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ABSTRACT

Title of Thesis: Improving Accuracy of Named Entity Recognition on Social Media Data

William Murnane, Master of Science, 2010

Thesis directed by: Dr. Timothy W. Finin, Professor of Computer Science
Department of Computer Science and
Electrical Engineering

In recent years, social media outlets such as Twitter and Facebook have drawn atten-

tion from companies and researchers interested in detecting trends. The informal nature of

status updates from these services leads to a higher volume of updates, because each update

takes little care to generate, but each update is usually short and noisy (misspellings, lack

of punctuation, non-standard abbreviations and capitalization). These shortcomings cause

traditional Natural Language Processing (NLP) techniquesto have substantially lower ac-

curacy than is found with structured text such as newswire articles. We present a system

for improving the accuracy of one NLP technique, Named Entity Recognition or NER, on

Twitter data by training a recognizer specifically for this type of data. NER is the process

of automatically recognizing which words are names of people, places, or organizations.

This trained model is compared to baseline entity detectionrate with an off-the-shelf NER

system.
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This thesis is dedicated to Donald Knuth, without whose software it would have been

written on a typewriter.
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Chapter 1

INTRODUCTION

Social Media has emerged of late as a new form of individual expression and commu-

nication. Services like Facebook and Twitter allow users towrite short messages to each

other and to the world at large, talking about current events, politics, products, or whatever

comes to mind. These messages are generally very informal, commonly containing errors

in spelling, improper punctuation, and a lack of capitalization, and are also quite short: for

example, Twitter limits messages (“tweets”) to 140 characters (Twitter support 2010), and

Facebook limits status updates to 255 characters (Facebook.com 2010). They therefore

pose a challenge to existing Natural Language Processing (NLP) techniques, trained on

formal text like newswire articles or longer informal text like blog entries.

NLP techniques have been used in many domains, including finding structure in

medicinal records (Friedman & Hripcsak 1999), using blogs to give political context to

news articles (AAA 2008), and converting natural-languagequeries into machine-readable

queries (Sunet al. 2007). These domains are often structured in some sense: they deal

with a narrow range of topics, or take natural language inputthat is written by profession-

als. By contrast, we wish here to apply these techniques to text that is written off the cuff

by average people in an informal setting.

A particular problem that we will discuss is that of Named Entity Recognition. This
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technique addresses the problem of associating particularwords with the entity (person,

place, organization, or product, for example) that they represent. This process is language-

dependent—for example, nouns in German are all capitalized(at least in formal contexts)—

and we will only consider English to make the problem more manageable. Take for exam-

ple this tweet from @radixextreme:

Climate Change News: Bill Gates donates 20m to kickstart fund for farmers:

Microsoft billionaire disappoint... http://tinyurl.com/255ansn

Here the word “Microsoft” represents the software company headquartered in Redmond,

Washington, and the words “Bill Gates” represent its founder. There are two parts to this

problem: determining which words represent an entity, and determining which entity those

words talk about.

Examples of the second problem are easy to find. Microsoft is asimple example;

there is only one corporation by that name. Consider the word “Columbia,” though: there

are 21 cities across the US by that name, there was a Space Shuttle of that name, there

is a film company called “Columbia Pictures” which is commonlyabbreviated to simply

“Columbia,” an American university called “Columbia University” which is also abbrevi-

ated “Columbia,” and many other examples. Considering the informal nature of the data

we are dealing with, we might also choose to consider the problem of misspellings, and

consider the South American country named “Colombia.”

This problem might seem insuperable, but using the context of a short message can

quickly make it unambiguous which entity is being referenced. Consider this tweet from

@MsArnold2U:

@MJ Dub lol sorry....i don’t think i will be home this summer...I’ll more than

likely be in Columbia or St. Louis
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This Twitter user’s profile provides no hints; her location is set to “Somewhere Close to

Success”, which does not help. But using a knowledgebase we could look up all the senses

of “Columbia” and “St. Louis” and find the pair that are closestin the hierarchy (or closest

on the map, as we can probably guess that they refer to locations) and discover that the

cities in Missouri are the most likely entities that these words refer to.
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Chapter 2

LANGUAGE DETECTION

As mentioned in the Introduction, we wish to restrict our focus to English-language

tweets only. However, the dataset we have is only rarely labeled with language (some

62,000 tweets of the 150 million), so it falls to us to discover the language of each tweet.

The approach chosen comes from Maciej Cegłowski, the author of Perl’s Language::Guess

module, which is itself an implementation of the scheme proposed by Cavnar and Tren-

kle (Cavnar & Trenkle 1994). This algorithm was re-implemented in Java to give easier

access to multi-threading facilities. It counts occurrences ofn-grams (forn from 1 to 4)

to build a profile of each language for which it has a sample, and then builds a profile (in

the same way) of the text whose language is unknown, then applies a similarity measure

between the profiles to determine which language is most similar to the unknown sample.

