

Chapter xxx

SCIENTIFIC SERVICES ON THE CLOUD

David Chapman, Karuna P Joshi, Yelena Yesha, Milt Halem,

Yaacov Yesha and Phuong Nguyen

Computer Science and Electrical Engineering Department

University of Maryland, Baltimore County, MD, USA

1. Introduction

Scientific Computing was one of the first every applications for parallel and dis-

tributed computation. To this date, scientific applications remain some of the most

compute intensive, and have inspired creation of petaflop compute infrastructure

such as the Oak Ridge Jaguar and Los Alamos RoadRunner. Large dedicated

hardware infrastructure has become both a blessing and a curse to the scientific

community. Scientists are interested in cloud computing for much the same rea-

son as businesses and other professionals. The hardware is provided, maintained,

and administrated by a third party. Software abstraction and virtualization provide

reliability, and fault tolerance. Graduated fees allow for multi-scale prototyping

and execution. Cloud computing resources are only a few clicks away, and by far

the easiest high performance distributed platform to gain access to. There may

still be dedicated infrastructure for ultra-scale science, but the cloud can easily

play a major part of the scientific computing initiative.

Scientific cloud computing is an intricate waltz of compute abstract programming

models, scientific algorithms, and virtualized services. On one end, highly com-

pute intensive scientific data algorithms are implemented upon cloud program-

ming platforms such as Map Reduce and Dryad, while on the other, service dis-

covery and execution implement the bigger picture with data product dependen-

cies, service chaining, and virtualization.

The cloud of science services is very tightly knit. It is difficult to make meaning-

ful scientific discoveries from only a single data product. Yet even individual data

products are produced from other products, which in turn require even more dif-

ferent products for calibration. Service chaining is essential to the scientific cloud,

just as much as with the business cloud. However, scientific cloud computing's

distinctive feature is data processing and experimentation; a compute elephant

hiding underneath the service oriented architecture. Both the service lifecycle,

and the processing platforms are key ingredients to a successful scientific cloud

computation. We discuss both fronts from the perspective of an atmospheric

cloud computing system Service Oriented Atmospheric Radiances (SOAR). We

also make sure to touch on many related cloud technologies, even if they were not

necessarily the best fit for our SOAR system.

1.1. Outline

There are two ends to a scientific cloud, the back end and the front end. We brief-

ly describe the Service Oriented Atmospheric Radiances (SOAR) system in the next

section. The third section on Scientific Programming Paradigms (back end) describes

how programming platforms affect the scientific algorithms. The fourth section

discusses the Scientific Computing Services that form the front end, describing in

detail how service virtualization affects scientific repositories.

We have found Map Reduce and Dryad to be highly effective platforms for more

than our own algorithms. We summarize our own and others' work to apply these

paradigms to science related problems.

We also describe a five phase service lifecycle, but in the perspective of scientific

applications, and address some of the unique challenges that set science apart from

other service domains.

2. Service Oriented Atmospheric Radiances (SOAR)

SOAR, a joint project between NASA, NOAA, and UMBC, is a scalable web ser-

vice set of tools that provides complex gridding services on-demand for atmos-

pheric radiance data sets from multiple temperature and moisture sounding sen-

sors. SOAR accepts input through an online Graphical User Interface (GUI), or

directly from other programs. The server queues these requests for a variety of

complex science data services in a database tracking the various requested

workflows. It uses large data sets collected by NASA, NOAA and DOD. These

datasets contain satellite readings for temperature and moisture from the last three

decades. SOAR uses the cloud Bluegrit at University of Maryland Baltimore

County (UMBC) to apply data transformations such as gridding, sampling, subset-

ting and convolving in order to generate derived data sets from diverse atmospher-

ic radiances. [15]

Satellite remote sensing instruments orbit the Earth sun-synchronously to observe

temperature, moisture, and other atmospheric structure and properties. SOAR

facilitates climate oriented experiments by providing geospatial computations and

transformations. This puts SOAR in a unique position, as it must chain with re-

mote servers to acquire data, but as a facilitator, would be well placed within an

even deeper chain for complicated scientific experiments.

Figure 1: SOAR deployment system.

Figure 1 is a diagram of the SOAR deployment system. It makes use of the com-

pute and data resources of the Bluegrit cloud. End users could be individual

scientists, or other data service centers, and could make use of our graphical or

SOAP interface provided by Bluegrit's Web server. Service requests encapsulate

various climate related experiments such as tracking easterly cloud motion, or

generating high resolution planetary images.

Management Server is a task driver for the various compute subsystems. It is re-

sponsible for scheduling tasks on the various compute blades. These tasks include

precisely geolocated gridding, and singular value decomposition.

The input data for various service computations may not be locally available at the

time of request. Management Server and Compute Blades must interact with vari-

ous NASA data centers to acquire various data products for the requested scientif-

ic computations. Additionally Management Server routinely schedules jobs to

compute and cache generic intermediate results, such as daily gridded average

radiances.

3. Scientific Programming Paradigms

One of the biggest hurdle to unleashing the cloud onto science, is understanding

its compute paradigms. The cloud provides a layer abstraction above and beyond

the bare system configuration. Cloud abstraction typically arises from distributed

middleware and centralized task scheduling. Programming paradigms empower

the middleware, and change the way that we program; they force us to think in

parallel. The remainder of this chapter is designed to bend our minds into under-

standing how to program the cloud for scientific applications. We discuss two

programming strategies, MapReduce, and Dryad, and various scientific related

problems, and how they could be implemented in a cloud environment.

Map Reduce is a simple programming paradigm for distributed cloud computing.

Google begat Map Reduce as a parallel processing solution for its indexing pipe-

line, and quickly realized that Map Reduce was useful for many more parallel

processing chores within the scope of Internet data retrieval and Google now hosts

thousands of Map Reduce applications. Although Map Reduce's intended purpose

is text analysis and machine learning, it is also useful for many scientific computa-

tions, provided however, that they follow certain conditions [7]. This makes Map

Reduce a very sharp topic for scientific computing, because it makes easy prob-

lems easier, but can potentially make hard problems even harder, if the problem

does not fit the paradigm.

