
 

 

Chapter xxx 

SCIENTIFIC SERVICES ON THE CLOUD  

David Chapman, Karuna P Joshi, Yelena Yesha, Milt Halem, 

Yaacov Yesha and Phuong Nguyen  

Computer Science and Electrical Engineering Department 

University of Maryland, Baltimore County, MD, USA 

 

 

1. Introduction 

Scientific Computing was one of the first every applications for parallel and dis-

tributed computation. To this date, scientific applications remain some of the most 

compute intensive, and have inspired creation of petaflop compute infrastructure 

such as the Oak Ridge Jaguar and Los Alamos RoadRunner.  Large dedicated 

hardware infrastructure has become both a blessing and a curse to the scientific 

community.  Scientists are interested in cloud computing for much the same rea-

son as businesses and other professionals.  The hardware is provided, maintained, 

and administrated by a third party.  Software abstraction and virtualization provide 

reliability, and fault tolerance.  Graduated fees allow for multi-scale prototyping 

and execution.  Cloud computing resources are only a few clicks away, and by far 

the easiest high performance distributed platform to gain access to.  There may 

still be dedicated infrastructure for ultra-scale science, but the cloud can easily 

play a major part of the scientific computing initiative. 

 

Scientific cloud computing is an intricate waltz of compute abstract programming 

models, scientific algorithms, and virtualized services.  On one end, highly com-

pute intensive scientific data algorithms are implemented upon cloud program-

ming platforms such as Map Reduce and Dryad, while on the other, service dis-

covery and execution implement the bigger picture with data product dependen-

cies, service chaining, and virtualization. 

 

The cloud of science services is very tightly knit.  It is difficult to make meaning-

ful scientific discoveries from only a single data product.  Yet even individual data 

products are produced from other products, which in turn require even more dif-

ferent products for calibration.  Service chaining is essential to the scientific cloud, 

just as much as with the business cloud.  However, scientific cloud computing's 

distinctive feature is data processing and experimentation; a compute elephant 

hiding underneath the service oriented architecture.  Both the service lifecycle, 

and the processing platforms are key ingredients to a successful scientific cloud 



 

 

computation.  We discuss both fronts from the perspective of an atmospheric 

cloud computing system Service Oriented Atmospheric Radiances (SOAR).  We 

also make sure to touch on many related cloud technologies, even if they were not 

necessarily the best fit for our SOAR system. 

1.1. Outline 

There are two ends to a scientific cloud, the back end and the front end.  We brief-

ly describe the Service Oriented Atmospheric Radiances (SOAR) system in the next 

section. The third section on Scientific Programming Paradigms (back end) describes 

how programming platforms affect the scientific algorithms.  The fourth section 

discusses the Scientific Computing Services that form the front end, describing in 

detail how service virtualization affects scientific repositories.   

We have found Map Reduce and Dryad to be highly effective platforms for more 

than our own algorithms.  We summarize our own and others' work to apply these 

paradigms to science related problems. 

We also describe a five phase service lifecycle, but in the perspective of scientific 

applications, and address some of the unique challenges that set science apart from 

other service domains. 

 

2. Service Oriented Atmospheric Radiances (SOAR) 

SOAR, a joint project between NASA, NOAA, and UMBC, is a scalable web ser-

vice set of tools that provides complex gridding services on-demand for atmos-

pheric radiance data sets from multiple temperature and moisture sounding sen-

sors. SOAR accepts input through an online Graphical User Interface (GUI), or 

directly from other programs. The server queues these requests for a variety of 

complex science data services in a database tracking the various requested 

workflows. It uses large data sets collected by NASA, NOAA and DOD. These 

datasets contain satellite readings for temperature and moisture from the last three 

decades. SOAR uses the cloud Bluegrit at University of Maryland Baltimore 

County (UMBC) to apply data transformations such as gridding, sampling, subset-

ting and convolving in order to generate derived data sets from diverse atmospher-

ic radiances. [15] 

 

Satellite remote sensing instruments orbit the Earth sun-synchronously to observe 

temperature, moisture, and other atmospheric structure and properties.  SOAR 

facilitates climate oriented experiments by providing geospatial computations and 

transformations.  This puts SOAR in a unique position, as it must chain with re-

mote servers to acquire data, but as a facilitator, would be well placed within an 

even deeper chain for complicated scientific experiments. 

 



 

 

Figure 1: SOAR deployment system. 

 

Figure 1 is a diagram of the SOAR deployment system.  It makes use of the com-

pute and data resources of the Bluegrit cloud.  End users could be individual 

scientists, or other data service centers, and could make use of our graphical or 

SOAP interface provided by Bluegrit's Web server.  Service requests encapsulate 

various climate related experiments such as tracking easterly cloud motion, or 

generating high resolution planetary images. 

 

Management Server is a task driver for the various compute subsystems. It is re-

sponsible for scheduling tasks on the various compute blades.  These tasks include 

precisely geolocated gridding, and singular value decomposition. 

 

The input data for various service computations may not be locally available at the 

time of request. Management Server and Compute Blades must interact with vari-

ous NASA data centers to acquire various data products for the requested scientif-

ic computations. Additionally Management Server routinely schedules jobs to 

compute and cache generic intermediate results, such as daily gridded average 

radiances. 

 

3. Scientific Programming Paradigms 

One of the biggest hurdle to unleashing the cloud onto science, is understanding 

its compute paradigms.  The cloud provides a layer abstraction above and beyond 

the bare system configuration.  Cloud abstraction typically arises from distributed 

middleware and centralized task scheduling.  Programming paradigms empower 

the middleware, and change the way that we program; they force us to think in 



 

 

parallel.  The remainder of this chapter is designed to bend our minds into under-

standing how to program the cloud for scientific applications.  We discuss two 

programming strategies, MapReduce, and Dryad, and various scientific related 

problems, and how they could be implemented in a cloud environment. 