The samples used for this project were taken from Gertjan vanNoord’s TextCat pro-

gram. These samples are not of any particular text, but thereare many samples available,

and they produce good results. Tweets were pre-processed toremove URLs and @-tags

before performing language processing, but hashtags were included in the text (after re-

moving their initial # character).

Out of the 60 languages that were detected, a few account for the vast majority of

tweets. For example, 28% of the tweets were detected to be English (making it the most
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English 42737702 Japanese 17848412 Scots 16279220
Catalan 6985391 German 6130202 Danish 4406936

Latin 3775001 Portugese 3482070 Spanish 3394897
Frisian 3353973 Dutch 2915385 Esperanto 2706490
French 2680402 Basque 2272255 Romansh 2115646
Slovak 1932566 Italian 1873306 Romanian 1775050

Indonesian 1756415 Nepali 1697859 Swahili 1590814
Swedish 1453701 Manx 1436424 Afrikaans 1338912

Breton 1278587 Tagalog 1199290 No language 1147953
Czech 955101 Finnish 922446 Farsi 794366

FIG. 2.1. Top 30 most common languages detected by the algorithm, and the number of
tweets detected as being in each language.

common language), while the top three languages (English, Japanese, and Scots) accounted

for 50% of the tweets. Figure 2.1 shows a more comprehensive picture of the languages

detected by this algorithm. The presence of Scots as a language highlights one of the

shortcomings of the algorithm: all languages are considered equally likely, and the model

generated for Scots is similar enough to English that English text is often misdetected as

Scots.

This approach has some definite advantages. This algorithm can recognize arbitrary

languages given only a sufficiently long sample in that language; for example, our recog-

nizer uses a corpus of some 60 languages to better differentiate English from non-English

text. It can also generate a ranked list of which languages the unknown sample is most

likely to be, which could be helpful to a human analyst; if shedetermines that the sample

is not actually in the language most strongly suggested, thesecond choice is probably a

good candidate for the actual language. In addition, it is fairly straightforward to give the

recognizer more data on which to train. Once an input messageis found that is labeled

incorrectly, that message can go into the training file of thecorrect language, influencing

the detection for future messages.

Some disadvantages of this algorithm are also worth noting.The algorithms for gen-
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erating and comparing profiles are fairly slow, mostly because of the high cost in Java of

garbage collecting all the n-gram strings generated in the profiling algorithm; with a lit-

tle more care this could be avoided. This means that a single-threaded process can only

detect the language of about 500 samples per second. This is mitigated by running multi-

ple worker threads at once. In addition, the short nature of tweets means that there is not

much to go on for any algorithm, so there is a relatively high probability of some spurious

character combination causing the algorithm to misdetect the language of a sample. A few

notable absences are also present. Chinese is poorly detected (and does not appear in the

top 30 as a result), because this approach does not consider ranges of characters as hints.

Therefore, in order for a character to convince the detectorthat the fragment is in Chinese,

that character must appear in the source training text. An algorithm that considers ranges

of characters might produce better results for Eastern languages.

Despite these problems, accuracy of the algorithm is quite good in the aspect that we

most care about: its precision in finding English status messages. Recall is somewhat less

good: many messages that are in fact English are marked as being in Scots, but the high

precision produces a good result for this project. A thousand messages that were marked as

English were selected at random, and checked by hand to see whether they were in fact in

English. A total of only nine examples of non-English text were found, for a total precision

of 99.1%.

How fast can data enter our system, and can we keep up? One website approximates

the total flow from Twitter at around 1.2 billion tweets per month (Pingdom AB 2010).

This is 40 million tweets per day, or 462 per second. Our current hardware is capable of

running the language detection algorithm on 4000 tweets persecond using 8 threads, which

should be sufficient to keep up with occasional bursty behavior even if the entire Twitter

stream were processed on a single machine. In the future it would be easy to parallelize

this process across multiple machines if necessary.
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Several improvements to this algorithm could be implemented to fit it better to this

problem. For example, it is unlikely that a particular user tweets in a large variety of

languages. Therefore, we could use knowledge of a user’s prior tweets and what language

they were detected to bias what language we determine the next tweet from that user is

in. In other words, a user that has so far used only English andSpanish is unlikely to use

Swahili or Arabic in their next tweet, so additional weight could be added to the already-

used languages so that they are more likely to be detected. Inaddition, we could consider

weighting on a global scale: for all Twitter users, Esperanto is rare, so the probability that

a particular tweet is in Esperanto is low.

However, some difficulties arise in implementation of theseideas, which should be

carefully considered before venturing too far down the pathto them. This kind of weighting

may place less weight on uncommon languages, lowering theirprobability of being chosen

to the point that only common languages are ever detected. Unless weights are chosen

carefully, an unweighted detector might do a better job finding tweets in these uncommon

languages. The global weighting must be implemented carefully, too, so that the order

tweets are processed in does not yield too large a change in the results that are obtained. For

example, we might initially see a large number of tweets in Dutch as a result of some local

event, conclude that Dutch is a very common language on Twitter, and weight it highly.