Dryad is a flexible programming model based on Directed Acyclic Graphs

(DAGs). The nodes represent computation and the edges represent data flow di-

rection. Dryad was developed by Microsoft as a generic paradigm for cloud com-

puting problems, and as an alternative to Google's MapReduce. The Microsoft

developers quickly found that Dryad was much more flexible than MapReduce,

and as evidence were able to implement relational database, Map and Reduce, and

many other software paradigms all completely encapsulated within Dryad's

framework. Dryad is well rounded, and perfectly suitable for compute intensive,

data intensive, dense, sparse, coupled, and uncoupled tasks. Dryad provides a

very flexible solution, and is a good alternative for problems that might not fit

well in simpler paradigms such as Map Reduce. On the flip side, Dryad is rela-

tively complicated, and may not be necessary when easier solutions are possible.

3.1. Map Reduce

The original Map Reduce paper, by Dean and Ghemawat in 2004 [3] describes the

programming paradigm of Map Reduce very concisely as follows.

“The computation takes a set of input key/value pairs, and produces a set of

output key/value pairs. The user of the MapReduce library expresses the compu-

tation as two functions: Map and Reduce. Map, written by the user, takes an

input pair and produces a set of intermediate key/value pairs. The MapReduce

library groups together all intermediate values associated with the same inter-

mediate key I and passes them to the Reduce function.

The Reduce function, also written by the user, accepts an intermediate key I and

a set of values for that key. It merges together these values to form a possibly

smaller set of values. Typically just zero or one output value is produced per

Reduce invocation. The intermediate values are supplied to the user’s reduce

function via an iterator. This allows us to handle lists of values that are too

large to fit in memory.”

Other stages can be added to extend this paradigm. As one can see, the paradigm

has only two user specified functions: Map and Reduce. A great way to become

more familiar with Map Reduce is by example. Word counting is the canonical

example, with pseudocode given from Dean and Ghemawat. [33]

 map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

 reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

“The map function emits each word plus an associated count of occurrences (just

`1' in this simple example). The reduce function sums together all counts emitted

for a particular word.

Thus, by performing Map, to report the occurrence of each word, followed by re-

duce to sum the number of occurrences for each word, the result of this example is

the word count for each distinct word in the document.”

By constructing new and different Map and Reduce functions, Map Reduce can be

used to solve many problems in addition to word counting. The processing can be

performed in parallel, because both the Map and Reduce functions can be per-

formed in parallel. Map acts in parallel on each input element. Reduce acts in

parallel on separate KV groups for each distinct key.

3.1.1 Map Reduce Merge

Yang, Dasdan, Lung-Hsiao, and Parker [17] have introduced an improvement to

Map-Reduce called Map-Reduce-Merge. This improvement enables better han-

dling of joins on multiple heterogeneous databases, compared with using Map-

Reduce. The authors point out that Map-Reduce is good for homogeneous data-

bases. They discuss the problem in performing joins on multiple heterogeneous

databases efficiently and mention that Pike et al. [18] point out that there is quite a

lack of fit between Map-Reduce and such joins. In [17], the authors also mention

the importance of database operations in search engines. They also described how

Map-Reduce-Merge can be applied to relational data processing.

Map-Reduce [3] is described in [17] as follows:

“For each (key,value) pair, Map produces a list of pairs of the form

(key',value').Then Reduce is applied to the pairs created by Map as follows:For

every key key'' that appears in the output of Map as a key, Reduce applies user

defined logic to all the values value'' such that (key'',value'') is one of those pairs,

and creates a list of values value'''.”

Map-Reduce-Merge is described in [17] in the context of lineages. In Map-

Reduce-Merge, Map is modified to operate on each lineage separately. Reduce is

modified to operate on each lineage separately, and further modified to create a

list of pairs (key'', value''') rather than a list of values value'''.

Also, Merge is added as a third step. Merge is applied to the output of Reduce in

two lineages. From the list of values associated with a key key'' in one lineage, and

and the list of values associated with a key key''' in another lineage, Reduce

creates a list of pairs of the form (key'''',value''''). All the pairs created by Reduce

form a new lineage.

3.2. Dryad

Dryad is a programming paradigm and software framework designed around the

ideas of task scheduling and data flow. The programmer must create a Directed

Acyclic Graph (DAG) that represents the processing task. The graph nodes are

compute kernels that run on various processors, and the graph edges represent the

data flow dependence. Each graph node becomes available for computation as

soon as all input data is available. A centralized job manager schedules available

graph nodes onto idle machines. The machine executes the kernel computation,

and upon completion, the node passes its output down to its children, and the ma-

chine becomes idle once again. The child graph nodes become available for com-

putation as soon as all input data is available from its deceased parents. The com-

putation continues in this manner until the entire DAG is executed and the pro-

gram terminates.

Isard et. al describe their Job scheduling system with a concise diagram. [8]

Figure 1: Dryad

The job manager (JM) consults the name server (NS) to discover the list of avail-

able computers. It maintains the job graph and schedules running vertices (V) as

computers become available using the daemon (D) as a proxy. Vertices exchange

data through files, TCP pipes, or shared-memory channels. The shaded bar indi-

cates the vertices in the job that are currently running.

A common Dryad dilemma is that there is often more than one DAG that will sa-

tisfy computation of a particular problem. Which DAG is the fastest? Should one

implement a very fine DAG with a high degree of parallelism, or a coarse DAG

with low scheduling overhead? Sometimes the choice is clear, such as scheduling

one node per machine, but often the choice is much more difficult to understand at

first glance. Sometimes the best DAG depends on the design of your compute

cluster; network and IO hardware design may play a critical role in determining

potential bottlenecks in your data flow DAG. These low level issues may begin to

contrast the philosophy that the cloud should be completely abstracted from its

underlying hardware. Dryad makes it relatively easy for programmers to play

around with the structure of the DAG, until they design one that runs efficiently

on their target machine.

