Real-Time Path Planning for a Robotic Arm

Kavita Krishnaswamy, Jennifer Sleeman, Tim Oates
University of Maryland, Baltimore County
1000 Hilltop Circle
. Baltimore, MD 21250
{kavi1, jsleem1, oates}@umbc.edu

ABSTRACT

With robotics technology, services can be provided to care
for individuals with disabilities. This paper describes an
effort to improve path planning performance for a robotic
arm, resulting in faster user response in real-time. For a
robotic arm, particularly with multiple degrees of freedom,
path planning is computationally expensive. We propose
that it is possible to achieve rapid response times with an
assistive robotic arm by caching frequent arm trajectories
and creating a “roadmap” of arm movements. By calculating
trajectories to possible target goals in advance, we anticipate
an improvement in user response times.

Categories and Subject Descriptors

1.2.9 [Artificial Intelligence]: Robotics— Workcell organi-
zation and planning

General Terms

Algorithms, Measurement, Performance, Design, Experi-
mentation, Verification

Keywords

Robotic arm, cache, assistance

1. INTRODUCTION

Time is a crucial factor in providing immediate assistance.
For people with disabilities it is of great importance
since they often depend on medical care from others.
When immediate physical assistance is required, robotics
technology can provide services and care in times of urgent
need for medical attention.

Path planning can be computationally data intensive
and time-consuming in robotics. A robot needs to
access and process information from sensors to learn
about an environment. The challenges of path planning
involve finding an optimal path and handling precise

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

PETRA’11 May 25 - 27, 2011, Crete, Greece.

Copyright 2011 ACM 978-1-4503-0772-7/11/05 ...$10.00.

manipulations. While processing a search through all the
possible trajectories for a path planning algorithm, a user
has to wait until the procedure is completed before receiving
a response from the robot.

Our goal is to reduce the computation time for path
planning of movements for a robotic arm. To provide
this solution, we propose to use the techniques of caching
frequent arm trajectories and creating a “roadmap” of
robotic arm movements. We aim to increase productivity in
processing user requests with a reduced expense of time and
resources. We describe preliminary work that will support
a way to perform caching of precomputed path plans and
enable prefetching of path plans.

2. BACKGROUND

A number of researchers have devised variations of
the classic A* algorithm for path planning. The State-
Abstracted Hierarchical Task Network (SAHTN) algorithm
recursively decomposes a high-level action task into lower-
level actions until reaching primitive tasks that cannot be
broken down any further[5]. The path plan of the primitive
tasks are cached by the algorithm. By caching the sub-—
action tasks for a given task, computation times are reduced
so that once a plan for a sub—action is computed it should
not have to be re-computed the next time it is used.

Other work uses the framework of hierarchical heuristic
search to solve shortest paths problems through a hierarchy
of levels of abstractions [2]. While heuristic values are
computed on-demand, Hierarchical IDA* (HIDA*) employs
abstraction of the search space of the original problem so
that it can be decomposed into smaller problems for faster
computation. Omnce an optimal path is calculated, this
algorithm also uses caching strategies for efficiency.

The concept of abstraction is also used in the
Hierarchical Pathfinding Algorithm (HPA*) for path-finding
in environments found in computer games [1]. Given a
grid-based map with start and goal locations, the map is
made abstract by dividing it into disjoint rectangular areas
called clusters. The distances between nodes in a cluster and
the optimal distances between clusters are precomputed and
cached to minimize time.

In particular, we believe applying a method based on these
ideas can improve path planning performance for robotics
that are used specifically to assist persons with disabilities.
The path plans involved are based on everyday tasks, such
as fetching a glass cup, or lifting a spoon. As outlined in
[4], these everyday tasks can be complicated due to the
complexities that may occur in motion capture. Variations



in task performance is affected by different grasps, arm
postures, orientations, and more [4].

By applying a technique that involves partial path pre-
computations and caching, we believe this can reduce the
complexity and increase the overall performance of path
planning in this specific domain.

3. APPROACH

By analogy with a roadmap with major highways
eventually leading to side streets, we also plan to break down
the path to reach a target object by first translating the
robotic arm towards the goal, rotating and translating to get
as close as possible to the goal, and then finally grasping or
manipulating the goal. We decompose tasks into subtasks.
With this decomposition, as in previous work[5, 2, 1], we
can apply the A* path planning algorithm a priori and cache
optimal subpaths.

We consider a problem space where a potentially large
number of variations for a particular task exist. When
an individual performs an action such as ‘Reaching’, the
tracked motion can vary based on a number of attributes,
such as, the position of the individual[4]. In Figure 1 below,
two different instances of arm movements can be seen to
pick up an object from points unknown a priori. This
task is achieved by the subactions of reaching and taking
something. Thus, the planned path will contain subpaths
in a region common to both instances which we define as a
subpath district.

