Computer Standards & Interfaces 33 (2011) 2-12

journal homepage: www.elsevier.com/locate/csi

Contents lists available at ScienceDirect

Computer Standards & Interfaces

Enforcing security in semantics driven policy based networks

Palanivel Kodeswaran *, Sethuram Balaji Kodeswaran, Anupam Joshi, Tim Finin

Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, United States

ARTICLE INFO ABSTRACT

Available online 8 April 2010

Keywords:
Policies

Semantics
Networks

the BGP routing process.

Security is an important requirement in scenarios such as mobile computing that allow users to make
meaningful ad hoc collaborations. Traditional security solutions are not feasible for these scenarios due to the
varying nature of the collaborations. We propose an extensible framework that takes the semantics of the
collaboration into account and uses semantics driven policies for enforcing security. Our policies are rooted
in semantic web languages which make them amenable to interoperability and high level reasoning. We
describe our policy based network that exploits packet content semantics to secure enterprise networks and

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Security is emerging as an important requirement for a number of
distributed applications such as online banking, social networking etc.
due to the private nature of the data being involved. Furthermore, the
wide spread use of portable devices such as laptops, PDAs etc. allows
users to make meaningful ad hoc collaborations. Traditional security
solutions are not feasible for these scenarios due to the varying nature
of the collaborations in terms of entities involved and their roles,
available resources etc. Under these circumstances, we need generic
solutions that take into account the semantics of the collaborations in
determining the set of allowable operations. In this work, we use
policies for enforcing security as policies provide a generic and flexible
framework that can later be easily modified based on changing
requirements. We propose an extensible framework that uses
semantics driven policies for enforcing security. Given the dynamicity
of emerging computing environments, we want to be able to specify
our policies at a high level such that we can focus on the abstract
conditions and constraints that need to be maintained in the system.
Also, given the heterogeneity of available devices, we expect that
policy specifications should be as device independent as possible. In
these cases, to enforce policies, an adaptation layer would be used to
translate high level policy specifications into low level device specific
primitives. Allowing automated reconfiguration of devices on the fly
would require that the system be able to reason about policies and
adapt them based on the new requirements.

We further propose that policies specified in semantic web
languages can satisfy the above requirements. In our system, policies

* Corresponding author.
E-mail addresses: palanik1@cs.umbc.edu (P. Kodeswaran), kodeswar@cs.umbc.edu
(S.B. Kodeswaran), joshi@cs.umbc.edu (A. Joshi), finin@cs.umbc.edu (T. Finin).

0920-5489/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.c5i.2010.03.010

are specified using a combination of OWL and SWRL. The combination
of OWL and SWRL can be used to define ontologies using which one
can declaratively define facts, policies and rules in terms of what
needs to be true or false for a policy to hold. In our system, policy
specifications are in terms of SWRL rules which use high level
concepts defined in appropriate ontologies, thus making the policy
specifications generic, device independent and extensible. We can
also specify meta-policies for guiding the interaction among policies.
For example, we can use meta-policies to prioritize policies when
multiple policies are applicable in a context. Further, we envisage that
different organizations would have different policies at different
granularities for the same device. By specifying policies in semantic
web languages, devices would be able to reason over the policies and
arrive at a configuration that meets the overall combined require-
ments. Also, rooting policies in semantic web languages makes
dynamic reconfiguration automatic and easy, as new facts can be
inferred from the policies.

We present our policy based network that reasons over packet
content semantics for handling network traffic and show our
framework can be used to secure enterprise networks and the BGP
routing process.

The rest of this paper is organized as follows. Section 2 describes
our content based tagging scheme. In Section 3, we present our
semantics driven policy based network. Section 4 describes the
rationale behind using semantic web languages for policy specifica-
tion. Section 5 describes how security policies can be enforced in our
framework. In Section 6, we present related work and finally we
conclude in Section 7.

2. Content based semantic tagging
This section presents our packet level semantic tagging framework

that enables intermediary routers to reason over the tags to determine
how to best handle the data streams flowing through them. The idea

mailto:palanik1@cs.umbc.edu
mailto:kodeswar@cs.umbc.edu
mailto:joshi@cs.umbc.edu
mailto:finin@cs.umbc.edu
http://dx.doi.org/10.1016/j.csi.2010.03.010
http://www.sciencedirect.com/science/journal/09205489

P. Kodeswaran et al. / Computer Standards & Interfaces 33 (2011) 2-12 3

behind our approach is to provide the routers visibility into the
semantic content of packet data streams flowing through them. This
content level information can then be used by the routers to enable
intelligent routing and data handling decisions. Our approach differs
from active networks in that the data streams merely provide
additional meta-data while the network has complete control on
how to use this meta-data. Thus network operators still retain
complete over their network operations.

In our framework, we use RDF for labelling the semantic content.
We choose RDF as it is very flexible, generic and its growing
acceptance as the de-facto standard for meta-data markup. By
utilizing RDF as the mechanism to markup flows/packets, intermedi-
ary intelligent routing entities can use this meta-data to reason over
their knowledge base to determine how best to handle a given flow.
Also, inferences can be made to generalize or specialize a given flow to
best meet its demands. Furthermore, the use of a standard such as RDF
enables interoperability among routers of different organizations
since organizations may differ in their implemented mechanisms for
providing the same service.

2.1. System architecture

We break our system architecture into two components: A node
level and a System level that spans the network.

Fig. 1 shows the node level architecture of our framework. At the
node level, we introduce an additional layer called the CoCoNet layer
between the application and the transport layer. This layer is
responsible for intercepting socket calls made by applications to the
transport layer. The API is enhanced to allow the application to
provide semantic level information for messages transmitted over this
interface. A Local Policy Decision Point (LPDP) is used to determine
what policies to enforce based on the content. In our framework, each
Policy Enforcement Point (PEP) is at every layer in the networking
stack while [1] treats the PEP at a node level. Placement of the PEP at
every level of the stack allows us to implement coordinated cross-
layer interactions initiated and controlled by our framework. The PEP
exposes the interlayer optimization points that any particular layer
supports. The framework utilizes the policies stored in the LPDP to
drive the settings to be applied to each of the PEPs in the stack.
Essentially, we are proposing to expose a network stack as a collection
of switches and dials and allow an external policy to determine the
exact settings of each of these dials (based on content and context).

Application

| PHY

We want to expose functionality, not necessarily the mechanism of
how it is achieved (this falls under intra-layer optimization). For
example, a MAC can advertise two different data rates and their
associated packet error probabilities without exposing the FEC
scheme used to achieve these rates. The policies can be specified as
production rules (if (condition) then (action)) or event-condition-
action rules (on event if (condition) then (action)). In essence, the
Node Framework provides a rich, extensible option for realizing policy
controlled cross-layer interactions within a node's network stack. By
parameterizing the possible set of interactions that are permissible,
the cross-layer interactions are kept tractable without making the
implementation overly convoluted [2].

Fig. 2 shows the network level architecture of our framework. At
the network level, we envision that there will be an overlay network
composed of routers that run the CoCoNet Router Framework. Client
machines running our Node Framework communicate over this
overlay. The overlay comprises of the following two components:

* A control plane component that involves interactions among the
CoCoNet Router Layers at the routing elements.

* A data plane component through which the data packets are
flowing.

Routers exchange traditional management information such as
link states, buffer lengths, available bandwidth etc. in the control
plane. Furthermore, additional information such as content types
currently being handled and adaptations available can be advertised.
An additional key piece of information that is exchanged is the local
policies that are currently being applied to a data stream that is being
routed. Local PEP settings for a given stream or flow have global
implications. For example, unless every hop is reliable, a data packet
cannot be reliably routed through a network.