Additionally, Microsoft has attacked the graph tweaking dilemma head on with a

number of automatic graph pruning and optimization algorithms. These tech-

niques execute at runtime on the job scheduler, and thus can make decisions based

on up to date profiles and resource availability. One such algorithm can make the

DAG coarser by encapsulating a smaller subgraph to within a single node with

serial execution. Although encapsulation makes the system less parallel, it can

greatly improve performance in situations where the graph was designed too fine-

ly. Another technique is to automatically make data reductions hierarchical. This

can greatly improve performance, by reducing the data volume before sending

packets to other machines and across racks.

3.3. Remote Sensing Geo-reprojection

Atmospheric gridding and geo-reprojection is a great example of a single pass

scientific problem, which is well suited for the Map Reduce, and Dryad program-

ming paradigms. Satellite remote sensing instruments measure blackbody radia-

tion from various regions on earth, to determine weather and climate related fore-

casting, as well as supply atmospheric models with raw data for assimilation. The

geo-reprojection algorithm is one of the first major compute steps along the chain

of any satellite atmospheric prediction. The satellite observes a surface tempera-

ture, 316K (43C ~109F) that's hot! But where is it? New Mexico? Libya? Geo-

reprojection solves this task by producing a gridded map of Earth with average

observed temperatures or radiances.

The measured region on Earth is a function of the instrument's position, and the

direction that it is observing. Figure 2 is a diagram of the NASA Atmospheric

Infrared Sounder (AIRS) satellite instrument. The satellite has a sun synchronous

orbit while the Earth is rotating, so on a Lat Lon, projection, the joint scan pattern

is illustrated by the blue striping on the left. The instrument measures many obser-

vations during flight, as the sensor quickly oscillates between -48.95 and 48.95

degrees taking 90 observations every 2.7 seconds.

Figure 2: Geo-reprojection

The map of Earth is uniformly divided into a number of regions, or grid cells. The

goal is to have a measured temperature or radiance for each cell on the grid.

When the satellite measures the same grid cell more than once, the resulting tem-

peratures are averaged together.

3.3.1. Remote Sensing Geo-reprojection with Map Reduce

The Map Reduce program for Geo-reprojection is similar in structure to the ca-

nonical word counting problem, provided we ignore details about computational

geometry and sensor optics. Rather than counting words, we are averaging grid

cells. Averaging is only slightly harder than summing, which in turn is only

slightly harder than counting. The program has unchanged structure but novel

details.

 map(int timestamp, Measurement measurements):
 // key: timestamp
 // value: a set of instrument observations
 for each measurement m in measurements
 Determine region r containing measurement m
 EmitIntermediate(r, m.value);

 reduce(int region, Iterator measurements):
 // key: a region ID
 // value: a set of measurement
 // values contained in that region
 double result = 0.0;
 for each m in measurements:
 result += m;
 //divide by the total number of measurements
 result = result / measurements.size;
 Emit(result);

All of the sensor optics and geometry to determining the appropriate region are

glossed over in the above pseudocode, with the line “Determine region r contain-

ing measurement m”. For more detail see Wolf et. al. [9]. In this simple example,

we assume there is only one region per measurement. However, in more realistic

re projections, the observation may overlap multiple regions. In such an event, the

Map would need to emit partial measurements for each region, and reduce would

remain unchanged. Notice, that the final major step of reduce is to divide by the

number of measurements (measurements.size). This division transforms the dis-

tributed summation to a distributed average, to derive the average measurement of

the region.

3.3.2. Remote Sensing Geo-reprojection with Dryad

With Dryad, the remote geo-reprojection task may be computed somewhat diffe-

rently than with Map Reduce. We will assume that the output grid is comparably

of lower resolution than the input data set. This assumption is usually valid for

the problem, because the sounding instrument typically observes overlapping re-

gions multiple times within hours to days of observation. Also, for climate related

applications, fine grain grids are often not required, allowing for even further data

reduction.

Problems that greatly reduce the volume of data are typically well described by a

reduction type of graph [8]. The basic generic reduction graph is shown in Figure

3.

Figure 3: Generic reduction graph

Notice, that there are many reduction graphs that all produce the same result as the

one listed above. An example is the one listed in Figure 4, which features a two

level hierarchy. Partial reduction nodes r enumerate partial centroids an then pass

the result onto the final reduction node R. This approach is more parallel, because

there are more independent nodes working to do part of the reduction. Unfortu-

nately, there is also more overhead in this hierarchical approach, because there are

more nodes that need to be scheduled.

Figure 4: Reduction graph with two level hierarchy.

The following pseudocode could be used for the reduction DAGs described in this

section. Start() represents nodes 1-n, and reduce() represents nodes r and R.

 start():
 // input0: instrument measurements
 Measurement []measurements = ReadChannel(0);
 // make an empty array of gridcell regions
 Region []regions = new EmptyRegions();
 //put each measurement in the region
 for each measurement m in measurements
 Determine region r containing measurement m
 r.result += m;
 r.count += 1;
 //write the region array out to the channel zero
 WriteChannel(newCentroids, 0);

 reduce():
 // input0-n: region arrays
 Region [][]regions;
 for every input channel i
 regions[i] = ReadChannel(i);
 //a single region array for the results
 Region []results = new EmptyRegions();
 //accumulate all of the regions together
 for every input channel i
 for every region j in regions[i]

 results[j].result += regions[i][j].result
 results[j].count += regions[i][j].count
 //divide, to perform the averaging
 for every region j in results
 results[j].result /= results[j].count
 //don't double divide if we reduce multiple times
 results[j].count = 1
 //We're done, write results to output channel 0
 WriteChannel(results, 0);

3.4. K-Means Clustering

Clustering is an essential component of many scientific computations, including

gene classification [10], and N body physics simulations [11]. The goal of cluster-

ing is to separate a number of multidimensional data points into N groups, based

on their positions relative to the other points in the dataset. K-Means clustering

uses the concept of the centroid, or average position of all of the points in this

group, to define the cluster. Initially, the points are grouped randomly into clus-

ters. K-Means iteratively refines these clusters until it converges to a stable clus-

tering.