 

Map Reduce is a simple programming paradigm for distributed cloud computing.  

Google begat Map Reduce as a parallel processing solution for its indexing pipe-

line, and quickly realized that Map Reduce was useful for many more parallel 

processing chores within the scope of Internet data retrieval and Google now hosts 

thousands of Map Reduce applications.  Although Map Reduce's intended purpose 

is text analysis and machine learning, it is also useful for many scientific computa-

tions, provided however, that they follow certain conditions [7].  This makes Map 

Reduce a very sharp topic for scientific computing, because it makes easy prob-

lems easier, but can potentially make hard problems even harder, if the problem 

does not fit the paradigm. 

 

Dryad is a flexible programming model based on Directed Acyclic Graphs 

(DAGs).  The nodes represent computation and the edges represent data flow di-

rection.  Dryad was developed by Microsoft as a generic paradigm for cloud com-

puting problems, and as an alternative to Google's MapReduce. The Microsoft 

developers quickly found that Dryad was much more flexible than MapReduce, 

and as evidence were able to implement relational database, Map and Reduce, and 

many other software paradigms all completely encapsulated within Dryad's 

framework. Dryad is well rounded, and perfectly suitable for compute intensive, 

data intensive, dense, sparse, coupled, and uncoupled tasks.  Dryad provides a 

very flexible solution, and is a good alternative for problems that might not fit 

well in simpler paradigms such as Map Reduce.  On the flip side, Dryad is rela-

tively complicated, and may not be necessary when easier solutions are possible. 

3.1. Map Reduce  

The original Map Reduce paper, by Dean and Ghemawat in 2004 [3] describes the 

programming paradigm of Map Reduce very concisely as follows. 

 

“The computation takes a set of input key/value pairs, and produces a set of 

output key/value pairs. The user of the MapReduce library expresses the compu-

tation as two functions: Map and Reduce.  Map, written by the user, takes an 

input pair and produces a set of intermediate key/value pairs. The MapReduce 

library groups together all intermediate values associated with the same inter-

mediate key I and passes them to the Reduce function.  

The Reduce function, also written by the user, accepts an intermediate key I and 

a set of values for that key. It merges together these values to form a possibly 

smaller set of values. Typically just zero or one output value is produced per 

Reduce invocation. The intermediate values are supplied to the user’s reduce 



 

 

function via an iterator. This allows us to handle lists of values that are too 

large to fit in memory.”  

 

Other stages can be added to extend this paradigm. As one can see, the paradigm 

has only two user specified functions: Map and Reduce. A great way to become 

more familiar with Map Reduce is by example. Word counting is the canonical 

example, with pseudocode given from Dean and Ghemawat. [33] 

 
  map(String key, String value):  
    // key: document name  
    // value: document contents  
    for each word w in value:  
      EmitIntermediate(w, "1");  
 
  reduce(String key, Iterator values):  
    // key: a word  
    // values: a list of counts  
    int result = 0;  
    for each v in values:  
      result += ParseInt(v);  
    Emit(AsString(result));  
 

“The map function emits each word plus an associated count of occurrences (just 

`1' in this simple example). The reduce function sums together all counts emitted 

for a particular word.  

Thus, by performing Map, to report the occurrence of each word, followed by re-

duce to sum the number of occurrences for each word, the result of this example is 

the word count for each distinct word in the document.”  

 

By constructing new and different Map and Reduce functions, Map Reduce can be 

used to solve many problems in addition to word counting.  The processing can be 

performed in parallel, because both the Map and Reduce functions can be per-

formed in parallel. Map acts in parallel on each input element.  Reduce acts in 

parallel on separate KV groups for each distinct key. 

 

3.1.1 Map Reduce Merge 

 
Yang, Dasdan, Lung-Hsiao, and Parker [17] have introduced an improvement to 

Map-Reduce called Map-Reduce-Merge. This improvement enables better han-

dling of joins on multiple heterogeneous databases, compared with using Map-

Reduce. The authors point out that Map-Reduce is good for homogeneous data-

bases. They discuss the problem in performing joins on multiple heterogeneous 



 

 

databases efficiently and mention that Pike et al. [18] point out that there is quite a 

lack of fit between Map-Reduce and such joins. In [17], the authors also mention 

the importance of database operations in search engines. They also described how 

Map-Reduce-Merge can be applied to relational data processing. 

 

Map-Reduce [3] is described in [17] as follows: 

“For each (key,value) pair, Map produces a list of pairs of the form 

(key',value').Then Reduce is applied to the pairs created by Map as follows:For 

every key key'' that appears in the output of Map as a key, Reduce applies user 

defined logic to all the values value'' such that (key'',value'') is one of those pairs, 

and creates a list of values value'''.” 

 

Map-Reduce-Merge is described in [17] in the context of lineages. In Map-

Reduce-Merge, Map is modified to operate on each lineage separately. Reduce is 

modified to operate on each lineage separately, and further modified to create a 

list of pairs (key'', value''') rather than a list of values value'''. 

Also, Merge is added as a third step. Merge is applied to the output of Reduce in 

two lineages. From the list of values associated with a key key'' in one lineage, and 

and the list of values associated with a key key''' in another lineage, Reduce 

creates a list of pairs of the form (key'''',value''''). All the pairs created by Reduce 

form a new lineage. 

 

3.2. Dryad 

Dryad is a programming paradigm and software framework designed around the 

ideas of task scheduling and data flow. The programmer must create a Directed 

Acyclic Graph (DAG) that represents the processing task. The graph nodes are 

compute kernels that run on various processors, and the graph edges represent the 

data flow dependence. Each graph node becomes available for computation as 

soon as all input data is available. A centralized job manager schedules available 

graph nodes onto idle machines. The machine executes the kernel computation, 

and upon completion, the node passes its output down to its children, and the ma-

chine becomes idle once again. The child graph nodes become available for com-

putation as soon as all input data is available from its deceased parents. The com-

putation continues in this manner until the entire DAG is executed and the pro-

gram terminates. 