Later analysis might show that this is not the case, but untilthe weight on Dutch is reduced

the number of tweets misdetected as Dutch would be elevated,slowing the reduction of the

bias toward that relatively uncommon language.
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Chapter 3

DATASET DESCRIPTION

For the purposes of improving entity recognition, there is no substitute for experimen-

tation on real data. The dataset used for this paper consistsof Tweets collected by a third

party over 20 months, from March 2007 until November 2008. The distribution of the

number of tweets collected per day is presented in Figure 3.1; we note that the collection

method appeared to change in the Spring of 2008 from a maximumof approximately one

per second (i.e., 86,400 per day) to retrieving at a much higher rate. The data are comprised

of SQL tables, stored in the PostgreSQL database engine (Group 2010). There are approxi-

mately 150 million status updates, written by 1.5 million users. Each user has an associated

user record, which tracks information like their Twitter IDnumber, their account creation

time, and other things that Twitter stores per user. Users are also associated via a foreign

key with a location; locations are stored in normalized formin another table.

The tweets are all in plaintext, but there are some conventions—hashtags, user men-

tions, retweets, and URLs—that give additional metadata about the contents of the tweet.

Hashtags are words or abbreviations prefaced with a “#” character, which are used either

as metadata or as a word. User mentions consist of a username prceded by an @ character,

and can be used to name a person or to direct a tweet at them. Retweets are designated by

the characters “RT”, followed by a username and the text of a tweet posted by that user.
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FIG. 3.1. Number of tweets captured per day for the entire dataset.

A hashtag used as a word:
@pydanny @kantrn I think need to have a cartwheel/au open space at next

year’s#pycon

A hashtag used as an event tag:
@JessClarke Another earthquake? Maybe that guy was right!#boobquake

A username mention:
@lovely bieber23 I never knew@BarackObama had twitter..

An example retweet:
@chrisvargas1111 RT @ConanObrien: Who would invest in Goldman Sachs mort-

gage investments? I played it safe and bought Greek bonds and
magic beans.

A URL, shortened by a third-party service:
@InsideAxis Tech Breakthroughs: Springtime For Nukes: Previous springshave

brought bad news to nuclear power advocates. Not s. . . http:
//bit.ly/avMTcy

Table 3.1. Examples of Twitter conventions.Emphasized words or phrases highlight each
convention.



10

URLs are also often present in tweets, using the familiarhttp:// notation, but often use

an external URL shortener likebit.ly or is.gd to better fit within the 140 character

limit of Twitter (Mateosian 2009). Examples of all of these conventions are demonstrated

in Table 3.1. Information about individual status messagesare also stored in separate ta-

bles for fast lookup; hash tags, username mentions, and URLs are all kept in tables and

associated many-to-many with status messages.

In addition to the SQL database, a text-search index of the tweets is maintained, using

the Lucene library. This Lucene index allows for fast searches for tweets containing par-

ticular words. Only those tweets whose language is detectedas English (see Chapter 2) are

kept in the index, because doing NER in non-English languages is beyond the scope of this

work and this limitation keeps the size of the index manageable. This language detection

is also used to select English tweets for further processing.

The tweets are stored (more or less) in order of time when sorted by primary key.

In order to get a good training set, we added a field to each tweet calledrand order.

This contained an integer between 0 and the size of the dataset, in a pseudo-random order.

Ordering the dataset by this random field and selecting consecutive entries gives a random

subset that does not overlap with previous selections.
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Chapter 4

AMAZON MECHANICAL TURK

Improving the NER task we wish to tackle takes a lot of training data, which should be

generated by hand. Toward this end, we made use of the Mechanical Turk service provided

by Amazon.com. The service is described on its FAQ page as

a marketplace for work that requires human intelligence. The Mechanical Turk

service gives businesses access to a diverse, on-demand, scalable workforce

and gives workers a selection of thousands of tasks to complete whenever it’s

convenient.

Amazon Mechanical Turk is based on the idea that there are still many things

that human beings can do much more effectively than computers, such as iden-

tifying objects in a photo or video, performing data de-duplication, transcribing

audio recordings, or researching data details. Traditionally, tasks like this have

been accomplished by hiring a large temporary workforce (which is time con-

suming, expensive, and difficult to scale) or have gone undone. (Amazon.com,

Inc. 2010)

The service provides a convenient computerized interface for Requesters (people or orga-

nizations who want work done) to upload descriptions of Human Intelligence Tasks (often

abbreviated to HITs). Then workers can complete these tasksand earn a reward. Amazon
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charges requesters a fee for finding them workers to do their jobs: half a cent or ten percent

of the reward offered to the workers, whichever is greater. The service is often abbreviated

MTurk.