K-Means uses the cluster centroid (average position), to determine the cluster

grouping. A single iteration of K-Means is as follows:

1. Compute cluster centroid (average all points) for each cluster
2. Reassign all points to the cluster with the closest centroid
3. Test for convergence

3.4.1. K-Means Clustering with Map Reduce

K-Means clustering is an iterative process that is a good candidate for Map Re-

duce. Map Reduce would be used for the centroid and clustering computation

performed within each iteration. One would call Map Reduce inside “if a” loop

(until convergence), in order to compute iterative methods such as K-Means clus-

tering.

The primary reason why K-Means is a reasonable Map Reduce candidate, is be-

cause it displays a vast amount of data independence. The centroid computation is

essentially distributed average, which is a small variation on the distributed sum-

mation, as exemplified by canonical word counting. Distributed summations re-

quire straightforward list reduction operations. The reassignment of points to clus-

ters, requires only the current point and all cluster centroids; the points can be as-

signed independently of one another. Below is pseudo-code for K-Means cluster-

ing using Map Reduce.

The Map function takes as input a number of points, and the list of centroids, and

from this it produces a list of partial centroids. These partial centroids are aggre-

gated in the reduce function, and used in the next iteration of the Map Reduce

 map(void, {Centroid []centroids, Point []datapoints}):
 // key: not important
 // value: list of centroids and datapoints
 Centroid []newCentroids;
 Initialize newCentroids to zero
 for each point p in datapoints
 Determine centroid centroids[idx] closest to p
 //accumulate the point to the new centroid
 newCentroids[idx].position += p;
 //we added a point, so remember the
 //total for averaging
 newCentroids[idx].total += 1;
 for each centroid newCentroids[idx] in newCentroids
 //send the intermediate centroids for accumulation
 EmitIntermediate(idx, newCentroids[idx]);

 reduce(int index, Centroid []newCentroids):
 // key: centroid index
 // value: set of partial centroids
 Centroid result.position = 0;
 //accumulate the position and total for a grand total
 for each centroid c in newCentroids
 result.position += c.position;
 result.total += c.total;
 //Divide position by total to compute
 // the average centroid
 result.position = result.position / result.total
 Emit(result);

3.4.2. K-Means Clustering with Dryad

K-Means can equally well be implemented in the Dryad paradigm and mindset.

The main task of programming with the Dryad paradigm is to understand the data

flow of the system. A keen observations about K-Means, is that typically, each

cluster has many points. In other words, there are far fewer clusters than there are

points. Thus on each iteration the total amount of information is greatly reduced,

when determining centroids from the set of points.

A reduction DAG is a good choice for K-Means, because the data volume is re-

duced. The following pseudocode would be used to perform the graph reduction

operations for the K-Means algorithm using Dryad. In the graph reduction dia-

grams given the section “Remote Sensing Geo-reprojection with Dryad”, start() is

the function for nodes 1-n, and reduce() is the function for nodes r and R.

 start():
 // input0: Complete list of centroids from the prior run
 Centroid []centroids = ReadChannel(0);
 // input1: Partial list of datapoints
 Point []datapoints = ReadChannel(1);
 // make a new list of centroids
 Centroid []newCentroids;
 Initialize newCentroids to zero
 for each point p in datapoints
 Determine centroid centroids[idx] closest to p
 //accumulate the point to the new centroid
 newCentroids[idx].position += p;
 //we added a point, so remember the
 //total for averaging
 newCentroids[idx].total += 1;
 //send the intermediate centroids for accumulation
 //channel zero is the only output channel we have
 WriteChannel(newCentroids, 0);

 reduce():
 // input0-n: list of intermediate centroids
 Centroid [][]newCentroids;
 for every input channel i
 newCentroids[i] = ReadChannel(i);
 // make a list of result centroids
 Centroid []results;
 for every input channel i
 results[i].position = 0;
 //accumulate the position and total for a grand total
 for each centroid c in newCentroids[i]

 result[i].position += c.position;
 result[i].total += c.total;
 //Divide position by total to compute
 // the average centroid
 results.position = result.position / result.total
 //don't double divide if we reduce multiple times
 results.total = 1
 //write our the results to channel 0
 WriteChannel(results, 0);

3.5. Singular Value Decomposition

Singular value decomposition (SVD) can also be parallelized with cloud compu-

ting paradigms. The goal of SVD is very similar to matrix diagonalization. One

must describe how a matrix, M, can be represented as the product of three matrices

under the conditions as described below:

M = U Σ V
T

Where M is the original m-by-n matrix, U is an m-by-m orthogonal matrix, V
T
 is a

n-by-n orthogonal matrix, and Σ is a m-by-n diagonal matrix.

The idea behind the Jacobi method is to start with the identity M = I M I and

attempt to slowly transform this formula into M = U Σ V
T
 by a series of rota-

tions designed to zero out the off-diagonal elements one at a time. Unfortunately,

zeroing out one element may un-zero another. However, if this approach is re-

peated sufficiently, matrix M will converge to the diagonal matrix Σ.

Since the focus of this book is on cloud computing and not matrix algebra, we will

not go into detail about the formulas required by the Jacobi and related methods.

For further reading, refer to [12][13][14].

The One Sided JRS and Jacobi algorithms, to zero out a single element require

modification of two rows within the matrix. A single sweep, for each pair of rows

in the matrix, one must compute the dot product with the other rows, and use this

value to modify both of the rows. For an n-by-n matrix, there are n(n-1)/2 such

pairs of rows. [13]

It is thus natural to partition the matrix into rows for a parallel implementation.