Subpath disgtrict Subpath district

TakingSomething
eaching

./'\m

eaching
TakingSomething ‘

s
g do not know these

o7

points & priari.

Figure 1: Variations of a Movement

Among these variations and based on the start and
goal positions, an optimal path can be calculated in real-
time. We propose a supervised method that involves a
training phase which uses the A* algorithm. Variations of a
particular task include a set of subtasks that could vary in
their x,y start and end positions. During the training phase
the optimal path is obtained using A* and is then cached.
Start nodes and goal nodes are based on bounded areas as
defined by the beginning and end positions of the group of
subtasks that make up a task. This can be thought of as a
neighborhood or district. The bounding neighborhood and
optimal path are stored in a cache for real time application.
During real time processing, when a path plan is sought for

a particular action designated by a start position and a goal
position, the cache is called upon. The start position and
goal position are compared to the boundaries of the various
neighborhoods. If the start and goal positions fall within a
bounded neighborhood the optimal path is returned.

Our approach assumes that a start position and goal
position are unique to a specified type of task and do not
represent two different types of tasks. Owur initial work
assumes a static environment without obstacles.

4. METHODOLOGY

Our technique is a two-step process. The first procedure
involves a training phase that produces the cache of
optimized neighborhoods for a given set of points. These
points form the boundaries for the neighborhood.

In the training phase, the following steps occur:

1. We create a grid and map our search space on the grid.

2. Given a repetition of a task X, we bound the area. We
use these points to create a bounded area on the grid.

3. We run A* for permutations of points at the
boundaries (representing start and goal nodes) of the
repetitive paths of task X to find the optimal path for
each set of boundary points.

4. As seen in Figure 2, the determined boundaries of
each specific subtask found in this phase are used to
recognize efficient start and goal nodes along the edges
of bounded subpath districts with the optimal path
between those points that is stored in the cache.

eaching

eaching

@

Boundaries are used to calculate
start and goal nodes during

raining and [startfgoal node
pairs ;optimal path] lookups are
stared in cache.

Figure 2: Bounded Task

During run time we perform the following steps:

1. Given the start and goal nodes, we map these points
on the grid.

2. We compare our start and goal nodes on the grid with
predefined bounded areas represented in the cache.



3. If the start and goal points fall within the dimensions
of a cached bounded area, then the cached optimal
path is returned.

4. If one or both points do not fall within the dimensions
of the bounded area the following has to occur:
Of all created boundaries, we find the optimal path
from the start to the boundary and from the boundary
to the goal. We do not need to apply A* to the full
set of subtasks or the neighborhood that we defined
because we know this a priori. We need simply
the optimal path from the start to the fringe of the
boundary and the fringe of the boundary to the goal
node. A similar method was shown to be successful
when implemented by [1].

We modeled a fully associative cache and the A* algorithm
mapped on a grid by extending the aimajava package
[3]. The cache is preloaded with frequently used arm
movements from the training data. Simulated execution
time is computed with and without cache to get the shortest
paths from start positions and goal positions with different
sets of data for comparison testing.

In the practical sense, when a processor wants to read
or write to main memory, it will first check if a copy of
that data exists in the cache. If it is found in the cache, it
is a cache hit so the processor can access and retrieve the
stored data. As a result, time is saved for a path planning
computation because it is in the cache. Otherwise, in the
event of a cache miss, a processor must retrieve data in a
lower level of memory causing latency. By reducing cache
misses, we can decrease the time to compute path planning
and increase the throughput of requests.

4.1 Experimental Data

We used the Technische Universitat Munchen (TUM)
Kitchen Data Set for testing our approach [4]. The TUM
Kitchen Data Set is composed of 20 sessions of motion
capture data involving tasks related to setting a kitchen
table from the TUM’s "MeMoMan” motion tracking system.
We prepared data by observing captured video to find rates
of tasks and represented hand motion data in XML format.

The tasks of interest in our study are the movements
of lowering the arm and reaching for an object with
and without additional subtasks. In our experiment, we
simulated the time spent for path planning of these specified
tasks. We test our approach by running a set of tests to
compute the execution times for comparison.

S. RESULTS

Our preliminary results were based on running the tasks of
lowering, reaching, lowering with additional tasks defined as
lowering mix, and reaching with additional tasks defined as
reaching mix. The simulated execution time was computed
for each of the four types of tasks in three different time
instances. All of the tasks in each time instance experienced
an improvement of path planning with a cache.

To evaluate performance, we conducted a K-fold cross
validation where K = 2 for our experiments. The data set is
evenly partitioned with the first half as the training set and
the second half as the testing set in the first fold. Similarly,
in the second fold the first half becomes the testing set and
second half becomes the training set. The results of both the

first and second folds are averaged to acquire an estimate of
performance improvement.