Isard et. al describe their Job scheduling system with a concise diagram. [8] 

 



 

 

Figure 1: Dryad 

  

The job manager (JM) consults the name server (NS) to discover the list of avail-

able computers.  It maintains the job graph and schedules running vertices (V) as 

computers become available using the daemon (D) as a proxy.  Vertices exchange 

data through files, TCP pipes, or shared-memory channels.  The shaded bar indi-

cates the vertices in the job that are currently running. 

 

A common Dryad dilemma is that there is often more than one DAG that will sa-

tisfy computation of a particular problem.  Which DAG is the fastest?  Should one 

implement a very fine DAG with a high degree of parallelism, or a coarse DAG 

with low scheduling overhead?  Sometimes the choice is clear, such as scheduling 

one node per machine, but often the choice is much more difficult to understand at 

first glance. Sometimes the best DAG depends on the design of your compute 

cluster; network and IO hardware design may play a critical role in determining 

potential bottlenecks in your data flow DAG. These low level issues may begin to 

contrast the philosophy that the cloud should be completely abstracted from its 

underlying hardware. Dryad makes it relatively easy for programmers to play 

around with the structure of the DAG, until they design one that runs efficiently 

on their target machine. 

 

Additionally, Microsoft has attacked the graph tweaking dilemma head on with a 

number of automatic graph pruning and optimization algorithms.  These tech-

niques execute at runtime on the job scheduler, and thus can make decisions based 

on up to date profiles and resource availability.  One such algorithm can make the 

DAG coarser by encapsulating a smaller subgraph to within a single node with 

serial execution.  Although encapsulation makes the system less parallel, it can 

greatly improve performance in situations where the graph was designed too fine-

ly.  Another technique is to automatically make data reductions hierarchical.  This 

can greatly improve performance, by reducing the data volume before sending 

packets to other machines and across racks. 



 

 

3.3. Remote Sensing Geo-reprojection 

Atmospheric gridding and geo-reprojection is a great example of a single pass 

scientific problem, which is well suited for the Map Reduce, and Dryad program-

ming paradigms.  Satellite remote sensing instruments measure blackbody radia-

tion from various regions on earth, to determine weather and climate related fore-

casting, as well as supply atmospheric models with raw data for assimilation.  The 

geo-reprojection algorithm is one of the first major compute steps along the chain 

of any satellite atmospheric prediction.  The satellite observes a surface tempera-

ture, 316K (43C ~109F) that's hot! But where is it? New Mexico? Libya?  Geo-

reprojection solves this task by producing a gridded map of Earth with average 

observed temperatures or radiances. 

 

The measured region on Earth is a function of the instrument's position, and the 

direction that it is observing. Figure 2 is a diagram of the NASA Atmospheric 

Infrared Sounder (AIRS) satellite instrument. The satellite has a sun synchronous 

orbit while the Earth is rotating, so on a Lat Lon, projection, the joint scan pattern 

is illustrated by the blue striping on the left. The instrument measures many obser-

vations during flight, as the sensor quickly oscillates between -48.95 and 48.95 

degrees taking 90 observations every 2.7 seconds. 

 

 
Figure 2: Geo-reprojection 

 



 

 

The map of Earth is uniformly divided into a number of regions, or grid cells.  The 

goal is to have a measured temperature or radiance for each cell on the grid.  

When the satellite measures the same grid cell more than once, the resulting tem-

peratures are averaged together. 

3.3.1. Remote Sensing Geo-reprojection with Map Reduce 

The Map Reduce program for Geo-reprojection is similar in structure to the ca-

nonical word counting problem, provided we ignore details about computational 

geometry and sensor optics.  Rather than counting words, we are averaging grid 

cells.  Averaging is only slightly harder than summing, which in turn is only 

slightly harder than counting.  The program has unchanged structure but novel 

details. 

 

   map(int timestamp, Measurement measurements): 
     // key: timestamp  
     // value: a set of instrument observations  
     for each measurement m in measurements  
       Determine region r containing measurement m  
       EmitIntermediate(r, m.value); 
  
   reduce(int region, Iterator measurements):  
     // key: a region ID  
     // value: a set of measurement 
     //        values contained in that region  
     double result = 0.0;  
     for each m in measurements:  
       result += m; 
     //divide by the total number of measurements 
     result = result / measurements.size; 
     Emit(result); 
 

All of the sensor optics and geometry to determining the appropriate region are 

glossed over in the above pseudocode, with the line “Determine region r contain-

ing measurement m”.  For more detail see Wolf et. al. [9].  In this simple example, 

we assume there is only one region per measurement.  However, in more realistic 

re projections, the observation may overlap multiple regions.  In such an event, the 

Map would need to emit partial measurements for each region, and reduce would 

remain unchanged.  Notice, that the final major step of reduce is to divide by the 

number of measurements (measurements.size).  This division transforms the dis-

tributed summation to a distributed average, to derive the average measurement of 

the region. 



 

 

3.3.2. Remote Sensing Geo-reprojection with Dryad 

With Dryad, the remote geo-reprojection task may be computed somewhat diffe-

rently than with Map Reduce.  We will assume that the output grid is comparably 

of lower resolution than the input data set.  This assumption is usually valid for 

the problem, because the sounding instrument typically observes overlapping re-

gions multiple times within hours to days of observation.  Also, for climate related 

applications, fine grain grids are often not required, allowing for even further data 

reduction. 