Rajasekaran and Song [14] propose a round robin approach where each machine

stores two blocks, computes all pairs of rows within each block, and then com-

putes all pairs of rows between the two blocks. Then, the blocks are shuffled to

other machines as illustrated in Figure 5.

Figure 5: Round robin SVD block communication pattern

Although the aforementioned data access pattern can be implemented straightfor-

wardly on grid systems with message passing, it is equally straightforward to im-

plement with cloud computing paradigms Map Reduce and Dryad. The cloud

paradigms still provide additional benefits such as fault tolerance and data abstrac-

tion.

3.5.1. Singular Value Decomposition with Map Reduce

The round robin block data pattern described in Figure 5 can be implemented with

Map Reduce, but with a single caveat. The difference is that Map Reduce prefers

to control how data is distributed based on the key/value pair of the block. Thus

the key can be used as a virtual machine ID, rather than a physical ID. Each block

is a key value pair. The reduce operation accepts two key value pairs (blocks)

modifies them, and emits both of them back as results. This map reduce proce-

dure must be performed iteratively until convergence.

 map(int blockPos, Block block):
 // key: the current position of the block
 // value: 2D block
 int newBlockPos;
 if (blockPos == 0)
 newBlockPos = 1;
 else if (blockPos = 2n-1)
 newBlockPos = blockPos;
 else if (blockPos == 2n-2)
 newBlockPos = 2n-3;
 else if (blockPos % 2 == 1)
 newBlockPos += 2;
 else // (blockPos % 2 == 0)
 newBlockPos -= 2;
 //key must be equal to the virtual machine ID.
 //however, the slot (top or bottom) is also necessary

 //to disambiguate the block slots
 int machineID = floor(newBlockPos/2);
 BlockValue blockVal;
 blockVal.block = block;
 blockVal.slot = newBlockPos % 2;
 EmitIntermediate(machineID, blockVal);

 reduce(int machineID, BlockValue [2]blockVals):
 // key: virtual machine ID
 // value: structure with the slot (top or bottom)
 // and the block data
 //use a convention arrang the blockvals by slot
 if (blockVals[0].slot == 1)
 swap (blockVals[0], blockVals[1]);
 //perform rotations in slot 0
 Block block0 = blockVals[0];
 for i=0 to block0.numRows-1
 for j=i to block0.numRows-1
 rotate(block0.row[i], block0.row[j]);
 //perform rotations in slot 1
 Block block1 = blockVals[1];
 for i=0 to block1.numRows-1
 for j=i to block1.numRows-1
 rotate(block1.row[i], block1.row[j]);
 //perform rotations across both slots
 for i=0 to block0.numRows-1
 for j=0 to block1.numRows-1
 rotate(block0.row[i], block1.row[j]);
 //remember the block position for the next iteration
 int blockPos0 = 2*machineID;
 int blockPos1 = 2*machineID + 1;
 Emit(blockPos0, block0);
 Emit(blockPos1, block1);

3.5.2. Singular Value Decomposition with Dryad

Much like Map Reduce, Dryad likes to control how data is distributed via task

scheduling. For this reason, it is equally important to use virtual machine IDs for

the round robin SVD data access pattern. For Dryad, the nodes in the DAG

represent virtual machines, and the edges represent the data distribution.

The graph in Figure 5 is cyclic. It must be made acyclic for use with Dryad. To do

so, we must unroll the graph. Unfortunately, the resulting graph would be of infi-

nite length, as one does not know how much iteration must be performed before

convergence falls below some error threshold. Fortunately, it is sufficient to make

a large finite graph, and simply terminate early upon convergence.

Figure 6: Acyclic SVD round robin block communication pattern

The connectivity of the graph is somewhat intricate in order to achieve the pattern

shown in Figure 6. Notice how in Figure 6, every node has two blocks: one on

top, and one on bottom. We define that channel 0 reads input to the top block, and

input channel 1 reads input from the bottom block. We also define that output

channel 0 writes output from the top block, and output channel 1 writes output

from the bottom block. At every timestep, both blocks are read, modified, and

written to their appropriate channels.

There are several corner cases for the connectivity of the graph. These cases

would be handled in graph construction, and are thus not listed in the pseudocode

of this section. Tables 1 and 2 show the specific rules of connectivity.

From To

Node Chan Node Chan

x 0 x+1 0

x 1 x-1 1

Table 1: Standard cases for connectivity

From To

Node Chan Node Chan

0 1 0 0

n-1 0 n-2 1

n-1 1 n-1 1

Table 2: Corner cases for connectivity

The pseudocode within a node to perform the block rotations is listed below.

 node():
 // input0: Block for top slot
 Block block0 = ReadChannel(0);
 // input1: Block for bottom slot
 Block block1 = ReadChannel(1);
 //perform rotations in slot 0
 for i=0 to block0.numRows-1
 for j=i to block0.numRows-1
 rotate(block0.row[i], block0.row[j]);
 //perform rotations in slot 1
 for i=0 to block1.numRows-1
 for j=i to block1.numRows-1
 rotate(block1.row[i], block1.row[j]);
 //perform rotations across both slots
 for i=0 to block0.numRows-1
 for j=0 to block1.numRows-1
 rotate(block0.row[i], block1.row[j]);
 WriteChannel(block0, 0);
 WriteChannel(block1, 1);

4. Delivering Scientific Computing services on the cloud

Extant methodologies for service development do not account for a cloud envi-

ronment, which includes services composed on demand at short notice. Currently,

the service providers decide how the services are bundled together and delivered

to service consumers. This is typically done statically by a manual process. There

is a need to develop reusable, user-centric mechanisms that will allow the service

consumer to specify their desired security or quality related constraints, and have

automatic systems at the providers end control the selection, configuration and

composition of services. This should be without requiring the consumer to under-

stand the technical aspects of services and service composition.