The data plane can be implemented as either:

* A UDP connection between two routers.
» A TCP connection between two routers.
* An IP-in-IP tunnel between two routers.
* Alayer 2 LSP.

» A DiffServ aware network.

* An IntServ aware network.

The CoCoNet Router Framework will perform the necessary
mapping based on policy, content and context. For instance, suppose
a packet arrives at a router indicating that it requires reliable transfer

Out of Band

InzEand Meta-Data

Meta-Data

Fig. 1. CoCoNet Node Framework.

4 P. Kodeswaran et al. / Computer Standards & Interfaces 33 (2011) 2-12

Control Plane

e T
ata Plane

|

==

Fig. 2. Overlay network.

semantics. The data plane chosen to the next hop, in this case, could be
over a TCP connection. Likewise, a data packet indicating that it is
sensitive information (telnet logins for example) but currently not
encrypted can be routed to the next hop over an IPSEC tunnel or
dropped if none is available (if that is the policy). The choice of where
a CoCoNet Router Framework runs is very implementation depen-
dent. For example, in case of a wireless ad hoc network, every host is a
router and hence can potentially run a (albeit simplified) CoCoNet
Router Framework. Likewise, in an enterprise setting, the host
machines within the enterprise will likely run only the Coconet
Node Framework with only the exterior gateway routers running the
Coconet Router Framework. A network service provider will most
likely have only edge routers run the Coconet Router Framework
leaving the core optimized for fast data flow handling.

The role of the Global Policy Distribution Point (GPDP) is to
disseminate any network wide policies that need to be enforced. This
caninclude items such as preferential treatment that needs to be given
to content originating from a particular domain, preferential treatment
for a particular type of content, any content based adaptation
techniques that need to be employed in the network etc. It is
envisioned that the GPDP is controlled by the ISP to set forth global
rules while the LPDP hosted at an enterprise location is possibly shared
between the ISP and the enterprise. This can further be extended to say
that the LDPD is under local user control (based on user policies and
preferences) and can additionally, host user preferences.

In order to propagate content level information for packets and
flows, we propose to take one of the following approaches.

» The meta-data can be directly encoded into the IP options field of an
IP packet (size is an issue). We refer to this as “in-band tagging.”

« [P packets use the IP options field to carry a special key. This key is
looked up in a directory service to identify the meta-data describing
that packet or flow. We refer to this as “out-of-band tagging.” In this
approach, we will need to use a structured Peer-to-Peer overlay to
enable key lookups. Before a client starts a flow through a network,
it registers its content meta-data with the first hop router and
generates a key. This key is carried in the IP packets and is available
to any intermediary router. At any point along the data flow, this key

can be used by intermediary routers to fetch the meta-data through
an out-of-band mechanism.

The information conveyed in the meta-data is under the complete
control of the application. For example, an MP3 stream may have the
following description which can be used to differentiate between
official and entertainment video streams.

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf=
“http://www.w3.0rg/1999/
02/22-rdf-syntax-ns”
xmlns:mmschema=
“http://www.mySchema.org/mms”>
<rdf:Description
rdf:about=
“http://www.myContent.com/
SalesReport.mp3”>
<rdf:type rdf:resource=
“http://www.mySchema.org/mmsaudio” />
<mms : LengthInMin>5</mms:LengthInMin>
<mms : LengthInMB>4</<mms : Lenght InMB>
<mms:technicalType>
http://www.mySchema.org/mmsMP3
</mms:technicalType>
<mms:semanticType>
http://www.mySchema.org/mmsLecture
</mms: semanticType>

</rdf:Description>

Furthermore, providing content information so that a router can
differentiate between, for example, video streaming from a surveil-
lance camera and a streaming movie allows the network to make
smart decisions on routing data streams across links with different
reliability characteristics. Also, for our architecture, we are using RDF
which provides a generic mechanism to convey meta-data which can
be reasoned over. While we agree that semantic tagging could be an

P. Kodeswaran et al. / Computer Standards & Interfaces 33 (2011) 2-12 5

expensive process, we would like to point to recent work [3] that
shows that network level tagging can be performed efficiently.

3. Semantics driven policy based network

In this section, we present our policy based network built on top of
the semantic tagging architecture.

Policy based networks employ mechanisms that allow network
operators to specify rules at a high level, defining how packet flows
are handled within a network, how network resources are allocated,
access control restrictions and levels of service. The policies are
enforced by configuring the network devices with the requisite
primitives so that the appropriate actions are performed on the data
streams. For example, one of the primitives may be routing matching
flows through a middle box for security analysis.

One of the main challenges frequently faced is ensuring that
network configuration settings are applied consistently throughout
the network so that the correct actions are taken by the network
devices; however, this is often error-prone and difficult to manage
especially when there is a heterogeneity of network devices and
management protocols. Additionally, policies that are commonly in
use today are limited in their expressibility. Rules such as “allow traffic
from A higher priority over B” and “permit user A” are easy to enforce
but are limited in their expressibility. For networks to offer highly
specialized services, administrators need to be able to specify more
complex handling rules such as “allow security surveillance video
streams higher priority than webcasts” (within an enterprise) or
“downsample any video to user A so as not to exceed 128 kbps” (due to
different levels of service or capabilities of the device associated with
the user). For such policies, enforcement cannot be performed by
packet header inspection alone as all the requisite details may not be
directly accessible from the data packets as they are today.

To solve the above issues, we propose an alternate model to
achieving policy based networks that provides fine grained services
for network traffic as well as ease of network management. Our model
employs the semantic tagging framework describe in the previous
section within a formal framework for specifying rules that can be
checked for consistency. The process of converting the rules to the
lower level primitives understood by the network devices is also
handled by the framework, thereby allowing the network adminis-
trators to focus only on defining the administrative policies. In our
model, applications use the semantic tagger to encode data packets
with descriptions conveying content semantics using the W3C Web
Ontology Language (OWL) [4] as explained in the previous section.
Ideally, the ontology used for this is provided by the network service
provider. This description is encoded as a special header that is
embedded into the data stream. Our motivation for using OWL
(specifically, OWL-DL) is its capability to express formal semantics,
define class hierarchies and their relationships, associated properties,
cardinality restrictions while still retaining decidability and compu-
tational completeness. Using OWL for ontology specification makes
the framework generic, flexible and more scalable than using
proprietary labelling schemes that raise interoperability issues. For
example, while one organization may invoke special procedures for
handling surveillance video, another organization may have only a
generic procedure for processing video traffic. In these cases, the class
hierarchy offered by the ontology provides a clean interface for policy
specification, where as flat labelling mechanisms may use a separate
label for each different type of video traffic with no explicit
relationship with the parent video traffic class. Furthermore, ontology
based languages naturally support evolution, which makes them
attractive for modeling network policies that change as enterprise
goals change.

Our framework utilizes the W3C Semantic Web Rule Language
(SWRL) [5] as the rule language which provides an easy to use
mechanism for specifying event-condition-action rules which is the

majority of rules envisioned for a typical network. Using our
framework, content providers now provide meta-data to the network
that can then be used by the network providers to determine how best
to handle a given packet or flow that best suits that content. When a
flow enters the network, CoConet routers running a reasoning engine
reason over the OWL description of the incoming flow and apply
appropriate network configurations to satisfy the matching policies.
An important corner piece of our framework is that operators
retain control over the network and how traffic is handled within the
network. This differentiates our approach from active networking
[6,7] with respect to packet handling in that unlike active networks,
the meta-data is not a contract on how the data should be handled but
rather what the data is. The network provider retains complete
control of how the packets are handled within the network and can
fine tune policies to offer the best service for that type of content.