For our task, the interesting question is “which of the wordsin these tweets represent

named entities?” This is not entirely determined by the words themselves, but at least

partially by their positions: “The” and “Who” are not named entities, but “The Who”

certainly is. A modern machine learning technique for this type of sequence tagging is

linear chain conditional random fields, or CRFs (Lafferty, McCallum, & Pereira 2001).

We will not delve into the implementation of CRFs (although Chapter 5 does give more

details), because our goal here is not a general-case NER system, but an improvement in a

specific genre of text.

Expert humans can do a good job at this task, but we are asking non-experts to do our

tagging. We expect that English speakers will be able to do some sort of a reasonable job

on this task, but with some amount of disagreement on subtle points. This is not so bad for

an entity recognizer; the trainer will put less faith in things that have conflicting answers,

so we could get fairly good answers by simply training on all the human answers that we

receive. We will still want to entirely disregard answers that are of poor quality, though,

including those generated by machine and those from non-English speakers.

With this in mind, the thing we must consider is discovering workers who are acting

in bad faith: using software to perform a task rather than do it by hand, for example. We

can do this by building a small amount of “Gold” data by hand (so that we know it is done

by humans) and including one tweet from that dataset in each HIT. Then we can use inter-

worker agreement to judge how much workers agree with the known human judgements.

The mixing algorithm has a few concerns; first, it should be asunpredictable as pos-

sible, to prevent an adversary from determining which tweethas the Gold answer that they

will be judged strongly on and spending time on that one tweetat the expense of the others.
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M IX : gold , unlabeled → mixed

1 goldleft ← NEW-SET(gold)
2 while | unlabeled | > 0
3 do newHIT ← RANDOM-SAMPLE(unlabeled , 4)
4 if | goldleft | = 0 then SET-ADD-ALL(goldleft , gold)
5 newHIT [5]← RANDOM-SAMPLE(goldleft , 1)
6 SET-REMOVE(newHIT [5], goldleft)
7 RANDOM-SCRAMBLE(newHIT )
8 � Write newHIT to the output.

FIG. 4.1. Mixing algorithm. This takes as input a list of Gold tweets and a list of unlabeled
ones, and outputs HITs which have one Gold and four unlabeledtweets, in a random order.

Second, it should be frugal with the Gold data, putting the minimum amount in each HIT

necessary to find an accurate picture of inter-worker agreement. Figure 4.1 shows the al-

gorithm developed to mix Gold tweets in with unlabeled ones.Maintaining the set of gold

which has been used spreads the gold as far as possible.

Having thus mixed the gold data with the un-annotated data, we next consider what

sort of interface to give the workers to allow them to annotate the tweets. We decided on

a narrow vertical interface rather than a wide horizontal one so that workers could scroll

vertically rather than horizontally. This vertical, one-word column layout hurts readability

of the tweets somewhat, so we provided a horizontal version of the tweet above each set of

columns. Each tweet was presented in tabular form, with eachrow containing a single term

from the tweet, a set of radio buttons for indicating its type, and a checkbox to let the worker

indicate that they were unsure about their annotation. The row of headers which describes

the columns was repeated every 10 rows, so that workers wouldnot have to scroll back

and forth to see the headers. Finally, the word “Help” in red was displayed in the upper-

left corner of the window (regardless of scroll position). Whenever a worker hovered their

mouse pointer over this word, our annotation guidelines were displayed. Figure 4.2 shows
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FIG. 4.2. Amazon MTurk interface for workers.

the HTML interface, and Figure 4.3 shows the text of the annotation guidelines we gave.

We ran three batches of HITs with this template, which included 251, 1076, and 1755

HITs in order. Each HIT was completed by two workers, included five tweets, and gave a

reward of $.05. Thus, a total of 6160 HITs (counting the twofold expansion) were com-

pleted, containing 12320 previously unannotated tweets and 3080 Gold tweets.

To do the actual inter-worker comparisons, we present WorkerRank, an algorithm

based on Google’s PageRank algorithm (Brin & Page 1998). Figure 4.4 presents pseu-

docode for the algorithm. One function is left undefined: theSIMILIARITY function on

line 4. This function is straightforward: it looks at all theHITs that both workers did (and

if there are none, returns 0) and compares them using a secondfunction called AGREE,

which is defined in Figure 4.5.

The algorithm in Figure 4.4 has several steps, runtimes of which can be analyzed

independently. Initializing the matrixA calls SIMILARITY Θ(w2) times, wherew is the
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An entity is a object in the world like a place or person and anamed entity is a phrase
that uniquely refers to an object by its proper name (HillaryClinton), acronym (IBM),
nickname (Opra) or abbreviation (Minn.). Here are some moreexamples of named entities
for each of the types we are interested in.

PER: Barack Obama; the Palins; John; ...
ORG: IBM; Coca-Cola Bottling Co., the Yankees; U.S.; ...
PLACE: Baltimore, MD; Washington; Mt. Everest; the Hoover

dam; ...