Service Oriented Atmospheric Radiances (SOAR), demonstrates many examples

of the forewarned paradox. Climate scientists want to study the earth's atmospher-

ic profile, and they need satellite observations of sufficient quality for the experi-

ments. It would be futile for them to learn every data processing step required,

down to the algorithm version numbers, and the compute architectures used to

produce every datum they require. Yet, they care that such a toolchain is well

documented somewhere. If a colleague were to disagree with his findings years

later, when all of the old data, algorithms and hardware have been upgraded, does

the scientist even know the toolchain that produced his old experiments? It has

been said that science without reproducibility is not science, yet in a world where

data and computations are passed around the intricate cloud, provenance is all to

easy to lose track of.

We have proposed a methodology for delivering virtualized services via the cloud

[55]. We divide the IT service lifecycle on the cloud into five phases. In sequential

order of execution they are requirements, discovery, negotiation, composition, and

consumption. Figure 7 illustrates our proposed service lifecycle. Detailed lifecycle

illustrating the sub-phases and is available at [55]. We have also developed ontol-

ogy in OWL for the service lifecycle which can be accessed at [1616].

Figure 7: The Service lifecycle on a scientific cloud comprises five phases: re-

quirements, discovery, negotiation, composition and consumption.

4.1. Service Requirements

In the service requirements phase the consumer details the technical and function-

al specifications that a scientific service needs to fulfill. While defining the service

requirements, the consumer specifies not just the functionality, but also non-

functional attributes such as constraints and preferences on data quality, service

compliance and required security policies for the service. Depending on the ser-

vice cost and availability, a consumer may be amenable to compromise on the

service data quality. For example, a simple service providing images of the Earth

might deliver data as images of varying resolution quality. Depending on their

requirements, service consumers may be interested in the high resolution images

(higher quality) or might be fine with lower image resolution if it results in lower

service cost.

Such explicit descriptions are of use not just for the consumer of the service, but

also the provider. For instance, the cost of maintaining the service data quality

can be optimized depending on the type of data quality requested in the service.

The advantage for the service provider is that they will not need to maintain the

lower quality data with the same efficiency as the higher quality data; but they

would still be able to find consumers for the data. They can separate the data into

various databases and make those databases available on demand. As maintaina-

bility is a key measure of quality, low maintenance need of the service data will

result in improved quality of the service.

The service requirement phase consists of two main sub-phases: service specifica-

tion and request for service.

Service Specification: In this sub-phase, the consumer identifies the detailed

functional and technical specifications of the service needed. Functional specifica-

tion describe in detail what functions/tasks should a service help automate and the

acceptable performance levels of the service software and the service agent (i.e.

the human providing the service). The technical specifications lay down the hard-

ware, operating system, application standards and language support policies that a

service should adhere to. Specifications also list acceptable security levels, data

quality and performance levels of the service agent and the service software. Ser-

vice compliance details like required certifications, standards to be adhered to etc.

are also identified. Depending on the requirements, specifications can be as short

or as detailed as needed.

Figure 8 shows all of the Quality of Services (QoS) parameters available to the

user for the SOAR Gridded Average Brightness Temperature web service. GUIs

make a good human readable compliment to the machine readable description

languages used by SOAP and REST style web services. User-centric QoS para-

meters include variable resolution, and result type (jpg image, or hdf and binary

datafiles). The service providers make their own decisions about the compute

resources and related parameters. For example, a single service job may be distri-

buted across a number of nodes, but this type of distributed computing is not ne-

cessary for small services that complete very quickly. It is up to the provider to

decide how the task is scheduled, and what resources to designate.

Figure 8: Screenshot of the SOAR system GUI for the Gridded Average Bright-

ness Temperature Web Service.

Request for Service: Once the consumers have identified and classified their ser-

vice needs, they will issue a “Request for Service” (RFS). This request could be

made by directly contacting the service providers, such as the “Submit Request”

button on Figure 8. This direct approach bypasses any sort of discovery mechan-

ism, but fails when the consumer is unaware of the service provider. Alternative-

ly, consumers can utilize a service search engine on the cloud to procure the de-

sired service, as long as the service is registered with some discovery engine.

Service requirement is a critical phase in service lifecycle as it defines the “what”

of the service. It is a combination of the “planning” and “requirements gathering”

phases in a traditional software development lifecycle. The consumers will spend

the maximum effort in this phase and so it has been depicted entirely in the con-

sumer’s area in the lifecycle diagram. The consumer could outsource compilation

of technical and functional specifications to another vendor, but the responsibility

of successful completion of this phase resides with the consumer and not the ser-

vice cloud. Once the RFS has been issued, we enter the discovery phase of the

service lifecycle.

4.2. Service Discovery

In this phase, service providers that offer the services matching the specifications

detailed in the RFS are searched (or discovered) in the cloud. The discovery is

constrained by functional and technical attributes defined, and also by the budge-

tary, security, data quality and agent policies of the consumer.

If the consumer elects the option to search the cloud instead of sending the RFS to

a limited set of providers, then the discovery of services is done by using a servic-

es search/discovery engine. This engine runs a query against the services regis-

tered with a central registry or governing body and matches the domain, data type,

functional and technical specifications and returns the result with the service pro-

viders matching the maximum number of requirements listed at the top.

The discovery phase may not provide successful results to the consumers and so

they will need to either change the specifications or alter their in-house processes

to be able to consume a service that meets their needs the most.

If the consumers find the exact scientific service within the budget that they are

looking for, they can begin consuming the service. However, often the consumers

will get a list of providers who will need to compose a service to meet the con-

sumer’s specifications. The consumer will then have to begun negotiations with

the service providers which is the next phase of the lifecycle. Each search result

will also return the primary provider who will be negotiating with the consumer. It

will usually be the provider whose service meets most of the requirement specifi-

cations.