3.1. Policy architecture

We would like to note that we provide a generic framework where
each node may have its own set of policies for handling different
traffic types. Such policy differences may arise for a variety of reasons
such as differences in node capabilities caused by the presence of
hardware accelerators for certain operations, nodes belonging to
different administrative domains following different policies etc.
Therefore to ensure that network wide policies are properly enforced,
the individual policies at each node need to be checked for
consistency with the global policies. In this section, we describe
how the distributed policies in our architecture are consistently
maintained, thereby ensuring that network wide policies are properly
enforced within the network.

The policy based networks managed using our framework are
envisioned as a multi-tier system. A typical enterprise can be viewed
as a collection of multiple Autonomous Domains (ADs) that may each
be separately managed. Within each AD, there may be multiple sub-
domains. We pursue a hierarchical policy architecture, in which
policies can be classified as enterprise wide, specific to an AD or
specific to a sub-domain within an AD. Policies in the system are
distributed to the various ADs that are responsible for enforcement of
those policies within that domain and all contained sub-domains. At
the lowest level of this hierarchy is an adaptation layer that is
responsible for translating the high level policies into low level
protocol specific configuration routines that can be applied to the
various network elements that are being managed.

Built into our policy architecture is a policy validation mechanism.
All network management policy changes specifically, adding new
policies, modifying existing policies and deleting policies are first
examined for correctness and validity before being accepted into the
system. This ensures the overall consistency of the system being
maintained. The validation actions themselves are expressed through
policies set forth typically by an enterprise network administrator.
Fig. 3 illustrates the various components of our proposed architecture
as applied to a generic enterprise comprised of several ADs managed
by different administrators (this could be due to the departments
being in different geographical locations, company policy etc.) and
may potentially contain equipment from multiple vendors (our
terminology is derived from [8]).

The Enterprise Policy Data Store (EPDS) is a central repository of all
of polices that govern the enterprise. The EPDS contains a superset of
all policies for each Policy Repository within the system. In addition,
the EPDS stores any policies that govern the Enterprise Policy
Arbitrator (EPA). Internally, the EPDS can be setup to be a hierarchical
data store where for example, enterprise wide policies can be stored
separate from departmental policies. Each departmental Policy
Repository (PR), as part of its initialization, will contact the EPDS to
obtain the set of policies that are relevant to this PR. This includes the
enterprise wide policies and any department and sub-department

Enteprise Policy Data Store

Arbitrator

P. Kodeswaran et al. /| Computer Standards & Interfaces 33 (2011) 2-12

Policy
ﬁ_] Editor
Enterprise
Policy
= Editor
Enterprise
Admin
’
E s coin
o e 4 Palicy. ==~
e o Synchronized Validation
4 e /Replicated e
ol _l' e
.‘ Pl
h -
4 e
) &l
i B AD
/ 1 Policy
! 3 ”
i b Editor
.. _".
] J =
Sl T AD1
{' ," System Admin 7
i Synchronized Decision &
1 /Replicated Point ;
r g N
' Policy R
1 Validation o =
] '\‘ i)
5 P k.
\._ N { External 3
S, 3 Network | :
K : i 7 S

x

Synchr'oni‘zed.\-‘
/Replicated = "~

Editor

SALESDPT

Synchronized
Enterpriser fﬂepllcalsq.

Policy
Arbitrator)

" Polig

\-
Validation---._____ ‘.‘
e
\".] AD (i
L Policy
AD Policy Y Editor
Decision :
Point , \

AD2
System Admin

Synchronized . . -~ Repository
/Replicated
3
y

Wnch';onizad

/Replicated
o K
- |Local “'_ G
“ |PDP “{f
=
- PEP -\;\'1
4 .
- FINTFlT‘!"W_I_2 =5 “
[JPE| P
N FINRT3 v
| PR

.

I
T e

Fig. 3. Proposed architecture.

specific policies. The EPDS is constantly synchronized with the PRs in
the system. Any policies approved for addition to a PR will be also
forwarded to the EPDS so that if that PR were to crash, it can come
back up and retrieve its original state from the EPDS.

The Enterprise Policy Arbitrator (EPA) validates any new policies that
are being added/removed/modified to the system. The EPA is
responsible for conflict resolution, dominance check, bounds check,
relation checks, consistency checks, feasibility check etc. The EPA is
governed by a set of its own policies that define how it does the
arbitration, validation and other checks. In this manner, the EPA ensures
that any policy entered into the system conforms to certain global
system constraints. All policies that are submitted to a PR are first
forwarded to the EPA for validation. Based on the response received
from the EPA, the local PR either installs the new policy or rejects it.

The Policy Repository (PR) is a data store for a collection of policies.
Typically this could be an AD specific PR (AD-PR), department or sub-
department specific PR (referred to as local PR) etc. The AD-PR contains
all policies specific to the enterprise and any policies specific to all
departments (and sub-departments) that are part of this AD. Each PR in
the system is synchronized with its parent PR and at startup, retrieves all
its policies from this parent. In this hierarchy, the EPDS is the root parent.
An AD-PR will retrieve all policies from the EPDS including all enterprise
wide policies, all AD specific policies and all policies for any contained
departments or sub-departments. Similarly, a departmental local PR on
startup will contact an AD-PR to retrieve all relevant policies, including

enterprise specific policies, AD specific policies and any department
specific policies. Polices can be added, deleted or modified from a PR
through a Policy Editor. Any such changes (regardless of whether the
change is in an AD-PR or a Local PR) are first forwarded to the EPA for
validation. If they are consistent, the EPA applies these changes into the
EPDS. This addition will propagate to the PR chain so that all the PRs in
the hierarchy are updated.

The Policy Decision Point (PDP) is the entity responsible for
reasoning over the network traffic utilizing the content meta-data,
network state and other contextual information available to it and
determining the policies that need to be enforced. Each PDP operates
with policies that are stored in a corresponding PR. PDPs can be at
different levels, administrative domain (AD-PDP), department or sub-
department specific PDPs (local PDP) etc. The PDP is responsible for
reasoning over the policies (using its Configuration Reasoner) in its
local PR and translating them into commands that can be sent to PEPs
for enforcement (to the PEP's Configuration Conformance Enforcer).
Additionally, the PDP is responsible for reacting to events coming
from managed PEPs or subordinate local PDPs that cannot be resolved
at the local PDP level. In this manner, the PDP acts as the decision
making entity within the framework, the decisions being made at
multiple levels depending on the severity of the trigger. The PDPs
closer to the device deal with policies that are low level, fine grain and
possibly device/protocol specific and the PDPs higher up the tree deal
with more abstract and aggregate policies.

P. Kodeswaran et al. / Computer Standards & Interfaces 33 (2011) 2-12 7

The Policy Enforcement Point (PEP) is the entity responsible for
enforcing the policies at the device level. It resides on the managed
devices and is responsible for installing and monitoring the health and
status of a network device. PEP's main responsibilities and actions are:

» To request and store its configuration from the local PDP that is
responsible for this device.

* To delegate any policy decisions to the local PDP by extracting
content meta-data from data packets and adding to this description,
any additional information that may be useful to the local PDP.

* Report errors and status updates to the local PDP.