Pronouns (me, I, we, they) should not be tagged, but Twitter usernames like @barackobama
should be tagged.
When tagging named entities remember to:

• Tag words according to theirmeaning in the context of the tweet

• Only tagnames, i.e. words that directly and uniquely refer to entities

• Only tag names of the typesPER, ORG, andLOC

• You can check the??? box to indicate somthing you consider to be ambiguous or
that you are uncertain about

FIG. 4.3. Annotation guidelines for Mechanical Turk workers.
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WORKERRANK : results → scores

1 worker ids ← ENUMERATE(KEYS(results))
� Initialize A

2 for worker1 ∈ worker ids

3 do for worker2 ∈ worker ids

4 do A[worker1 ,worker2 ]← SIMILARITY (results[worker1 ], results[worker2 ])
� Normalize columns ofA so that they sum to 1 (elided)
� Initialize x to be normal: each worker is initially trusted equally.

5 x←
〈

1√
n
, . . . , 1√

n

〉

� Find the largest eigenvector ofA, which corresponds to the agreement-with-group value
for each worker.

6 i← 0
7 while i < max iter

8 do xnew← NORMALIZE(A× x)
9 diff ← xnew− x

10 x = xnew

11 if diff < tolerance

12 then break
13 i← i + 1
14 for workerID ,workerNum ∈ worker ids

15 do scores[workerID ]← x[workerNum]
16 return scores

FIG. 4.4. Intra-worker agreement algorithm. MTurk results arestored in an associative
array, with worker IDs as keys and lists of HIT results as values, and worker scores are
floating point values. Worker IDs are mapped to integers to allow standard matrix notation.
The Similarity function in line 4 just returns the sum over HITs done by two workers of the
AGREE function on the tweets whose IDs match.
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AGREE : words , labels1 , labels2 , unsure1 , unsure2 → score

1 agree ← 0.0; disagree ← 0.0
2 for i ∈ [0, |words |)
3 do if labels1 [i] = labels2 [i] ∧ ¬ unsure1 [i] ∧ ¬ unsure2 [i]
4 then agree ← agree +1.0 � These annotators agree completely.
5 else if labels1 [i] = labels2 [i]
6 then agree ← agree +0.7
7 disagree ← disagree +0.3

� These annotators agree, but one or both are unsure, and we
do not want to reward that as strongly.

8 else if ¬ unsure1 [i] ∨ ¬ unsure2 [i]
9 then agree ← agree +0.5

10 disagree ← disagree +0.5
� These annotators disagree, but they reported being uncertain, so

they will not lose as many points.
11 else disagree ← disagree +1.0
12 return agree /(agree + disagree)

FIG. 4.5. AGREEcompares two tweets, and assigns them a value between 0 and 1
representing how much their annotators agree about how to annotate them.
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number of workers. Normalizing the columns ofA is aΘ(w2) process, and initializingx is

Θ(w). Then the power series calculation in lines 7–13 takesO(max iter w2). SIMILARITY

does a hash intersection of the HITs that each worker has completed, takingO(w1 + w2)

(wherewi is the number of HITs that worker #i completed) to find the set of HITs that both

workers have completed; it then calls AGREEsome number of times, but we will consider

that separately. AGREE itself takes a constant amount of time to run, since there areonly

at most 140 characters (and thus 70 labels, with one-character words) in either tweet to

compare.

How many times will AGREEbe called? If a particular tweet is annotatedk times, then

for each pair of workers that have annotated that tweet, AGREEwill be called once. Thus,

for each tweet, AGREE is calledO(k2) times. For our dataset, most tweets are annotated

exactly twice, but for those tweets in our “Gold” dataset, wewill have many annotations:

one from us, and one for each time that tweet appears in a HIT. Because the mixing process

tries to avoid repeating Gold data, the maximum number of times a Gold tweet will be part

of a HIT is O((n/4)/g), wheren is the number of tweets that are to be annotated andg is

the number of Gold tweets. Since each HIT is annotated twice,the total number of times

a Gold tweet is annotated is2 O((n/4)/g) + 1. So the total time spent calling AGREE on

Gold tweets is

O

(

(

n/4

g

)2
)

.

The asymptotic bound is not tight here; the actual value may in fact be smaller than this,

because a worker may be randomly assigned two tweets which share the same piece of

Gold data, although they are prevented from doing the same HIT twice. In addition, each

non-Gold tweet is compared twice (once when comparing the first worker who did that

tweet to the second, and once when comparing the second to thefirst) for a total ofO(n2)

comparisons.
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Now we almost have enough information to assemble an overallasymptotic runtime

analysis. The only remaining puzzle piece is how long the hash intersection in SIMILARITY

takes. We hedged earlier and said that this takesO(w1 + w2) time per call, but we can get

a better answer by considering that we will eventually calculate this intersection for all

pairs of workers. Since we know how many HITs there are (n/4), and we see that the sum

doesn’t depend on the product ofw1 andw2, we can evaluate the sum:

∑

i∈workers

∑

j ∈workers

wi + wj = w
∑

i∈workers

wi + w
∑

j ∈workers

wj

= w

(

∑

i∈workers

wi +
∑

j ∈workers

wj

)

= 2w

(

∑

i∈workers

wi

)

= 2w(n/4) = wn/2.