4.3. Service Negotiation

Service negotiation phase covers the discussion and agreement that the service

provider and consumer have regarding the service delivered and its acceptance

criteria. The service delivered is determined by the specifications laid down in the

RFS. Service acceptance is usually guided by the Service Level Agreements

(SLA) that the service provider and consumer agree upon. SLAs define the service

data, delivery mode, agent details, compliance policy, quality and cost of the ser-

vice. While negotiating the service level with potential service providers, consum-

ers can explicitly specify service quality constraints (data quality, cost, security,

response time, etc.) that they require.

Of course, scientists love to work with the most accurate and precise data availa-

ble, until they run in to practical problems with it. The fine dataset might take too

much storage, computation may take too much time, or perhaps out of place algo-

rithms such as principal component analysis may require impractical amounts of

RAM. These sorts of problems force scientists to reconsider the level of quality

that they actually need for their desired experiment. SLAs will help in determining

all such constraints and preferences and will be part of the service contract be-

tween the service provider and consumer.

Negotiation requires feedback, and the server must be able to estimate the cost

involved with the service and deliver these statistics to the consumer before the

service is executed. Although it is possible to negotiate automatically using hill-

climbing and related optimization algorithms, SOAR was a service system de-

signed primarily for human end users. Depending on the service and the QoS, the

desired SOAR transaction could take seconds, minutes, or hours to compute. It is

not necessary to give a precise time estimate, but at least a rough guess must be

presented. For example, a warning “This transaction could take hours to com-

pute” would be very helpful.

In addition to warning users about high cost services, the provider must also ex-

plain some strategy for reducing the cost. Of course, reducing QoS will reduce

cost, but the degree may vary. Some service parameters may have a dramatic ef-

fect on the service cost, whereas others have little effect at all. For example, in the

SOAR Gridded Average Brightness Temperature service, “resolution” has a tre-

mendous effect on performance, whereas “type” (format) does not affect perfor-

mance very much. Unfortunately, if the consumer doesn't know which parameters

to vary, he may find himself toggling options randomly, or give up on the service

entirely out of frustration. Although algorithms can happily toggle options syste-

matically, humans would prefer to know what they are doing. SOAR documents

the best known ways to cut cost. Preemptive GUIs may even be possible, that flag

a user as soon as he selects a high cost option.

At times, the service provider will need to combine a set of services or compose a

service from various components delivered by distinct service providers in order

to meet the consumer’s requirements. For example, SOAR services often need to

interact with NASA datacenters to obtain higher resolution data for processing.

The negotiation phase also includes the discussions that the main service provider

has with the other component providers. When the services are provided by mul-

tiple providers (composite service), the primary provider interfacing with the con-

sumer is responsible for composition of the service. The primary provider will

also have to negotiate the Quality of Service (QoS) with the secondary providers

to ensure that SLA metrics are met.

Thus the negotiation phase comprises of two critical sub phases, the negotiation of

SLAs and negotiation of QoS. If there is a need for composite service, iterative

discussions takes place between the consumer and primary provider and the pri-

mary provider and component providers. The final product of the negotiation

phase is the service contract between the consumer and primary provider and be-

tween the primary provider and the component (or secondary) providers. Once the

service contract is approved, the lifecycle goes to the composition phase where the

service software is compiled and assembled.

4.4. Service Composition

In this phase one or more services provided by one or more providers are com-

bined and delivered as a single service. Service orchestration determines the se-

quence of the service components. Often the composition may not be a static en-

deavor, and may even depend on the QoS parameters used in the RFS.

The SOAR gridded average brightness temperature service is a great example of a

dynamic composition workflow. Raw daily observations are cached at coarse

resolutions, so only local parallel processing is necessary to service such requests.

However, if the data specified is not available in cache, then it must be obtained

from NASA's Goddard and MODAPS datacenters. Such is an example of service

chaining with foreign NASA entities. Depending on the request, this remote ex-

ecution could take hours to compute, and thus necessitates asynchronous execu-

tion. However, by comparison, the coarse local services could be completed in

seconds. This is a great example of how the QoS and RFS specification could

have such a huge impact on the resulting workflow, performance, and resources.

Many times what is advertised as a single service by a provider could in turn be a

virtualized composed service consisting of various components delivered by dif-

ferent providers. The consumer needs to know that the service is composite for

accounting purposes only. The provider will have to monitor all the other services

that it is dependent on (like database services, network services etc.) to ensure that

the SLAs defined in the previous phase are adhered to, and recorded for scientific

reproducibility.

Once the service is composed, it is ready to be delivered to the consumer. The

lifecycle then enters the final phase of service consumption.

4.5. Service Consumption and Monitoring

The service is delivered to the consumer based on the delivery mode (synchron-

ous/asynchronous, real-time, batch mode etc.) agreed upon in the negotiation

phase. After the service is delivered to the consumer, payment is made for the

same. The consumer then begins consuming the service. An important part of the

consumption phase includes performance monitoring using automated tools.

In this phase, consumer will require tools that enable quality monitoring and ser-

vice termination if needed. This will involve alerts to humans or automatic termi-

nation based on policies defined using the quality related ontologies that need to

be developed. The service monitor sub-phase measures the service quality and

compares it with the quality levels defined in the SLA. This phase spans both the

consumer and cloud areas as performance monitoring is a joint responsibility. If

the consumer is not satisfied with the service quality, s/he should have the option

to terminate the service and stop service payment. If the service is terminated, the

consumer will have to restart the service lifecycle by again defining the require-

ments and issuing a RFS.

The performance monitoring tool used in SOAR is shown in Figure 9. The tool

not terribly complicated, but is very effective. It shows not only completed tasks,

but also those currently in progress. The tool provides a timestamp for submis-

sion, so it is easy to monitor how long the request is taking. The user can select a

task and remove it, even if it is currently in progress. This allows the user to can-

cel tasks that are taking too much time. Task cancellation is also accessible via

SOAP, and can be used by a machine interface as well as a human interface.

