test conditions are 

simplistic, the results of the study are useful in that they demonstrate the potential 

advantages and limitations of this approach. 

Takahara et al. [63] reported the use of a multi-objective optimization technique based on 

a NN for a sustained release tablet.  The quantities of microcrystalline cellulose, 

hydroxypropyl methylcellulose and the tablet compression pressure were considered the 

causal factors.  The drug release order and release rate were the responses.  The response 

surface of a NN was used to recognize the non-linear relationship between the causal 

factors and the responses.  Simultaneous optimization was carried out by minimizing the 

generalized distance between the predicted values of each response and the optimized one.  

Similarly, Takayama et al. [64] described the application of simultaneous optimization 

incorporating a NN to theophylline hydrophilic matrix controlled release tablets.  The 

levels of a commercial 80:20 hydroxypropyl methylcellulose: lactose mixture and 

cornstarch, and the compression pressure were the causal factors.  The release profiles 

were represented by the sums of the fast and slow release fractions. Release parameters 

were the initial weight, the rate constant in the fast release fraction and that in the slow 

release fraction.  A desired set of release parameters were obtained based on human 

pharmacokinetic data.   NN response surfaces were used to recognize the non-linear 

relationships between the causal factors and the responses. Simultaneous optimization 

was performed using a generalized distance function method which minimizes the 
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distance between the predicted values of each response and the desirable one that was 

optimized individually.  Fairly good agreement between the observed and predicted 

release parameters was found.   The use of the generalized distance function combined 

with a generalized regression neural network (GRNN) to optimize aspirin extended 

release tablets  has been reported [65].  The tablets were formulated using Eudragit L 100 

as the matrix substance. 

Chen et al. [66] combined a NN with pharmacokinetic simulations to design a controlled 

release tablet formulation for a model sympathomimetic drug. Ten independent variables 

for 22 tablet formulations provided the model input. In vitro cumulative percent of drug 

released at ten different sampling times was the output.  The NN was developed and 

trained using CAD/Chem software, and the trained model was used to predict the best 

compositions based on two desired in vivo release profiles and two desired in vitro 

dissolution profiles.  Three of four predicted formulations exhibited very good agreement 

between the NN-predicted and the observed in vitro dissolution profiles based on 

similarity metrics (f1, f2).  Chen et al. [67] later used the above data as the basis to 

compare four commercially available NN software packages (NeuralShell2, BrainMaker, 

CAD/Chem, NeuralWorks) for their ability to predict in vitro drug release. The percent 

dissolved at ten different sampling times was the output. The slopes of predicted vs. 

observed percentage of drug dissolved ranged from 0.95 to 1.01 (r2 = 0.95-0.99) for the 

four optimized models.  The authors concluded that all four programs gave reasonably 

good predictions from this dataset, but one (NeuroShell2) was preferred based on 

similarity metrics, exhibiting lower f1 and higher f2 values compared to the others.   
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NNs also can be used to rank which of various formulation and process variables are 

most critical in influencing responses.  For example, Leane et al. [68] described the 

successful use of Input Feature Selection (IFS) to identify the most important factors 

affecting in vitro dissolution from enteric coated minitablets.  Using Trajan software, IFS 

was implemented in two ways: stepwise algorithms that progressively add or remove 

variables and a genetic algorithm.  NNs were then trained using the backpropagation 

algorithm to determine whether or not the IFS had correctly identified any unimportant 

inputs. 

In other applications to modified release tablets, NNs have been applied to the 

optimization of osmotic pump tablets [69] and to model bimodal delivery [70].  In the 

latter, the precision of the predictive ability of different training algorithms was compared. 

Experience with a Hybrid “Expert Network” System    

Under the sponsorship of Capsugel, a feasibility study was carried out at the University 

of Maryland to link an expert system for capsule formulation support with a neural net [7, 

8].  The goal was to create an intelligent system that can generate capsule formulations 

that would meet specific drug dissolution criteria for BCS Class II drugs, i.e. drugs that 

would be expected to exhibit dissolution rate-limited absorption.  Piroxicam was selected 

as a model Class II drug with which to demonstrate feasibility.  A modified expert system 

patterned after the Capsugel system was created for this project.  The new system 

provided an opportunity to build certain additional features into the decision process and 

to use a more effective and more flexible programming language package.  Unlike the 

original Capsugel system written in C, this expert system was constructed as a rule-based 

system and encoded in Prolog.   This structure provides certain advantages.  In Prolog, 
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knowledge is separated from the inference engine.  Thus, the designer need only provide 

knowledge base, since the inference mechanism is provided by the language package. 

Another advantage is that the rules are local and relatively independent of the inference 

engine.  This feature makes maintenance and updating of the knowledge base easy.  A 

Prolog rule-based system is also more suited to managing complex formulation problems 

than a decision tree because it can represent more-complicated decision logic and more 

abstract situations.  