 

Problems that greatly reduce the volume of data are typically well described by a 

reduction type of graph [8].  The basic generic reduction graph is shown in Figure 

3. 

 

Figure 3: Generic reduction graph 

 

 

Notice, that there are many reduction graphs that all produce the same result as the 

one listed above.  An example is the one listed in Figure 4, which features a two 

level hierarchy.  Partial reduction nodes r enumerate partial centroids an then pass 

the result onto the final reduction node R.  This approach is more parallel, because 

there are more independent nodes working to do part of the reduction.  Unfortu-

nately, there is also more overhead in this hierarchical approach, because there are 

more nodes that need to be scheduled. 

 



 

 

Figure 4: Reduction graph with two level hierarchy. 

 

The following pseudocode could be used for the reduction DAGs described in this 

section.  Start() represents nodes 1-n, and reduce() represents nodes r and R. 

 

   start():  
     // input0: instrument measurements 
     Measurement []measurements = ReadChannel(0); 
     // make an empty array of gridcell regions 
     Region []regions = new EmptyRegions(); 
     //put each measurement in the region 
     for each measurement m in measurements  
        Determine region r containing measurement m  
        r.result += m; 
        r.count  += 1; 
     //write the region array out to the channel zero 
     WriteChannel(newCentroids, 0); 
  

   reduce(): 
     // input0-n: region arrays 
     Region [][]regions; 
     for every input channel i 
        regions[i] = ReadChannel(i); 
     //a single region array for the results 
     Region []results = new EmptyRegions(); 
     //accumulate all of the regions together 
     for every input channel i 
        for every region j in regions[i] 



 

 

           results[j].result += regions[i][j].result 
           results[j].count  += regions[i][j].count 
     //divide, to perform the averaging 
     for every region j in results 
        results[j].result /= results[j].count 
        //don't double divide if we reduce multiple times 
        results[j].count = 1 
     //We're done, write results to output channel 0 
     WriteChannel(results, 0); 
 

3.4. K-Means Clustering 

Clustering is an essential component of many scientific computations, including 

gene classification [10], and N body physics simulations [11].  The goal of cluster-

ing is to separate a number of multidimensional data points into N groups, based 

on their positions relative to the other points in the dataset.  K-Means clustering 

uses the concept of the centroid, or average position of all of the points in this 

group, to define the cluster.  Initially, the points are grouped randomly into clus-

ters.  K-Means iteratively refines these clusters until it converges to a stable clus-

tering. 

 

K-Means uses the cluster centroid (average position), to determine the cluster 

grouping.  A single iteration of K-Means is as follows: 

 

1.  Compute cluster centroid (average all points) for each cluster 
2.  Reassign all points to the cluster with the closest centroid 
3.  Test for convergence 
 

3.4.1. K-Means Clustering with Map Reduce 

K-Means clustering is an iterative process that is a good candidate for Map Re-

duce.  Map Reduce would be used for the centroid and clustering computation 

performed within each iteration.  One would call Map Reduce inside “if a” loop 

(until convergence), in order to compute iterative methods such as K-Means clus-

tering. 

 

The primary reason why K-Means is a reasonable Map Reduce candidate, is be-

cause it displays a vast amount of data independence. The centroid computation is 

essentially distributed average, which is a small variation on the distributed sum-

mation, as exemplified by canonical word counting. Distributed summations re-

quire straightforward list reduction operations. The reassignment of points to clus-



 

 

ters, requires only the current point and all cluster centroids; the points can be as-

signed independently of one another. Below is pseudo-code for K-Means cluster-

ing using Map Reduce. 

 

The Map function takes as input a number of points, and the list of centroids, and 

from this it produces a list of partial centroids.  These partial centroids are aggre-

gated in the reduce function, and used in the next iteration of the Map Reduce 
 

   map(void, {Centroid []centroids, Point []datapoints}): 
     // key: not important  
     // value: list of centroids and datapoints  
     Centroid []newCentroids; 
     Initialize newCentroids to zero 
     for each point p in datapoints 
        Determine centroid centroids[idx] closest to p 
        //accumulate the point to the new centroid 
        newCentroids[idx].position += p; 
        //we added a point, so remember the 
        //total for averaging 
        newCentroids[idx].total += 1; 
     for each centroid newCentroids[idx] in newCentroids 
        //send the intermediate centroids for accumulation 
        EmitIntermediate(idx, newCentroids[idx]); 
 
   reduce(int index, Centroid []newCentroids): 
     // key: centroid index 
     // value: set of partial centroids 
     Centroid result.position = 0; 
     //accumulate the position and total for a grand total 
     for each centroid c in newCentroids 
        result.position += c.position; 
        result.total += c.total; 
     //Divide position by total to compute 
     // the average centroid 
     result.position = result.position / result.total 
     Emit(result); 
 

3.4.2. K-Means Clustering with Dryad 

 

K-Means can equally well be implemented in the Dryad paradigm and mindset.  

The main task of programming with the Dryad paradigm is to understand the data 



 

 

flow of the system.  A keen observations about K-Means, is that typically, each 

cluster has many points.  In other words, there are far fewer clusters than there are 

points.  Thus on each iteration the total amount of information is greatly reduced, 

when determining centroids from the set of points. 