An example gridded brightness temperature image is displayed in Figure 10, this

is an example of a simple result generated from the SOAR system. This is a

brightness temperature image by the Atmospheric Infrared Sounder (AIRS) of the

Indian ocean on Jan 1
st
 2005. The striping on display is due to the sun synchron-

ous polar orbit, and would be resolved if the data was collected over a longer time

period. The warmest regions are in South Africa and Ethiopia. The blue dots

around Madagascar, New Guinea and other locations are due to clouds. These

types of plots, which show clouds very clearly, can be used in Hovmoller (running

mean) diagrams to track cloud movement over time and monitor processes such as

the Madden Julian Oscillation, as shown in Figure 11.

Figure 9: Your Requests tool provided by SOAR

Figure 10: SOAR Generated Image

Figure 11: Hovmoller showing easterly cloud movement over the Pacific from

Dec 15 2006 to Jan 17 2007

5. Summary / Conclusions

In summary, we believe that the cloud is a new and exciting platform for scientific

computing. The compute and services paradigms at first glance may appear coun-

terintuitive. However, once mastered they unleash the benefits cloud provides

flexible compute resources, virtualized web services, software abstraction, and

fault tolerance. Map Reduce and Dryad are paradigms that can aid with scientific

data processing on the back end, while service discovery and delivery provide not

only a front end, but an entire a compute work flow including data selection and

quality of service. SOAR is a complete scientific cloud application, and we hope

that the lessons we have learned from this and other systems can help others in

their scientific ventures.

References

1. U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J.

Levine, “Broad patterns of gene expression revealed by clustering analysis of

tumor and normal colon tissues probed by oligonucleotide arrays”, Proceed-

ings of the National Academy of Sciences of the United States of America

Vol 96, Issue 12, June 1999, pp 6745-6750

2. Y. M. Marzouk and A. F. Ghoniem, “K-means clustering for optimal parti-

tioning and dynamic load balancing of parallel hierarchical N-body simula-

tions”, Journal of Computational Physics. Volume 207, Issue 2, 10 August

2005, Pages 493-528
3. J. Dean and S Ghemawat, “MapReduce: Simplified Data Processing on Large

Clusters”, J– Proceedings of OSDI, 2004, pp 137-150

4. M. Isard, M. Budiu, Y. Yu, A. Birrell and D. Fetterly, “Dryad: distributed

data-parallel programs from sequential building blocks”, Proceedings of the

2nd ACM SIGOPS/EuroSys European Conference on Computer Systems

2007.

5. K.P. Joshi, T. Finin, and Y. Yesha, "Integrated Lifecycle of IT Services in a

Cloud Environment", Proceedings of The Third International Conference on

the Virtual Computing Initiative (ICVCI 2009), October 2009.

6. S Ran, “A model for web services discovery with QoS”, ACM SIGecom Ex-

changes, Vol 4, Issue 1, 2003, pp 1-10, 2003

7. J. Ekanayake, S. Pallickara, and G. Fox, "Map-Reduce for Data Intensive

Scientific Analysis", Proceedings of the IEEE International Conference on e-

Science, December 2008.

8. M. Isard, M. Budiu, Y. Yu, A. Birrell, D. Fetterly, "Dryad: distributed data-

parallel programs from sequential building blocks", Proceedings of the 2nd

ACM SIGOPS/EuroSys European Conference on Computer Systems, 2007.

9. R. Wolfe, D. Roy, E. Vermote, "MODIS land data storage, gridding, and

compositing methodology: Level 2 grid", IEEE Transactions on Geoscience

and Remote Sensing, Vol 36 Issue 4, 1998, pp 1324-1338, 1998

10. U. Alon, N. Barkai, D. Notterman, K. Gish, S. Ybarra, D. Mack, A. Levine,

"Broad patterns of gene expression revealed by clustering analysis of tumor

and normal colon tissues probed by oligonucleotide arrays", Proceedings of

the National Academy of Sciences of the United States of America, June 1999

11. Y. Marzouk, A. Ghoniem, "K-means clustering for optimal partitioning and

dynamic load balancing of parallel hierarchical N-body simulations", Journal

of Computational Physics. Vol 207, Issue 2, pp 493-528, August 2005

12. V. Klema, A. Laub, "The Singular Value Decomposition: Its Computation

and Some Applications.", IEEE Transactions on Automatic Control, Vol 25,

Issue 2, April 1980

13. M. Soliman, S. Rajasekaran, R. Ammar, "A Block JRS Algorithm for Highly

Parallel Computation of SVDs", High Performance Computing and Commu-

nications, Vol 4782, Issue 1, pp 346-357, September 2007

14. S. Rajasekaran, M. Song, "A Novel Scheme for the Parallel Computation of

SVDs.", Proceedings of High Performance Computing and Communications,

Vol 4208, Issue 1, pp 129–137, 2006

15. M. Halem, N. Most, C. Tilmes, K. Stewart, Y. Yesha, D. Chapmam, P.

Nguyen, "Service Oriented Atmospheric Radiances (SOAR): Gridding and

Analysis Services for Multi-Sensor Aqua IR Radiance Data for Climate Stu-

dies", IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, Issue

1, pp 114-122, 2009

16. K. Joshi, OWL Ontology for Lifecycle of IT Services on the Cloud,

http://www.cs.umbc.edu/~kjoshi1/IT_Service_ Ontology.owl

17. Hung-chih Yang, Ali Dasdan, Ruey-Lung-Hsiao and D. Scott Parker, Map-

Reduce-Merge: Simplified Relational Data Processing on Large Clusters,

Proceedings of the 2007 ACM SIGMOD international conference on Man-

agement of Data, Beijing, China, June 11-14, 2007, pages 1029-1040.
18. R. Pike, S. Dorward, R. Griesemer,and S. Quinlan, interpreting the Data: Pa-

rallel Analysis with Sawzall. Scientific Programming Journal, 2005, pages

227-298.

Index terms (alphabetically):

Dryad

Components

Geo-reprojection

K-Means Clustering

Map Reduce

Remote Sensing

Services

Singular Value Decomposition (SVD)

SOAR