The PEP is a vendor/device specific network management protocol.
The PEPs collectively form the adaptation layer to abstract any device
specific details into a normalized interface represented using the
standard system ontology.

The Network Ontology (NetOnto) is the OWL ontology specified by
the service provider or enterprise that is used to mark up the content
of data packets conveying information such as application profiles
(security requirements, delay, jitter etc.) and user profiles (customer
paying more for service, end device capabilities). By using OWL rather
than simple XML, the language is semantically richer and highly
extensible which is very important especially when we have
interdomain interactions (such as peering arrangements, SLAs etc).
Policies are written using the concepts defined in NetOnto using SWRL
as the rule language. A PEP extracts the content semantics description
carried in the packet header and adds to it, any extra contextual
information including aspects such as network state (congestion, link
failures etc), network technology (wired, hybrid, MANET, cellular) etc.
This information is then sent to the PDP and actions are invoked based
on the response. The response back from the PDP will cause specific
configuration to be installed by the PEP on the device (for example,
updates to IPtables, addition of static routes and priorities, setup a
label switched path etc).

The Policy Editor (PE) is the component that is used by a system
administrator to view, add, modify and delete existing policies. The
interface is typically a GUI allowing for ease of operation. PEs can be at
different levels. The Enterprise Policy Editor (E-PE) provides a way for
an enterprise system administrator to specify enterprise wide policies.
An Arbitrator Policy Editor (A-PE) allows an enterprise system
administrator to specify policies that drive the EPA. Similarly, an AD
Policy Editor (AD-PE) allows an ADs system administrator to specify
AD specific policies. In general, a user uses the PE to request changes
to be made to a PR. This request will pass through the EPA validation
and the user receives an acknowledgement of whether or not the
requested change is allowed or rejected. Additionally, the PE also
offers views of the managed network such as topology views, status of
network devices and links etc.

Content Tagger

Utilizing this framework, devices can now be deployed in a
network and policies specified that can provide specialized services
(content adaptation, forwarding priorities, resource reservations etc)
to data packets as shown in Fig. 4. At each interim device, packets are
inspected to see if they carry a semantic header. These packets are
then offloaded to a separate forwarding path. The semantic header is
extracted, any additional contextual detail available to the PEP is
added to complete the OWL description and sent to the PDP for
reasoning. We use OWL's abbreviated XML encoding format for this
purpose. The PDP runs a reasoner that takes the OWL description and
SWRL rules to determine the actions that need to be initiated. This
information is then conveyed back to the PEP to be applied to the
offloaded packets (and possibly to the express lane) to realize the
necessary policies.

4. Design of policies rooted in semantic web languages

There are several reasons motivating us to root our policy
specification and enforcement mechanisms in semantic technologies.
Specific to the domain of networking, for any successful policy
language, it must be universally interoperable considering the
number of various organizations (enterprises, ISPs, networking
vendors etc) that must interact to power a large scale network. In
addition, if the system needs to be capable of automatically
processing, reasoning over and responding as appropriate, the
language must be machine-interpretable with understandable syntax
and semantics for expressing data, rules and constraints on networks,
networking devices, hardware components, software protocols, user
applications and end users. Furthermore, it must be easy for users to
specify policies. In this regards, a declarative policy language that
enables each authority to draft abstract policies in a high level
language to guide activities of the networking enterprise is a good
candidate. Each authority can define only those objectives and
constraints that are relevant to its needs. The policies represent
rules and constraints that are necessary for the target network
infrastructure to be valid. This information contained in the policies is
defined in a manner that is as hardware, software, and protocol
independent as possible. Therefore, the authorities need not focus on
writing procedures for configuring a specific infrastructure; instead
they can focus on describing a generic infrastructure and its features
without needing to master and understand each of the various device/
protocol/system specific mechanisms. The policy software compo-
nents embedded or in the vicinity of each of the networked devices
can convert the specified policy into device specific settings and
configurations. Furthermore, the policy language must be capable of
supporting changing network goals as well as run time policy
interactions.

Application

‘ 'ContentTagger ‘

L Express
 Classifier S

! 1
I Router i
| 1

‘. Unit /

Reasoner

\ Reasoner

Fig. 4. Packet flow.

8 P. Kodeswaran et al. / Computer Standards & Interfaces 33 (2011) 2-12

We believe that the combination of the W3C Web Ontology
Language (OWL) and W3C Semantic Web Rule Language (SWRL)
standards is applicable for policy control as it is machine understand-
able, sound, complete, extensible through additional ontologies, and
supports heterogeneous application domains. OWL has axiomatic and
model-theoretic semantics, which allows for verification of knowl-
edge expressed in OWL constructs. In our work, we have chosen to use
a subset of OWL, namely OWL-DL as it is complete and decidable.
OWL 4 SWRL can be used to define ontologies, using which one can
declaratively define facts, policies, and rules in terms of what needs to
be true or false for a policy to hold. SWRL specifies OWL-based
abstract syntax and vocabulary for representing Horn-like rules. SWRL
defines a rule as an implication from a set of antecedent atoms to a set
of consequent atoms. In our work, the policy language uses the
antecedent atoms for representing policy constraints. The language
uses the consequent atoms for defining directive actions that apply
whenever the constraints are satisfied by evaluating information
stored in a local knowledge base and by executing relevant attached
procedures. The ontologies can be extended for declaratively
capturing any concept or predicate without changes to the underlying
system capable of processing OWL and SWRL. The language can be
further extended by defining functions as procedural attachments and
mapping them to predicates in OWL ontologies. This allows for the
policy enforcement mechanisms to process functions thereby en-
abling the system to exploit low level, optimized implementations
which is particularly important in the domain of networking.
Extending on our current framework, in order to support multiple
policies, we can also define a vocabulary for creating meta-policies.
Meta-policies are used for guiding the interaction among policies. The
meta-level vocabulary defines constructs for resolving conflicting,
overlapping policies. For example, the meta-level vocabulary can be
used to create a default conflict resolution rule such that a prohibitive
policy overrides a permissive policy. At the same time, the meta-level
vocabulary also allows one to define absolute and relative prioritiza-
tion of policies, thus overriding the default rule. The meta-policies
provide an automatic conflict resolution diagnosis in order to respond
to situations when policies presented to a network impose conflicting
conditions on the overall infrastructure or on one specific component.
Additionally, the policy software components embedded or in the
vicinity of each networked device can use this meta-information to
automatically merge policies from multiple authorities and generate a
target configuration that meets the combined requirements. The
components follow the semantics defined by the policy language.
Consequently, their steps in merging policies can be formally verified
using a theorem-proving model. In order to combine multiple policies,
the language depends on closed-world assumption reasoning. In this
case, the system assumes that all rules are to be evaluated only by the
knowledge contained within a knowledge base. This allows a
reasoning engine to yield a solution in a finite time.

By utilizing semantic technologies to drive our framework, we can
now realize dynamic reconfiguration of knowledge as new facts can
be inferred through the policies specified. Current relational technol-
ogies and those based on static schema are dependent on pre-existent
knowledge and do not offer this flexibility. There are a plethora of
tools available to drive the ontology specification, verification,
reasoning engine, etc. that can be incorporated to build such a system
that can be deployed on a large scale.