In summary, the algorithm described takesO(w3n + n2) to initialize A, and

O(w2 max iter) to find the eigenvector using the power method. In practice, with

max iter = 50, a tolerance of10−6, w = 270, g = 441, andn = 6160, the algorithm

takes about 114 seconds to initializeA and .03 seconds to calculate the eigenvector (taking

47 iterations).
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Chapter 5

NAMED ENTITY RECOGNITION USING

CONDITIONAL RANDOM FIELDS

While this agreement algorithm looks interesting, evaluation of the quality of this data

on the real task must be the final arbiter of usefulness. We will use the Stanford NER tools

to train an NER system and then evaluate worker effectiveness in an actual setting.

Other NER systems were considered, including the one included with the Mallet lan-

guage toolkit and the one included with the LingPipe suite oflibraries. Mallet was re-

jected because it requires manually building features, anddiscovering interesting features

for Twitter statuses is outside the scope of this work. The Stanford NER tools include many

standard feature extractors, which makes it simple to compose a system that is both easy

to use and easy to replicate: if we wrote our own feature extractors, other implementations

might differ on subtle points, but if we use the off-the-shelf feature extractors it is easier

for others to replicate our results. LingPipe was rejected because it uses a Hidden Markov

Model, a less flexible machine learning technique.

5.1 Algorithm overview

The algorithm underlying the Stanford software is based on the idea of Conditional

Random Fields, or CRF, originally described by Lafferty, McCallum, & Pereira (2001). As
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the goal of this project is not to provide a better algorithm but better training data for the

existing CRF-based algorithm, we will provide only a brief overview of the algorithm. A

more complete description of CRF is provided in (Sutton & McCallum 2006).

Using probability networks for machine learning requires in some sense guessing

ahead of time which things are caused or biased by other things. A convenient way of

representing this network is a graph where nodes represent inputs and outputs, and edges

their influence on each other. Different methods can be represented as graphs; the edges

represent an influence of an input on an output or another input, with an edge weight rep-

resenting the amount of influence that input has on that output.

A linear-chain CRF uses this idea of dependency. Here the inputs are fully connected

to the outputs, but the inputs are also connected to each other in an acyclic manner: a linear

chain. This is a restriction on the shape of the graph, but it has an advantage in terms of

calculability: the number of parameters that are estimatedin training is smaller than in the

general case, which means training can be substantially faster. The Stanford NER system

uses a modification of the linear-chain CRF in which observations are clustered into cliques

of pairs of states (Finkel, Grenager, & Manning 2005). Probabilistic transition values be-

tween members of each of these cliques are used rather than full probability distributions,

which makes calculating the most likely state sequence lessexpensive.

5.2 Evaluation Method: Information Gain

We start with a simple method of evaluation: how much information do we gain from

a single worker’s annotations? We will train several NER models, each on the subset of

tweets annotated by a particular worker. Then we will investigate correlation between the

inter-worker agreement score and the gain in accuracy of theNER system in annotating the

gold data.
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There are many fewer considerations we must make here, sinceour dataset consists

only of a single worker (so we need not control for the effectsof other workers). We

still need to control for the number of HITs a worker completes, though, since a bigger

training dataset will generally produce better results, and we are interested in the quality of

individual annotations that workers produce.

For this purpose we shouldn’t use a linear division, becauseannotating a large number

of HITs means that the incremental information about workerquality gained from a single

tweet goes down. That is to say, if worker performance is consistent, we will have a mostly-

correct impression of how good a job the worker is doing afteronly a few HITs, and from

then on we will gain less and less information about their quality. So, to counteract this

factor, we will divide the workers’ performance on the gold data by a logarithmic factor:

lj,overall = lj/ log(wj).

This corrects for the fact that a bigger training corpus willproduce better results without

asking too much of workers.

We define a function NER-EVAL , which takes a set of training data, trains an NER

system on it, and then tests that system against the gold-standard data. This function needs

to test the proper metric. Accuracy (the number of correct answers) is a poor choice,

because most words do not refer to entities. Because of this factor, the precision (how

many of the annotations bear the correct label) is also somewhat uninteresting: labeling

every word “none” will give a high precision score, while providing no information. Even

theF1 measure (which takes into account both precision and recall) is not useful, because

of the large degree of noise in the precision scores. Instead, we will evaluate based on

recall: of the words that should have a non-“none” label, howmany have the correct label?

An alternative method of measuring usefulness of data is to consider each type of
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FIG. 5.1. Inter-worker Agreement score versus information gain from each worker.

entity independently. The recall measure is a reasonable one, but we might be able to pick

more interesting trends out of the data if we look at precision and recall on, say, just entities

whose correct label is “person”. Appendix A discusses this strategy, and its results, in more

detail.