For time instance 1, the results of performance are shown
in Figure 3. The task of lowering improved with an average
speedup of 156%. Likewise, the task of reaching had an
enhanced average speedup of 86%. In the same degree,
the mix task of lowering with additional subtasks gained an
average speedup of 302%. Finally, the mix task of reaching
with subtasks improved with a average speedup of 144%.

25.0

EWithout Cache

156% Speedup EWith Cache

86% Speedup

302% Speedup
144% Speedup|

Simulated Execution Time (sec)

Lowering

Reaching Lowering Mix Reaching Mix

Tasks
Figure 3: Results at Time Instance 1

Figure 4 displays the outcome of performance for time
instance 2. The lowering task enhanced with an average
speedup of 183% and the reaching task had an average
speedup of 26%. Also, the mix of lowering with additional
subtasks improved with an average speedup of 20%. Along
with the mix of reaching with an average speedup of 50%.

183% Speedup

EWithout Cache
EWith Cache

Simulated Execution Time (sec)

Lowering Reaching Lowering Mix Reaching Mix

Tasks
Figure 4: Results at Time Instance 2

As seen in Figure 5 for time instance 3, the lowering task
improved with an average speedup of 305% and the
reaching task had an average speedup of 37%. In the same
manner, the mix of lowering with subtasks improved with
an average speedup of 70%. Lastly, the mix of reaching
with subtasks improved with an average speedup of 243%.




30+ -
305% Speedup :m::u:;;::che
N
[
2
o
=
E
i=
e
=
o
a
x
ni
g 243% Speedup
E Speedup 70 Speedup
?

Lowering

Reaching Lowering Mix Reaching Mix

Tasks

Figure 5: Results at Time Instance 3

We predicted that this approach would be less optimal
when compared with using A* in real time to find the most
optimal path. Our tests showed that 20% of the time we
were less optimal than using A* in real time. However, we
did not implement any path smoothing techniques which did
increase optimality in previous work [1]. We also worked
with a limited set of training data and a minimum amount
of boundary points. Future experiments will consider more
boundary points and larger training sets.

In the process of running each test, we collected samples
of memory usage for the specific type of action, with
and without cache. Results showed that A* with caching
required on average 80% more memory than running A*
in real time without any caching. We sampled throughout
each test run and averaged the overall memory usage for
tests that used caching and tests that did not use caching.

We wished to compare our approach with [1] since
software is readily available to use and since they showed
both performance improvements and close to optimal
results. We ran two experiments, the task of lowering and
the task of reaching, and discovered that on average they
were 8% faster than us. We find this encouraging since our
work is preliminary.

6. FUTURE WORK

We described preliminary work and intend to further our
research and techniques based on past work for computer
games. We intend to work with data sets that will produce
a larger search space and that are rich with variation for
everyday tasks. Our thoughts are that the larger and more
complex the search space, the more benefit we will see
from our approach. We plan to also consider search spaces
that involve obstacles, this complicates the path plan
further but is a common occurrence that needs to be
considered. We also plan to further our work in relation to
prefetching. Prefetching will involve an element of
prediction that would prefetch future plans based on past
behaviors and the current state of the robot.

7. CONCLUSION

We show how mapping repetitive tasks to a grid and
finding an optimal path that can be preloaded for future
executions reduces the complexity and time of an A* path
planning implementation. The estimation of points during
training can impact the optimally of our solution and
needs further attention but its performance impact can be
significant for large repetitive search spaces. Our caching
approach did improve performance using our tests as can be
seen by our hit rates. Since we have a speed up with caching
for a single task, it implies that latency will be deceased for
the path planning computation for a task.

8. REFERENCES

[1] Adi Botea, Martin Miiller, and Jonathan Schaeffer.
Near optimal hierarchical path-finding. Journal of
Game Development, 1:7-28, 2004.

[2] R. Holte, J. Grajkowski, and B. Tanner. Hierarchical
heuristic search revisited. 2005.

[3] R. Mohan. Java implementation of algorithms from
norvig and russell’s ’artificial intelligence - a modern
approach 3rd edition.’, 2010.

[4] Moritz Tenorth, Jan Bandouch, and Michael Beetz.
The TUM Kitchen Data Set of Everyday Manipulation
Activities for Motion Tracking and Action Recognition.
In IEEE Int. Workshop on Tracking Humans for the
Evaluation of their Motion in Image Sequences
(THEMIS). In conjunction with ICCV2009, 2009.

[5] Jason Wolfe, Bhaskara Marthi, and Stuart Russell.
Combined task and motion planning for mobile
manipulation. In International Conference on
Automated Planning and Scheduling, 2010.