5. Enforcing security policies in the proposed framework
5.1. Securing enterprise networks

The use case we consider in this work is that of a secure enterprise
that wants to enforce prioritization on types of content that can flow

across the links comprising its network [9]. We assume the enterprise
has profiled its network and assessed security credentials to all the

links and routers. As an example, a link that is fully within the
premises of the enterprise (physically secure) is assessed as a “safe”
link, one that is a VPN running over an external service providers
network may be assessed as “potentially unsafe” while a wireless RF
hop may be assessed as “unsafe.” The enterprise applications are
“smart” and can encode content level tags into the data packets that
carry semantic information about the content as well as the
application/user/device. For this example, as we are interested in
the security semantics, applications additionally provide information
about the sensitivity of the content (such as secret, top secret or
normal), type of content and the security credentials of the context
within which they run. For such an enterprise, the following policies
would be appropriate:

« Only “Safe” links can be used to carry “TopSecret” data

« All data over “Open” links need to be encrypted

 Restrict multimedia flows in the network to max of 75% link capacity
* Allow admin traffic preferential service over network backups

« Allow user access to data only if user clearance is high enough

5.1.1. Simulation toolkit

We used NS2 to simulate such an enterprise. The network topology
considered was a random network with links classified with a “security”
tag that defined their safety levels. We assume the nodes belong to a
single Autonomous Domain (AD) and run a link state routing protocol.
We modified the standard FTP/CBR applications to allow for the
specification of semantic descriptions into the packet streams. For the
Network Ontology, we used Protege as the editor for specifying our
ontology. We use Jess [10] as the reasoning engine in our framework
although any other reasoning engine could be used as desired.

To begin, we defined an ontology to represent our enterprise. The
ontology is available online at [11]. In our implementation, our
ontology also contains special instances of classes representing the
various actions that a PEP should take such as dropping data,
encrypting data etc. These special instances also contain the low
level primitive commands that need to be invoked to realize the
necessary behavior. In our case, these commands are expressed as a
snippet of Tcl code that can be evaluated by NS2. For example, a policy
such as All unencrypted secret data over “open” links need to be
encrypted can be expressed logically in SWRL as:

DataTraffic (?d) A
datasensitivity(?d,?sensitivity) A
Secret (? sensitivity) A
encryptionstatus(?d,?encryptstatus) A
UnEncrypted (? encryptstatus) A

nextHop (?d,? nexthop) A

securityLevel (? nexthop,? securitylevel) A
Open (? securitylevel) A

EncryptData (?action)

— inferredAction (?d,?action)

The EncryptData instance has the following Tcl command encoded
in it indicating the device understandable actions that need to be
taken.

set clsfr[get-classifier $interimRouterId]

Sns at [$ns now] “S$clsfr install-interceptor
encryptdata $flowid $srcId $sport
SdestId Sdport $gdelay $Soverhead”

Using this methodology, we can now define the various actions
that a Policy Enforcement Point (PEP) could take and assign to each of
these actions, the corresponding primitive commands (Tcl snippets).
The Policy Decision Point (PDP) was implemented as a Java process
that received OWL streams from a client PEP (a network router within
NS2), invoke the reasoner and send back the Tcl commands

P. Kodeswaran et al. / Computer Standards & Interfaces 33 (2011) 2-12 9

depending on the actions that needed to be invoked. The PEP (NS2)
would then execute the commands received from the PDP.

5.2. Secure routing

In this section, we show how security can be incorporated into the
BGP routing process using our framework [12].

5.2.1. BGP extensions

Border Gateway Protocol (BGP) was originally designed as a
simple path vector protocol to share routing information between
autonomous systems (ASs) which has today, become the de-facto
interdomain routing protocol enabling the Internet. Autonomous
systems (ISPs, enterprises etc) use policies to define how the routes
are to be shared and among which peers. These policies can be driven
by various factors such as commercial peering agreements, security
considerations, load balancing requirements etc. These policies are
then implemented in the network routers as configuration para-
meters to control the protocol behavior. One of the main challenges
frequently faced is ensuring that network configuration settings are
applied consistently throughout the network so that the correct
actions are taken by the network devices both within an autonomous
system and across boundaries. However, this is often a manual
process that is error-prone and difficult to manage.

To apply our framework to provide BGP route dissemination that
takes into account the security credentials and external relationships,
we needed to make two modifications to the protocol. The first
modification is aimed at establishing identity of the BGP peers in a
secure and verifiable manner. For this purpose, we assume the BGP
session establishment process is extended to include the sharing of
signed credentials to validate the identity of the BGP peers and their
affiliations. Prior work such as S-BGP [13] have shown that this is
feasible using a public key infrastructure and signed certificates. This
modification is necessary as it is important for a BGP router to
establish the identity of its peer so that the routes learned from and
advertised to this peer can be handled correctly. The second
modification is to include with the route advertisement in the BGP
update messages, an additional optional and transitive attribute that
conveys semantic meta-data about that NLRI. The intent here is for the
originating AS to provide this information to allow other nodes to
handle this route appropriately. The interim routers are allowed to
add to this description as necessary (keeping the original intact) in a
manner that is secure and cannot be repudiated. In this work, we are
concerned about the import/export policies in use in the BGP decision
process. The modifications allow our framework to, for each route that
is being advertised to or learned from, contact a PDP, the PDP will
reason over the semantic information provided for that route and the
policies that need to be enforced, and will communicate to the BGP
node whether or not, that route can be shared or accepted.

5.2.2. Use case

The use case we consider in this paper is that of a secure version of
BGP where there are constrains on route exchanges between BGP
peers. As with the real Internet, BGP nodes are owned by different
agencies that have different affiliations. During the initial session
establishment, nodes exchange their identity information to indicate
the agencies to which they belong. These agencies or organizations
have external socio-economic, political or financial relationships that
will influence the BGP nodes in their exchanges. Routes advertised by
each AS is tagged with additional semantic information to describe
aspects such as its confidentiality, sharing restrictions etc. For such a
use case, the following policies would be appropriate:

* Routes marked as “ShareWithFriendly” can only be exchanged
between routers that belong to organizations that have a collabo-
rative relationship.

» Routes marked as “Restricted” can only be shared between nodes
that belong to the same parent organization (even if they are
different divisions of that organization).

* Routes marked to be used only for data backup traffic are installed
only during non-peak hours.

 Allow a route to be used only for data traffic that has a specified or
higher clearance level.

5.2.3. Simulation toolkit

We used the ns-BGP [14] extension to NS2 to implement our
framework. The network topology considered is a linear network with
nodes grouped into various ASes. Each node is initialized with
credentials that specify what organization the node belongs to. We
modified the BGP session establishment process to allow the
exchange of these credentials so that the BGP nodes can establish
the identity and affiliation of the peers that they are interacting with.
We added an additional optional transitive attribute to the BGP
update protocol messages intended to convey additional semantic
information about the route.

To begin, we defined an ontology to use for our BGP example. The
ontology is available online at [11]. We modeled the various BGP
protocol messages and constructs. Since we are dealing with import/
export policies, we modeled special instances of classes representing
the various actions that a BGP router (PEP) should take such as
whether a route should be advertised or not, whether a route should
be accepted or not etc. These special instances contain the low level
primitive commands that need to be invoked to realize the necessary
behavior. In our case, we implemented handlers in the NS2
implementation to handle the response coming back from the
reasoner to determine whether a route should be included in an
advertisement or whether a route that was received, should be
accepted (these commands are expressed as snippets of Tcl code that
are evaluated by NS2). For example, a policy such as All routes are
shareable with a peer as long as the peer and the originating router are
owned by the same organization can be expressed in SWRL as:

BGP Update (?adv) A

interimRouter (?adv, ? routeradvertising) A
dest (?adv, ?peer) A

owner (? routeradvertising, ?org) A

owner (?peer, 20rg) A
AllowRouteAdvertisement (?allow)

— inferredAction (? adv, ?allow)

The AllowRouteAdvertisement instance has the following Tcl
command encoded in it indicating the device understandable actions
that need to be taken.

set Response “OK”

In this case, if the reasoner asserts this rule, the corresponding Tcl
command will be sent back as the reasoner's response. Using this
methodology, we can now define any arbitrary action that a PEP could
take and assign to each of these actions, the corresponding primitive
commands (Tcl snippets) to be executed. The PDP (reasoner) was
implemented as a Java process that received RDF streams from a client
PEP (a BGP agent within NS2), invoke the reasoner and send back the
Tcl commands depending on the actions that needed to be invoked.
The Protege IDE served the role of a Policy Editor.