 
A reduction DAG is a good choice for K-Means, because the data volume is re-

duced.  The following pseudocode would be used to perform the graph reduction 

operations for the K-Means algorithm using Dryad.  In the graph reduction dia-

grams given the section “Remote Sensing Geo-reprojection with Dryad”, start() is 

the function for nodes 1-n, and reduce() is the function for nodes r and R. 

 
   start(): 
     // input0: Complete list of centroids from the prior run 
     Centroid []centroids = ReadChannel(0); 
     // input1: Partial list of datapoints 
     Point []datapoints   = ReadChannel(1); 
     // make a new list of centroids 
     Centroid []newCentroids; 
     Initialize newCentroids to zero 
     for each point p in datapoints 
        Determine centroid centroids[idx] closest to p 
        //accumulate the point to the new centroid 
        newCentroids[idx].position += p; 
        //we added a point, so remember the 
        //total for averaging 
        newCentroids[idx].total += 1; 
     //send the intermediate centroids for accumulation 
     //channel zero is the only output channel we have 
     WriteChannel(newCentroids, 0); 

 
   reduce(): 
     // input0-n: list of intermediate centroids 
     Centroid [][]newCentroids; 
     for every input channel i 
        newCentroids[i] = ReadChannel(i); 
     // make a list of result centroids 
     Centroid []results; 
     for every input channel i 
        results[i].position = 0; 
        //accumulate the position and total for a grand total 
        for each centroid c in newCentroids[i] 



 

 

           result[i].position += c.position; 
           result[i].total += c.total; 
        //Divide position by total to compute 
        // the average centroid 
        results.position = result.position / result.total 
      //don't double divide if we reduce multiple times 
        results.total = 1 
     //write our the results to channel 0 
     WriteChannel(results, 0); 
 

3.5. Singular Value Decomposition 

Singular value decomposition (SVD) can also be parallelized with cloud compu-

ting paradigms.  The goal of SVD is very similar to matrix diagonalization.  One 

must describe how a matrix, M, can be represented as the product of three matrices 

under the conditions as described below: 

M = U Σ V
T 

Where M is the original m-by-n matrix, U is an m-by-m orthogonal matrix, V
T
 is a 

n-by-n orthogonal matrix, and Σ is a m-by-n diagonal matrix. 

 

The idea behind the Jacobi method is to start with the identity  M = I M I  and 

attempt to slowly transform this formula into  M = U Σ V
T
  by a series of rota-

tions designed to zero out the off-diagonal elements one at a time.  Unfortunately, 

zeroing out one element may un-zero another.  However, if this approach is re-

peated sufficiently, matrix M will converge to the diagonal matrix Σ. 

 

Since the focus of this book is on cloud computing and not matrix algebra, we will 

not go into detail about the formulas required by the Jacobi and related methods.  

For further reading, refer to [12][13][14].   

 

The One Sided JRS and Jacobi algorithms, to zero out a single element require 

modification of two rows within the matrix.  A single sweep, for each pair of rows 

in the matrix, one must compute the dot product with the other rows, and use this 

value to modify both of the rows.  For an n-by-n matrix, there are n(n-1)/2 such 

pairs of rows. [13] 

 

It is thus natural to partition the matrix into rows for a parallel implementation.   

Rajasekaran and Song [14] propose a round robin approach where each machine 

stores two blocks, computes all pairs of rows within each block, and then com-

putes all pairs of rows between the two blocks.  Then, the blocks are shuffled to 

other machines as illustrated in Figure 5. 

 



 

 

Figure 5: Round robin SVD block communication pattern 

 

Although the aforementioned data access pattern can be implemented straightfor-

wardly on grid systems with message passing, it is equally straightforward to im-

plement with cloud computing paradigms Map Reduce and Dryad.  The cloud 

paradigms still provide additional benefits such as fault tolerance and data abstrac-

tion. 

3.5.1. Singular Value Decomposition with Map Reduce 

The round robin block data pattern described in Figure 5 can be implemented with 

Map Reduce, but with a single caveat.  The difference is that Map Reduce prefers 

to control how data is distributed based on the key/value pair of the block.  Thus 

the key can be used as a virtual machine ID, rather than a physical ID.  Each block 

is a key value pair.  The reduce operation accepts two key value pairs (blocks) 

modifies them, and emits both of them back as results.  This map reduce proce-

dure must be performed iteratively until convergence. 

 

   map(int blockPos, Block block): 
     // key: the current position of the block 
     // value: 2D block 
     int newBlockPos; 
     if (blockPos == 0) 
        newBlockPos = 1; 
     else if (blockPos = 2n-1) 
        newBlockPos = blockPos; 
     else if (blockPos == 2n-2) 
        newBlockPos = 2n-3; 
     else if (blockPos % 2 == 1) 
        newBlockPos += 2; 
     else // (blockPos % 2 == 0) 
        newBlockPos -= 2; 
     //key must be equal to the virtual machine ID. 
     //however, the slot (top or bottom) is also necessary 



 

 

     //to disambiguate the block slots 
     int machineID = floor(newBlockPos/2); 
     BlockValue blockVal; 
     blockVal.block = block; 
     blockVal.slot  = newBlockPos % 2; 
     EmitIntermediate(machineID, blockVal); 
 
   reduce(int machineID, BlockValue [2]blockVals): 
     // key: virtual machine ID 
     // value: structure with the slot (top or bottom) 
     //        and the block data 
     //use a convention arrang the blockvals by slot 
     if (blockVals[0].slot == 1) 
        swap (blockVals[0], blockVals[1]); 
     //perform rotations in slot 0 
     Block block0 = blockVals[0]; 
     for i=0 to block0.numRows-1 
        for j=i to block0.numRows-1 
           rotate(block0.row[i], block0.row[j]); 
     //perform rotations in slot 1 
     Block block1 = blockVals[1]; 
     for i=0 to block1.numRows-1 
        for j=i to block1.numRows-1 
           rotate(block1.row[i], block1.row[j]); 
     //perform rotations across both slots 
     for i=0 to block0.numRows-1 
        for j=0 to block1.numRows-1 
           rotate(block0.row[i], block1.row[j]); 
     //remember the block position for the next iteration 
     int blockPos0 = 2*machineID; 
     int blockPos1 = 2*machineID + 1; 
     Emit(blockPos0, block0); 
     Emit(blockPos1, block1); 
 

3.5.2. Singular Value Decomposition with Dryad 

Much like Map Reduce, Dryad likes to control how data is distributed via task 

scheduling.  For this reason, it is equally important to use virtual machine IDs for 

the round robin SVD data access pattern.  For Dryad, the nodes in the DAG 

represent virtual machines, and the edges represent the data distribution. 