NER-EVAL is implemented, then, by training an NER system on a corpus composed

of the results of a single worker, not using any other workersas a check of correctness. This

is done by taking each worker entirely at their word: no matter how many people think they

are wrong, all of their annotations and only their annotations are included in the training

corpus. Then we check their recall on our gold training data.

Our results are fairly good, as shown in Figure 5.1. The adjustedr2 metric (a measure

of goodness-of-fit) has a value of 0.7280, driven down mostlyby the few outliers. A better
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fit might be interesting, but the two things that are being compared against each other are

both indirect measures. The data that is collected from a worker may be good (that is,

correct annotations), but be misleading nevertheless because the word usage in the sample

of text is unusual. Consider a mention of “The Who” which is labeled as an organization;

this might cause further mentions of “who” to be labeled as anorganization, reducing the

precision of the output. Despite the fact that the output of this model gets worse, it is still

based on a larger amount of correctly annotated data than if “The Who” were labeled as

non-entities.

5.3 Evaluation Method: Information Loss

Another method of using an NER system to evaluate quality of workers is to consider

subsets of the training data to which particular worker did not contribute against all of the

training data. Formally, we give the labelwi to the work done by workeri; then we will

calculate the information loss metric for workerj (which we labellj) as

lj = NER-EVAL

(

∑

i

wi

)

− NER-EVAL

(

∑

i6=j

wi

)

.

One problem we face with this scheme is that when we remove a worker, all of the

tweets that worker annotated were annotated by exactly one other worker (except the gold-

standard data), because each set of tweets was done by exactly two workers. Then when we

attempt to build a training set that excludes this worker, weare left with a number of tweets

that are annotated by only one worker (for which we cannot calculate agreement). If we

were to include these in the training set, we would be trusting those workers unduly much:

their answers would be included regardless of whether they agree with another worker. This

would lead to an evaluation that included workers that worked with workerj being weighed

more heavily compared to other workers. Because the effects of this are not really random
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(the worked-with relation is not randomized each time the testing is run, but determined

when the work is done) it would be problematic to exclude thiseffect.

On the other hand, if we exclude these tweets entirely, we arereducing the size of the

training corpus by the total length of the jobs the worker did. So we have to account for

this somehow. We might anticipate that the amount of data contained in a training corpus

is proportional to some function of the number of examples init. So when we calculate

the amount of information lost for a particular worker, we also want to weight the size of

the remaining corpus. That is, for the training settj composed of answers from all workers

except workerj and people who did the same jobs as her, we will calculatelj, the amount

of information lost by excluding workerj from the training corpus. Then we must account

for the fact that we are working with a smaller input corpus bymultiplying by the ratio of

the size oft (the training set which includes all the workers) to the sizeof tj. To compensate

for the fact that adding training examples improves the evaluation function only slowly, we

will multiply by the quotient of logarithms:

lj,overall = lj ∗
log |t|

log |tj|
.

The final effect we might want to consider is how many tweets each worker annotated.

The last compensation we made controls for how many words theworkers annotated, but

not all tweets are the same number of words. We might try to compensate for this by

adding a factor that we multiply eachlj value by, but the problem is that the number of

words a worker annotates and the number of tweets they annotate is strongly correlated, so

compensating for both things independently would overcompensate. Instead we will treat

them as mostly dependent and check that this is the case. Figure 5.2 shows the number of

HITs workerj completed (on the horizontal axis) against the number of words in tj. A

strong correlation between number of words and number of HITs completed (adjustedr2
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FIG. 5.2. Number of HITs workerj did (x-axis) versus number of words in the training
settj. Each point represents one worker, and the line is a sum-of-squares best fit.

metric: 0.9181) shows that we need not compensate for the number of tweets and words

independently: a single correction is nearly enough, and correcting twice would be overkill.

Therefore we will make no additional correction, and the previous equation will be used.

Now that we have settled how to do the information-loss evaluation, we can actually

run the evaluation. We trainedw entity recognizers, each excluding one of the workers, and

labeled them with the worker who was excluded. In other words, they were trained on the

tjs introduced in this section, and labeled withj. Then we evaluated each recognizer on

the whole input data: the training set that the workers generated. We also trained a single

recognizer on the whole training sett as a baseline. These machine-generated annotations



27

0 0.05 0.1 0.15 0.2 0.25

0.038

0.039

0.04

0.041

0.042

0.043

0.044

Inter−worker Agreement Score

D
at

a 
us

ef
ul

ne
ss

Information Loss Metric

 

 

Worker

  Least−squares fit

FIG. 5.3. Evaluation of information lost by eliminating workerj versus score of workerj.
The line is a sum-of-squares best fit.

were compared to the human-generated ones to find evaluationvaluese andej. Then we

used the following formula to calculate the actual per-worker information loss associated

with leaving that worker out of the training set:

lj,overall = (ej − e) ∗
log |t|

log |tj|
.