Using this framework, we implemented our typical use case
scenario focusing on the import/export policies for BGP. For our
example, we consider a network of four autonomous domains with
five BGP routers as shown in (Fig. 5). The Autonomous Domain ASO
belongs to UK forces. The Autonomous Domains AS1 and AS2 belong
to two organizations within the US military. Finally, the last
Autonomous Domain AS3 belongs to Russian military. During the
initial BGP session establishment, the identity of each of the peers is

10

established. This indicates the organization that the router belongs
(USwmitcom» UKmilcom» RUssianiicom €tc) which is tracked in the “owner”
property of the network devices. Some of these organizations have
external relationships (such as NATO to which USygiicom and UKwiicom
belong). Such external relationships are modeled through OWL
restrictions on properties. For example, a device that is part of
NATO is modeled as a one where there is a necessary and sufficient
constraint that the owner is either an instance of USiicom, UKmilcom OF
Francep;icom. Each router that originates a route includes a description
that at the least, indicates the sharing restrictions for that route. In the
current version, we have values such as None (which is similar to the
“internet” community attribute in BGP), Restricted and ShareWith-
Friendly as examples. The intention here is that a route marked as
“ShareWithFriendly” can only be shared with a peer who can be
considered friendly. For example, if we considered forces within NATO
to be friendly's, a SWRL policy to permit the routes marked as
“ShareWithFriendly” to be exchanged could be written as:

BGP_Update (?adv) A

interimRouter (? adv, ? routeradvertising) A
dest (?adv, ?peer) A

NATO Forces (?routeradvertising) A

NATO Forces (?peer) A

routeRestriction (?adv, ?restriction) A
ShareWithFriendly (? restriction) A
AllowRouteAdvertisement (?allow)

— inferredAction (?adv, ?allow)

Once the simulation starts, each router advertises its routes with
its peers in order to compute its routing table. The simulation
proceeds until all routes are computed and the routers settle on their
tables. Note that when two routers belonging to UKyiicom and USiicom
(ASO and AS1) are in a BGP session and while none of the routers have
explicitly been identified as belonging to NATO, the reasoner can
deduce this relationship and allow route exchanges between them.
Similarly the reasoner can deduce that the route exchange cannot be
allowed between AS2 and AS3 as they do not have an explicit
relationship that permits this.

Fig. 6 is a snapshot of the system with the nodes contacting the
reasoner to determine if routes can be exchanged and the responses
received.

In this manner, we can now setup arbitrary relationships between
routers and can specify policies through higher level rule based
mechanisms to implement fine grained control over the protocol. This
example can be easily extended to scenarios where the relationships
are short lived and arbitrary such as in emergency response scenarios
(where organizations may temporarily want to share information for
providing quick response), application need driven (such as for
supporting live event feeds) etc. by extending on the ontology and
defining the desired policies.

5.3. Mapping enterprise level trust relations into the data forwarding
plane

Our architecture allows exercising fine grain control over both the
routing and data forwarding planes. The previous section showed how

—n0 o
n1/ iBGP

[as0 2 .
U eBG tsé} s

P. Kodeswaran et al. / Computer Standards & Interfaces 33 (2011) 2-12

enterprise level security policies could be mapped into appropriate
routing policies. In this section, we focus on mapping prior enterprise
level trust relations into appropriate policies at the data forwarding
plane. One of the goals of our architecture is to allow operators to
declaratively specify how to handle network traffic. For example,
operators should be able to specify that sensitive data be sent along a
secure path, with the network automatically finding such a path. A secure
path would ideally contain a sequence of optical links or encrypted data
over open links. We could augment this definition of a secure path to
factor in the trust relations between the link owner and data source. For
example, in an enterprise architecture we could require that sensitive
information be encrypted at the network layer only if the next hop link is
not owned by the organization. This rule could be expressed in SWRL as:

DataTraffic (?d) A
datasensitivity (?d,?sensitivity) A
Secret (?sensitivity) A
src (?d, ?src) A
owner (?scr,?orqg)
nextHop (?d,?next) A
zEnd (?next,?end) A
owner (?next,?org) A
owner (?next,?o0rg2) A
notEqual (? org,?org2) A
encryptionstatus(?d,?encryptstatus) A
UnEncrypted (?encryptstatus) A
securityLevel (?next,?securitylevel) A
Open (?securitylevel) A

EncryptData (?action) - inferredAction (?d,?action)

So in this manner, we can allow operators to write high level
policies that take into account both the security semantics of data as
well as existing trust relationships among enterprise entities.

6. Related work

Policy based networks and approaches have been the focus of
extensive research in recent years. Quality of service oriented
initiatives such as Intserv [15] and Diffserv [16] rely on policies to
drive flow classification, admission control, resource reservations etc.
However, the policies used are limited in their expressibility and
restricted to traffic forwarding semantics with little support for
features such as content adaptation, specialized routing etc. In this
respect, the active networks [6,7] took the approach of allowing a
more generic per packet handling semantic with the packets
determining what the router should do with them, which differs
from our approach in which the router (using its specified policies)
controls how the packet is handled and not the other way.

There has been significant research on securing BGP. SBGP [13]
proposes a comprehensive architecture for securing BGP using public
key certificates. SBGP uses a pair of PKIs, one for address authenti-
cation and the other for route validation. SoBGP [17] provides more
flexibility compared to SBGP. In addition to the above PKIs, a third
type of certificate is used which provides routing policy and local
topology. When a route is received, it is compared for consistency

n2 n4
.,__, AS3 |
WF 7,/ eBGP Russia |
[As2 o
L Us

Fig. 5. Topology.

P. Kodeswaran et al. / Computer Standards & Interfaces 33 (2011) 2-12 11

File Edit View Terminal Tabs Help
IBGP Validation Test:

BGP routers, the others just one each.

Simulation starts...

time: 0.3
no (ip adir 10.0.0.1)

time: 1.3
n3 (ip_addr 10.0.3.1)

time: 2.3
n4 (ip_addr 10.0.4.1)

@ balaji@pegasus: ~/NS2-28COCONET/ns-2.28/BGPScripts

Three ASes connected in 2 line, the middle one containing two

ASO AS1 AS2 AS3

ne}------{nl ... N2 }------ {n3}------ {n4
2BGP 1BGP eBGP eBGP

UK us us Russia

defines a netwdork 10.0.0.0/24 (ShareWithFriendly].

Reasoner 0<s announcement of route 10.9.0.0/24 by A50:10.0.0.1/32 to peer AS1:10.0.1.1/32
Reasuner OXs> dannouncemenl of roule 10.9.0.0/24 by A51:10.0.1.1/32 Lu peer A51:10.0.2.1/32
Reasoner 0<s announcement of route 10.9.0.0/24 by A51:10.0.2.1/32 to peer Asa]0.0.3.1/32
Reasoner dznies announcement of route 10.0.0.0/24 by AS52:10.0.3.1/32 <o peer AS3:10.0.4.1/32

defines a network 10.0.3.0/24 (Restrictad).