 



 

 

The graph in Figure 5 is cyclic. It must be made acyclic for use with Dryad. To do 

so, we must unroll the graph.  Unfortunately, the resulting graph would be of infi-

nite length, as one does not know how much iteration must be performed before 

convergence falls below some error threshold.  Fortunately, it is sufficient to make 

a large finite graph, and simply terminate early upon convergence. 

 

 

Figure 6: Acyclic SVD round robin block communication pattern 

 

 

The connectivity of the graph is somewhat intricate in order to achieve the pattern 

shown in Figure 6.  Notice how in Figure 6, every node has two blocks: one on 

top, and one on bottom.  We define that channel 0 reads input to the top block, and 

input channel 1 reads input from the bottom block.  We also define that output 

channel 0 writes output from the top block, and output channel 1 writes output 

from the bottom block.  At every timestep, both blocks are read, modified, and 

written to their appropriate channels. 

 

There are several corner cases for the connectivity of the graph.  These cases 

would be handled in graph construction, and are thus not listed in the pseudocode 

of this section.  Tables 1 and 2 show the specific rules of connectivity. 

 

 
From To 

Node Chan Node Chan 

x 0 x+1 0 

x 1 x-1 1 

Table 1: Standard cases for connectivity 

 

 



 

 

From To 

Node Chan Node Chan 

0 1 0 0 

n-1 0 n-2 1 

n-1 1 n-1 1 

Table 2: Corner cases for connectivity 

 

The pseudocode within a node to perform the block rotations is listed below. 

 

   node(): 
     // input0: Block for top slot 
     Block block0 = ReadChannel(0); 
     // input1: Block for bottom slot 
     Block block1 = ReadChannel(1); 
     //perform rotations in slot 0 
     for i=0 to block0.numRows-1 
        for j=i to block0.numRows-1 
           rotate(block0.row[i], block0.row[j]); 
     //perform rotations in slot 1 
     for i=0 to block1.numRows-1 
        for j=i to block1.numRows-1 
           rotate(block1.row[i], block1.row[j]); 
     //perform rotations across both slots 
     for i=0 to block0.numRows-1 
        for j=0 to block1.numRows-1 
           rotate(block0.row[i], block1.row[j]); 
     WriteChannel(block0, 0); 
     WriteChannel(block1, 1); 

 

 

4. Delivering Scientific Computing services on the cloud 

Extant methodologies for service development do not account for a cloud envi-

ronment, which includes services composed on demand at short notice. Currently, 

the service providers decide how the services are bundled together and delivered 

to service consumers. This is typically done statically by a manual process. There 

is a need to develop reusable, user-centric mechanisms that will allow the service 

consumer to specify their desired security or quality related constraints, and have 

automatic systems at the providers end control the selection, configuration and 

composition of services. This should be without requiring the consumer to under-

stand the technical aspects of services and service composition. 



 

 

 

Service Oriented Atmospheric Radiances (SOAR), demonstrates many examples 

of the forewarned paradox. Climate scientists want to study the earth's atmospher-

ic profile, and they need satellite observations of sufficient quality for the experi-

ments.  It would be futile for them to learn every data processing step required, 

down to the algorithm version numbers, and the compute architectures used to 

produce every datum they require.  Yet, they care that such a toolchain is well 

documented somewhere.  If a colleague were to disagree with his findings years 

later, when all of the old data, algorithms and hardware have been upgraded, does 

the scientist even know the toolchain that produced his old experiments?  It has 

been said that science without reproducibility is not science, yet in a world where 

data and computations are passed around the intricate cloud, provenance is all to 

easy to lose track of. 

 

We have proposed a methodology for delivering virtualized services via the cloud 

[55]. We divide the IT service lifecycle on the cloud into five phases. In sequential 

order of execution they are requirements, discovery, negotiation, composition, and 

consumption. Figure 7 illustrates our proposed service lifecycle. Detailed lifecycle 

illustrating the sub-phases and is available at [55]. We have also developed ontol-

ogy in OWL for the service lifecycle which can be accessed at [1616]. 

  

 
 

Figure 7: The Service lifecycle on a scientific cloud comprises five phases: re-

quirements, discovery, negotiation, composition and consumption. 

 



 

 

4.1. Service Requirements  

In the service requirements phase the consumer details the technical and function-

al specifications that a scientific service needs to fulfill. While defining the service 

requirements, the consumer specifies not just the functionality, but also non-

functional attributes such as constraints and preferences on data quality, service 

compliance and required security policies for the service. Depending on the ser-

vice cost and availability, a consumer may be amenable to compromise on the 

service data quality. For example, a simple service providing images of the Earth 

might deliver data as images of varying resolution quality. Depending on their 

requirements, service consumers may be interested in the high resolution images 

(higher quality) or might be fine with lower image resolution if it results in lower 

service cost. 

 

Such explicit descriptions are of use not just for the consumer of the service, but 

also the provider.  For instance, the cost of maintaining the service data quality 

can be optimized depending on the type of data quality requested in the service. 

The advantage for the service provider is that they will not need to maintain the 

lower quality data with the same efficiency as the higher quality data; but they 

would still be able to find consumers for the data. They can separate the data into 

various databases and make those databases available on demand. As maintaina-

bility is a key measure of quality, low maintenance need of the service data will 

result in improved quality of the service.  

 

The service requirement phase consists of two main sub-phases: service specifica-

tion and request for service. 