------------------------------------------------------------------ 

Figure 12 about here 

------------------------------------------------------------------ 

As depicted in Fig. 12, the expert system is linked to a neural network to form a hybrid 

system.  The expert system is the “decision module” that generates a proposed formula 

based on data and requirements input by the user; the NN, trained by backpropagation 

algorithm, serves as the ‘prediction module’ that predicts the dissolution performance of 

the proposed formulation.  The “control module”, driven by the difference that might 

exist between the desired dissolution rate and the predicted dissolution rate of the 

proposed formulation controls the optimization process.  The control module inputs the 

formulation from the decision module to the prediction module to compute the predicted 

dissolution rate and asks for the user’s acceptance of the currently recommended 

formulation based on that predicted dissolution rate. If the user accepts the formulation, 

the control module will terminate the formulation process.  If not acceptable, the control 

module will present a set of choices of parameter adjustments (e.g. excipients levels) to 

the user for improving the dissolution rate.  This prototype was found to have good 
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predictability for the model compound, piroxicam.  Later, a more generalized version of 

this system which included parameters to address wettability and the intrinsic dissolution 

characteristics of the drugs was found to show good predictability for several BCS II 

drugs representing a broad range in solubilities [71].  The approach demonstrated here for 

capsule formulations should be readily adaptable to tablets. 

VI. THE FUTURE 

Product development is a complex, multi-factorial problem requiring specialized 

knowledge and often years of experience. The need to speed up the development process 

and modernize manufacture and control will drive academic and industry researchers to 

develop a more fundamental understanding of product and process that will enable the 

identification and measurement of critical formulation and process attributes that relate to 

product quality and to model the relationships between product quality attributes and 

measurements of critical material and process attributes.   The contributions of 

knowledge-based systems and other artificial intelligence techniques can make to 

decision making, product and process optimization and identifying critical variables, and 

codifying and preserving knowledge have already been demonstrated through numerous 

examples.  But their full potential in pharmaceutical technology has not been realized.   

That will require more a fundamental understanding of our systems and a stronger 

commitment to build collaborative relationships with artificial intelligence and 

information technology specialists who can help us exploit artificial intelligence and 

translate the problems and goals of pharmaceutical technology into practical solutions.   

Most AI methods with substantial applications in drug formulation (e.g., rule-based 

systems, decision trees, BP neural networks, genetic algorithms) were “old” techniques 
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developed in 1970s and 80s. Since then quite a number of techniques for intelligent 

systems have reached a level of maturity for real world applications. It would be 

interesting to see how these “new” techniques can be applied to help solving difficult 

problems in drug formulation. For example, support vector machine (SVM) has been 

reported to outperform several other machine learning techniques, including BP networks, 

RBF networks, and decision trees, in both learning time and the validation accuracy in 

data analysis for drug discovering [72]. Similar performance would be expected when 

SVB is applied to tableting and other formulation optimization tasks. 

Similarly, the technique of Bayesian networks, especially BN learning, is also very 

promising in drug formulation. BN can be seen to be advantageous over neural networks 

in several aspects. First, BN models the interdependencies between variables, not just 

black box associating input patterns to their desired outputs as does BP networks, so 

every part of the BN can be evaluated and validated by human experts. Secondly, 

NN, when used as a predictor, generates the most likely/plausible output pattern for a 

given input pattern. In contrast, BN provides posterior distribution of output variables for 

the given input, as such not only one can find the most probable output pattern, but also 

knows its likelihood, and the likelihoods of other good patterns that ranked lower than the 

best one. Thirdly, the Bayesian analysis can be done using any combination of variables 

as the conditionals. This kind of flexibility goes far beyond what can be supported by any 

NN models, making BN a powerful modeling tool for what-if analysis. 

Another new technique of interest is Semantic Web (SW) [73]. Unlike most AI 

techniques reviewed in this chapter, SW is not a technique for data analysis or knowledge 

representation; rather it is a technique that helps a better sharing of data and knowledge. 
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Pages in the current World Wide Web are intended for human consumption. Their 

contents are not understood by computer programs. To make web pages understandable 

by programs, the semantic web extends the current web by providing additional markups 

to articulate the semantic or meaning of the web contents. The semantic markups are 

according to shared ontologies written in a standard web ontology definition language 

(OWL) based on a variation of first order logic known as the description logic.   

Semantic web thus can be viewed as a web of data that is similar to a globally accessible 

database. How to build a shared ontology for drug formulation (as part of a much larger 

ontology for pharmaceuticals) and how to utilize the huge amount of data and knowledge 

that become available for machine processing is a research direction of great potential.  
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