Reasoner U<s announcement OT route 1lV.Y.3.0/24 DY AS2:10.0.3.1/32 TO peer AS1:10.0.2.1/32
Reasoner d=niers announcement of route 10.0.3.0/24 hy AS2:10.0.3.1/32 -0 peer AS3:10.0.4.1/32
Reasoner 0<s announcement of route 10.9.3.0/24 by AS51:10.0.2.1/32 to peer AS51:10.0.1.1/32
Reasoner denies announcement of route 10.9.3.0/24 by AS51:10.0.1.1/32 o peer AS0:10.0.0.1/32

defines a network 10.0.4.0/24 (None).

(- [alx]

[»]

Fig. 6. Simulation output.

with the topology database and dropped if found to be inconsistent.
The architecture is more flexible as there are no fixed structures of
authority and ASes can decide on their own for accepting routing
announcements and policies. RPSL [18] is an object oriented language
for specifying routing policies from which router configurations can
be automatically generated. RPSL generated router configurations can
aid in preventing internet router misconfigurations but it does not
support inference and is limited in expressibility.

KaOS [19] was one of the early languages to use ontologies for
policy specification. The core policy ontology had support for
modeling actors, action classes, groups, places and related attributes.
KaOS also had support for policy conflict detection and harmoniza-
tion. Uszok et al. [20] describe a later version of KaOS with its three
layer policy management hierarchy designed at ease of use for both
users and application developers. Kagal et al. describe Rei, an ontology
based policy language developed for pervasive computing environ-
ments in [21]. Rei is based on deontic concepts of rights, prohibitions,
obligations and dispensations having explicit support for speech acts.
Nejdl et al. propose an ontology based policy language for enforcing
security policies in [22]. Tonti et al. compare various semantic web
based policy languages in [23]. Similarly, Carminati et al. propose
using semantic web based languages for enforcing user privacy in
social networks based on trust relationships in [24]. There is a large
body of work related to creating ontologies for reasoning about
security such as those in [25-28].

There have been recent efforts in using the semantic web for
security applications. The authors in [29] propose using a combination
of conventional security mechanisms and the ability to reason about
security at a semantic level for enforcing security in autonomous
systems. Also, they describe a set of requirements that need to be
supported for implementing a semantic firewall. [30] proposes using
context as the first principal for policy specifications governing access
control in pervasive environments. Their approach stems from the
fact that traditional subject/role based policies wouldn't work in
pervasive environments due to the ad hoc mode of collaborations,
where the roles and identities of the entities involved is not known
ahead of the actual collaboration. They also propose using semantic
languages for policy specification to aid in policy reasoning, conflict
resolution and policy adaptation.

7. Conclusion

In this work, we have described an extensible security framework
that is based on policies. Our policies are specified in semantic web
languages which make them amenable to interoperability, conflict
resolution and reasoning. We described our policy based network
built on top of semantically tagged packets. In our framework,
applications semantically tag packets with meta-data describing the
contents being carried. We then showed how our framework can be
used for securing enterprise networks and BGP routing.

References

[1] R. Yavatkar, D. Pendarakis, R. Guerin, “RFC 2753: A Framework for Policy-based

Admission Control,” Jan. 2000. [Online]. Available: http://www.fags.org/rfcs/

rfc2753.html.

P. Kawadia, V. Kumar, A cautionary perspective on cross-layer design, Wireless

Communications, IEEE [see also IEEE Personal Communications] 12 (1) (Feb.

2005) 3-11.

[3] A. Ramachandran, Y. Mundada, M.B. Tariq, N. Feamster, “Securing Enterprise
Networks Using Traffic Tainting,” (2009).

[4] D.L. McGuinness, F. van Harmelen, “Owl web ontology language overview,” W3C

Recommendation 10 February 2004, Tech. Rep., 2004. [Online]. Available: http://

www.w3.org/TR/owl-features/.

I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, “Swrl: A

semantic web rule language combining owl and ruleml,” W3C Member

submission 21 may 2004, Tech. Rep., 2004. [Online]. Available: http://www.w3.

org/Submission/SWRL/.

D. Wetherall,]. Guttag, D. Tennenhouse, “Ants: A toolkit for building and

dynamically deploying network protocols,” 1998. [Online]. Available: citeseer.ist.

psu.edu/wetherall98ants.html.

D.S. Alexander, W.A. Arbaugh, M. Hicks, P. Kakkar, A. Keromytis,].T. Moore, C.A.

Gunter, S.M. Nettles,].M. Smith, The SwitchWare active network architecture,

IEEE Network Magazine 12 (3) (1998) 29-36 Special issue on Active and

Controllable Networks. Available: http://www.cis.upenn.edu/switchware/

papers/switchware.ps.

A. Westerinen,]. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog, A.

Huynh, M. Carlson, J. Perry, S. Waldbusser, “RFC 3178: Terminology for Policy-

Based Management,” November 2001. [Online]. Available: http://www.faqs.org/

rfcs/rfc3178.html.

P. Kodeswaran, S. Kodeswaran, A. Joshi, T. Finin, Enforcing Security in Semantics

Driven Policy Based Networks, Proceedings of the 24th International Conference

on Data Engineering Workshops, Secure Semantic Web, 2008, pp. 490-497,

Available: http://ebiquity.umbc.edu/_file_directory_/papers/401.pdf.

[10] “Jess.” [Online]. Available: http://www.jessrules.com/jess/index.shtml/.

[11] “http://www.cs.umbc.edu/kodeswar/ontologies/NetworkOnto.owl.” [Online].

Available: http://www.cs.umbc.edu/kodeswar/ontologies/NetworkOnto.owl.

2

5

(6

17

[8

[9

http://www.faqs.org/rfcs/rfc2753.html
http://www.faqs.org/rfcs/rfc2753.html
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/owl-features/
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
http://www.cis.upenn.edu/switchware/papers/switchware.ps
http://www.cis.upenn.edu/switchware/papers/switchware.ps
http://www.faqs.org/rfcs/rfc3178.html
http://www.faqs.org/rfcs/rfc3178.html
http://ebiquity.umbc.edu/_file_directory_/papers/401.pdf
http://www.jessrules.com/jess/index.shtml/
http://www.cs.umbc.edu/kodeswar/ontologies/NetworkOnto.owl
http://www.cs.umbc.edu/kodeswar/ontologies/NetworkOnto.owl

12

[12]

[13]
(14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

P. Kodeswaran et al. / Computer Standards & Interfaces 33 (2011) 2-12

P. Kodeswaran, S.B. Kodeswaran, A. Joshi, F. Perich, Utilizing semantic policies for
managing BGP route dissemination, [EEE INFOCOM 2008 — IEEE Conference on
Computer Communications Workshops, IEEE, 2008, pp. 1-4, Available: http://
ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4544611.

S. Kent, C. Lynn, K. Seo, Secure border gateway protocol(s-bgp), IEEE Journal on
Selected Areas in Communication 18 (2000) 582-592.

T. Feng, R. Ballantyne, L. Trajkovic, Implementation of bgp in a network simulator,
Proc. Applied Telecommunications Symposium, ATS'04, April 2004, pp. 149-154.
R. Braden, D. Clark, S. Shenker, “RFC 1633: Integrated Services in the Internet
Architecture: An Overview,” June 1994. [Online]. Available: http://www.fags.org/
rfcs/rfc1633.html.