 

Service Specification: In this sub-phase, the consumer identifies the detailed 

functional and technical specifications of the service needed. Functional specifica-

tion describe in detail what functions/tasks should a service help automate and the 

acceptable performance levels of the service software and the service agent (i.e. 

the human providing the service). The technical specifications lay down the hard-

ware, operating system, application standards and language support policies that a 

service should adhere to. Specifications also list acceptable security levels, data 

quality and performance levels of the service agent and the service software. Ser-

vice compliance details like required certifications, standards to be adhered to etc. 

are also identified. Depending on the requirements, specifications can be as short 

or as detailed as needed. 

 

Figure 8 shows all of the Quality of Services (QoS) parameters available to the 

user for the SOAR Gridded Average Brightness Temperature web service.  GUIs 

make a good human readable compliment to the machine readable description 

languages used by SOAP and REST style web services.  User-centric QoS para-

meters include variable resolution, and result type (jpg image, or hdf and binary 



 

 

datafiles).  The service providers make their own decisions about the compute 

resources and related parameters.  For example, a single service job may be distri-

buted across a number of nodes, but this type of distributed computing is not ne-

cessary for small services that complete very quickly.  It is up to the provider to 

decide how the task is scheduled, and what resources to designate. 

 

 

Figure 8: Screenshot of the SOAR system GUI for the Gridded Average Bright-

ness Temperature Web Service. 

 

 

Request for Service: Once the consumers have identified and classified their ser-

vice needs, they will issue a “Request for Service” (RFS). This request could be 

made by directly contacting the service providers, such as the “Submit Request” 

button on Figure 8.  This direct approach bypasses any sort of discovery mechan-

ism, but fails when the consumer is unaware of the service provider.  Alternative-



 

 

ly, consumers can utilize a service search engine on the cloud to procure the de-

sired service, as long as the service is registered with some discovery engine. 

 

Service requirement is a critical phase in service lifecycle as it defines the “what” 

of the service. It is a combination of the “planning” and “requirements gathering” 

phases in a traditional software development lifecycle. The consumers will spend 

the maximum effort in this phase and so it has been depicted entirely in the con-

sumer’s area in the lifecycle diagram. The consumer could outsource compilation 

of technical and functional specifications to another vendor, but the responsibility 

of successful completion of this phase resides with the consumer and not the ser-

vice cloud. Once the RFS has been issued, we enter the discovery phase of the 

service lifecycle. 

4.2. Service Discovery  

In this phase, service providers that offer the services matching the specifications 

detailed in the RFS are searched (or discovered) in the cloud. The discovery is 

constrained by functional and technical attributes defined, and also by the budge-

tary, security, data quality and agent policies of the consumer.  

 

If the consumer elects the option to search the cloud instead of sending the RFS to 

a limited set of providers, then the discovery of services is done by using a servic-

es search/discovery engine. This engine runs a query against the services regis-

tered with a central registry or governing body and matches the domain, data type, 

functional and technical specifications and returns the result with the service pro-

viders matching the maximum number of requirements listed at the top. 

 

The discovery phase may not provide successful results to the consumers and so 

they will need to either change the specifications or alter their in-house processes 

to be able to consume a service that meets their needs the most. 

 

If the consumers find the exact scientific service within the budget that they are 

looking for, they can begin consuming the service. However, often the consumers 

will get a list of providers who will need to compose a service to meet the con-

sumer’s specifications. The consumer will then have to begun negotiations with 

the service providers which is the next phase of the lifecycle. Each search result 

will also return the primary provider who will be negotiating with the consumer. It 

will usually be the provider whose service meets most of the requirement specifi-

cations. 

 



 

 

4.3. Service Negotiation 

Service negotiation phase covers the discussion and agreement that the service 

provider and consumer have regarding the service delivered and its acceptance 

criteria. The service delivered is determined by the specifications laid down in the 

RFS. Service acceptance is usually guided by the Service Level Agreements 

(SLA) that the service provider and consumer agree upon. SLAs define the service 

data, delivery mode, agent details, compliance policy, quality and cost of the ser-

vice. While negotiating the service level with potential service providers, consum-

ers can explicitly specify service quality constraints (data quality, cost, security, 

response time, etc.) that they require.  

 

Of course, scientists love to work with the most accurate and precise data availa-

ble, until they run in to practical problems with it.  The fine dataset might take too 

much storage, computation may take too much time, or perhaps out of place algo-

rithms such as principal component analysis may require impractical amounts of 

RAM.  These sorts of problems force scientists to reconsider the level of quality 

that they actually need for their desired experiment. SLAs will help in determining 

all such constraints and preferences and will be part of the service contract be-

tween the service provider and consumer. 

 

Negotiation requires feedback, and the server must be able to estimate the cost 

involved with the service and deliver these statistics to the consumer before the 

service is executed.  Although it is possible to negotiate automatically using hill-

climbing and related optimization algorithms, SOAR was a service system de-

signed primarily for human end users.  Depending on the service and the QoS, the 

desired SOAR transaction could take seconds, minutes, or hours to compute.  It is 

not necessary to give a precise time estimate, but at least a rough guess must be 

presented.  For example, a warning “This transaction could take hours to com-

pute” would be very helpful. 

 

In addition to warning users about high cost services, the provider must also ex-

plain some strategy for reducing the cost.  Of course, reducing QoS will reduce 

cost, but the degree may vary.  Some service parameters may have a dramatic ef-

fect on the service cost, whereas others have little effect at all.  For example, in the 

SOAR Gridded Average Brightness Temperature service, “resolution” has a tre-

mendous effect on performance, whereas “type” (format) does not affect perfor-

mance very much.  Unfortunately, if the consumer doesn't know which parameters 

to vary, he may find himself toggling options randomly, or give up on the service 

entirely out of frustration.  Although algorithms can happily toggle options syste-

matically, humans would prefer to know what they are doing.  SOAR documents 

the best known ways to cut cost.  Preemptive GUIs may even be possible, that flag 

a user as soon as he selects a high cost option. 

 



 

 

At times, the service provider will need to combine a set of services or compose a 

service from various components delivered by distinct service providers in order 

to meet the consumer’s requirements.  For example, SOAR services often need to 

interact with NASA datacenters to obtain higher resolution data for processing. 

The negotiation phase also includes the discussions that the main service provider 

has with the other component providers. When the services are provided by mul-

tiple providers (composite service), the primary provider interfacing with the con-

sumer is responsible for composition of the service. The primary provider will 

also have to negotiate the Quality of Service (QoS) with the secondary providers 

to ensure that SLA metrics are met.   

 

Thus the negotiation phase comprises of two critical sub phases, the negotiation of 

SLAs and negotiation of QoS. If there is a need for composite service, iterative 

discussions takes place between the consumer and primary provider and the pri-

mary provider and component providers. The final product of the negotiation 

phase is the service contract between the consumer and primary provider and be-

tween the primary provider and the component (or secondary) providers. Once the 

service contract is approved, the lifecycle goes to the composition phase where the 

service software is compiled and assembled. 

 

4.4. Service Composition 

In this phase one or more services provided by one or more providers are com-

bined and delivered as a single service. Service orchestration determines the se-

quence of the service components.  Often the composition may not be a static en-

deavor, and may even depend on the QoS parameters used in the RFS. 

 

The SOAR gridded average brightness temperature service is a great example of a 

dynamic composition workflow.  Raw daily observations are cached at coarse 

resolutions, so only local parallel processing is necessary to service such requests.  

However, if the data specified is not available in cache, then it must be obtained 

from NASA's Goddard and MODAPS datacenters.  Such is an example of service 

chaining with foreign NASA entities.  Depending on the request, this remote ex-

ecution could take hours to compute, and thus necessitates asynchronous execu-

tion.    However, by comparison, the coarse local services could be completed in 

seconds.  This is a great example of how the QoS and RFS specification could 

have such a huge impact on the resulting workflow, performance, and resources. 

 

Many times what is advertised as a single service by a provider could in turn be a 

virtualized composed service consisting of various components delivered by dif-

ferent providers. The consumer needs to know that the service is composite for 

accounting purposes only. The provider will have to monitor all the other services 

that it is dependent on (like database services, network services etc.) to ensure that 



 

 

the SLAs defined in the previous phase are adhered to, and recorded for scientific 

reproducibility. 

 

Once the service is composed, it is ready to be delivered to the consumer. The 

lifecycle then enters the final phase of service consumption. 

 

4.5. Service Consumption and Monitoring 

The service is delivered to the consumer based on the delivery mode (synchron-

ous/asynchronous, real-time, batch mode etc.) agreed upon in the negotiation 

phase. After the service is delivered to the consumer, payment is made for the 

same. The consumer then begins consuming the service. An important part of the 

consumption phase includes performance monitoring using automated tools. 

 

In this phase, consumer will require tools that enable quality monitoring and ser-

vice termination if needed. This will involve alerts to humans or automatic termi-

nation based on policies defined using the quality related ontologies that need to 

be developed. The service monitor sub-phase measures the service quality and 

compares it with the quality levels defined in the SLA. This phase spans both the 

consumer and cloud areas as performance monitoring is a joint responsibility. If 

the consumer is not satisfied with the service quality, s/he should have the option 

to terminate the service and stop service payment.  If the service is terminated, the 

consumer will have to restart the service lifecycle by again defining the require-

ments and issuing a RFS. 

 

The performance monitoring tool used in SOAR is shown in Figure 9.  The tool 

not terribly complicated, but is very effective.  It shows not only completed tasks, 

but also those currently in progress.  The tool provides a timestamp for submis-

sion, so it is easy to monitor how long the request is taking.  The user can select a 

task and remove it, even if it is currently in progress.  This allows the user to can-

cel tasks that are taking too much time.  Task cancellation is also accessible via 

SOAP, and can be used by a machine interface as well as a human interface. 

 

An example gridded brightness temperature image is displayed in Figure 10, this 

is an example of a simple result generated from the SOAR system.  This is a 

brightness temperature image by the Atmospheric Infrared Sounder (AIRS) of the 

Indian ocean on Jan 1
st
 2005.  The striping on display is due to the sun synchron-

ous polar orbit, and would be resolved if the data was collected over a longer time 

period.  The warmest regions are in South Africa and Ethiopia.  The blue dots 

around Madagascar, New Guinea and other locations are due to clouds.  These 

types of plots, which show clouds very clearly, can be used in Hovmoller (running 

mean) diagrams to track cloud movement over time and monitor processes such as 

the Madden Julian Oscillation, as shown in Figure 11. 



 

 

 

Figure 9: Your Requests tool provided by SOAR 

 



 

 

Figure 10: SOAR Generated Image 

Figure 11:  Hovmoller showing easterly cloud movement over the Pacific from 

Dec 15 2006 to Jan 17 2007 

 

 

5. Summary / Conclusions 

In summary, we believe that the cloud is a new and exciting platform for scientific 

computing.  The compute and services paradigms at first glance may appear coun-

terintuitive.  However, once mastered they unleash the benefits cloud provides 



 

 

flexible compute resources, virtualized web services, software abstraction, and 

fault tolerance.  Map Reduce and Dryad are paradigms that can aid with scientific 

data processing on the back end, while service discovery and delivery provide not 

only a front end, but an entire a compute work flow including data selection and 

quality of service.  SOAR is a complete scientific cloud application, and we hope 

that the lessons we have learned from this and other systems can help others in 

their scientific ventures. 
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