S. Blake, D.L. Black, M.A. Carlson, E. Davies, Z. Wang, W. Weiss, “An Architecture for
Differentiated Services,” December 1998, Status: INFORMATIONAL.

“Secure Origin BGP (SoBGP) Certificates. Internet Research Task Force, June 2003
(draft-weis-sobgp-certificates-00.txt).”

C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T. Bates, D.
Karrenberg, M. Terpstra, “Routing Policy Specification Language (RPSL),” Internet
Engineering Task Force: RFC 2622, June 1999.

A. Uszok,]. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch, M. Johnson,
S. Kulkarni, J. Lott, KAoS Policy and Domain Services: Toward a Description-logic
Approach to Policy Representation, Deconfliction, and Enforcement, Proceedings
POLICY 2003. [EEE 4th International Workshop on Policies for Distributed Systems
and Networks, IEEE Comput. Soc, 2003, pp. 93-96, Available: http://ieeexplore.
ieee.org/Ipdocs/epic03/wrapper.htm?arnumber=1206963.

A. Uszok, J.M. Bradshaw, . Lott, M. Breedy, L. Bunch, P. Feltovich, M. Johnson, H.
Jung, New developments in ontology-based policy management: increasing the
practicality and comprehensiveness of KAoS, POLICY, 2008, Available: http://
portal.acm.org/citation.cfm?id=1445726.

L. Kagal, T. Finin, A. Joshi, A policy language for a pervasive computing
environment, IEEE 4th International Workshop on Policies ..., 2003, Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7910&
rep=rep1&type=pdf.

W. Nejdl, D. Olmedilla, M. Winslett, C.C. Zhang, “Ontology-based policy
specification and management,” in In 2nd European Semantic Web Conference
(ESWC), Springer, 2005, pp. 290-302.

G. Tonti, J. Bradshaw, R. Jeffers, R. Montanari, N. Suri, “Semantic Web languages for
policy representation and reasoning: A comparison of ...,” Springer. [Online].
Available: http://www.springerlink.com/index/BJHY2D977GF4E3QW.pdf.

B. Carminati, E. Ferrari, R. Heatherly, M. Kantarcioglu, B. Thuraisingham, A
Semantic Web Based Framework for Social Network Access Control, Symposium
on Access Control Models and Technologies, 2009, Available: http://portal.acm.
org/citation.cfm?id=1542207.1542237.

C. Blanco,]. Lasheras, R. Valencia-Garcia, E. Fernandez-Medina, A. Toval, M.
Piattini, A systematic review and comparison of security ontologies, ARES, 2008,
Available: http://portal.acm.org/citation.cfm?id=1371887.

“OWL Security Ontologies in OWL.” [Online]. Available: http://www.csl.sri.com/
users/denker/owl-sec/ontologies/.

AS. Peter, P.S., LV. Ekert, An Ontology for Network Security Attacks, Proceedings
of the 2nd Asian Applied Computing Conference (AACC04), LNCS 3285, 2004,
pp. 317-323, Available: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.61.6065.

A. Ekelhart, S. Fenz, M. Klemen, E. Weippl, Security ontologies: improving
quantitative risk analysis, HICSS, 2007, Available: http://portal.acm.org/citation.
cfm?id=1255933.

R. Ashri, T. Payne, D. Marvin, M. Surridge, S. Taylor, Towards a Semantic Web Security
Infrastructure, Semantic Web Services 2004 Spring Symposium Series, 2004, [“lib/
utils:month_9040" not defined]. Available: http://eprints.ecs.soton.ac.uk/9040/.

A. Toninelli, R. Montanari, L. Kagal, O. Lassila, A Semantic Context-aware access
Control Framework for Secure Collaborations in Pervasive Computing Environ-
ments, ISWC'05: Proceedings of the 5th International Semantic Web Conference,
2005.

Palanivel Kodeswaran is a Ph.D candidate in Computer
Science at the University of Maryland, Baltimore County
(UMBC). His research interests are in the broad areas of
systems and networking. He is currently focusing on
applying the declarative paradigm for managing applica-
tion and network adaptations using semantic policies. He
is also interested in developing practical privacy solutions.
He obtained his Bachelors degree from the College of
Engineering Guindy, Anna University and Masters degree
from UMBC in 2005 and 2008 respectively, all in computer
science.

Anupam Joshi is a Professor of Computer Science and
Electrical Engineering at UMBC. He obtained a B. Tech
degree in Electrical Engineering from IIT Delhi in 1989,
and a Masters and Ph.D. in Computer Science from Purdue
University in 1991 and 1993 respectively. His research
interests are in the broad area of networked computing
and intelligent systems. His primary focus has been on
data management for mobile computing systems in
general, and most recently on data management and
security in pervasive computing and sensor environ-
ments. He is also interested in Semantic Web and Data/
Web Mining, where he has worked on personalizing the
web space using a combination of agents and soft

computing. His other interests include networked HPCC. He has served as guest
editor for special issues of IEEE Personal Communications, Communications of the
ACM, and served as an Associate Editor of IEEE Transactions of Fuzzy Systems from 99

to 03.

Semantics.

Tim Finin is a Professor of Computer Science and
Electrical Engineering at the University of Maryland,
Baltimore County. He has over 30 years of experience
in applications of Artificial Intelligence to problems in
information systems and intelligent interfaces. His cur-
rent research is focused on the Semantic Web, human
language technology and on analyzing and extracting
information from online social media systems. He holds
degrees from MIT and the University of Illinois and has
also held positions at Unisys, the University of Pennsyl-
vania, and the MIT Al Laboratory. He has chaired many
major conferences, served as a board member of the
Computing Research Association and been a AAAI

councilor. He is currently an editor-in-chief of the Elsevier Journal of Web

Sethuram Balaji Kodeswaran obtained his Ph.D and
Masters degree in Computer Science from UMBC in 2008
and 1999 respectively. His research interests are in
mobile and wireless networks as well as content based
networking.

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4544611
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4544611
http://www.faqs.org/rfcs/rfc1633.html
http://www.faqs.org/rfcs/rfc1633.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1206963
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1206963
http://portal.acm.org/citation.cfm?id=1445726
http://portal.acm.org/citation.cfm?id=1445726
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7910&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.12.7910&rep=rep1&type=pdf
http://www.springerlink.com/index/BJHY2D977GF4E3QW.pdf
http://portal.acm.org/citation.cfm?id=1542207.1542237
http://portal.acm.org/citation.cfm?id=1542207.1542237
http://portal.acm.org/citation.cfm?id=1371887
http://www.csl.sri.com/users/denker/owl-sec/ontologies/
http://www.csl.sri.com/users/denker/owl-sec/ontologies/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.6065
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.6065
http://portal.acm.org/citation.cfm?id=1255933
http://portal.acm.org/citation.cfm?id=1255933
http://eprints.ecs.soton.ac.uk/9040/

	Enforcing security in semantics driven policy based networks
	Introduction
	Content based semantic tagging
	System architecture

	Semantics driven policy based network
	Policy architecture

	Design of policies rooted in semantic web languages
	Enforcing security policies in the proposed framework
	Securing enterprise networks
	Simulation toolkit

	Secure routing
	BGP extensions
	Use case
	Simulation toolkit

	Mapping enterprise level trust relations into the data forwarding plane

	Related work
	Conclusion
	References