Results from this test are shown in Figure 5.3. The fit is quite bad; the adjustedr2 metric

is 0.05003, and the 95% confidence interval is large: the coefficient ofx in the equation of

the line is estimated to be between 0.00009 and 0.0002.



28

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.05

0.1

0.15

0.2

0.25

 

 

Score

Power−law fit

Gold data
(excluded from fit)

FIG. 5.4. Scores awarded to workers, by number of HITs completed. The fit line is
0.2284x0.3106 − 0.2681, and the adjustedR2 measure is 0.9854.

Why does this data fit so poorly to a straight line, as compared to the fairly good

straight-line fit we saw in the previous section? One hypothesis is that removing all the

HITs that are annotated by only one worker when ignoring annotations from workerj

causes enough noise that the correlation is lost. Another isthat the logarithmic fit we’re

using is an incorrect assumption. This could cause problemsbecause the inter-worker

agreement score is correlated with number of tasks done. Figure 5.4 shows the scores

workers who completed a given number of HITs earned. We mightexpect to see some

correlation between the scores earned by workers and the number of HITs they complete,

but we might hope it would not be so blatant. However, the factthat this power law fits

the plot so well, rather than a linear or quadratic function,seems to imply that this is not

a matter of a missing factor somewhere in the agreement algorithm, but rather that this

correlation exists in the data.
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Chapter 6

RELATED WORK

Inter-annotator agreement is a subject which is studied in the context of many different

Mechanical Turk tasks. Almost every task that is to be performed will be done by more than

one worker, so for each task a new metric of agreement must be derived. Expert-generated

data is also often used to better measure worker quality.

In (Jiang & Zhai 2006), the authors explore the possibility of creating cross-domain

models for NER by looking for general features that work wellacross multiple domains,

and focusing on those. They show a slight improvement over a baseline technique when

training on one genre of text and testing on another.

(Snowet al. 2008) investigates the quality of expert versus non-expertannotations

for five natural-language tasks, and compares experts to varying numbers of non-expert

annotators. Their voting mechanism is similar to one of the baseline schemes we used.

(Locke & Martin 2009) investigates this topic using a Support Vector Machine ap-

proach on a substantially smaller dataset. Performance of this approach is 54% accurate

for locations, approximately 30% for organizations, and 18% for people. An approach that

trained a model on pre-annotated Twitter data (much like theapproach examined in this

paper) achieves an F1 measure of 59.5% overall.
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Chapter 7

CONCLUSION

We built a platform for managing the large volume and high flowrate of social media

data, including database design, building a sufficiently fast language detection algorithm,

and creating extraction tools to quickly retrieve a subset of our tweet collection for further

processing. A template for Amazon’s Mechanical Turk service was also developed, allow-

ing for quick and inexpensive collection of training data for a machine learning algorithm

to perform named entity recognition.

In order to better focus our efforts on English-language Tweets only, it was necessary

to determine which language the Tweets in our collection were in. Toward this end, a

language recognition algorithm was developed and used to determine the language of each

tweet. Results from this process were good, acheiving betterthan 99% precision. Precision

on other languages, and recall on any language, were not investigated.

Building on this foundation, we have developed an algorithm for finding inter-worker

agreement, and two approaches to evaluating performance ina different but related domain:

quality of annotation data. The first metric, based on information gained from a particular

worker’s annotations, shows that the inter-worker agreement metric correlates well to the

amount of information that a single worker contributes. Thesecond, based on information

loss associated with ignoring a particular worker’s annotations, does not correlate at all,
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perhaps because of confounding factors. This WorkerRank algorithm provides a simple

method of finding workers who are producing high-quality annotation data.

This process provides an inexpensive way to produce a training corpus for machine

learning algorithms, using untrained workers and only a small number of seed gold an-

swers. From an expert perspective, this could be thought of as a semisupervised learning

algorithm: the expert produces a small amount of training data, then uses that data to gener-

ate a larger corpus with the assistance of inexpensive crowdsourcing services like Amazon

Mechanical Turk. This larger corpus has been obtained without additional expert interven-

tion, but provides a significant improvement in quality overthe expert data alone.

Many directions for future work arise from this point forward. Improvements could

be made to the language detection algorithm, either in usinga more modern approach or

providing genre-specific training data. A different algorithm of evaluating worker quality

could be developed and compared to WorkerRank, using it as a baseline. A framework for

collecting tweets and recognizing entities using a model could be developed.
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Appendix A

ALTERNATIVE METHOD OF EVALUATING NAMED

ENTITY RECOGNIZERS

In Chapter 5, we compared efficacy of several models derived from subsets of our

AMT-derived training data to WorkerRank to attempt to determine whether a particular

worker’s good WorkerRank score is a good indicator of high-quality training data coming

from that worker. Here we revisit this topic, with a different scoring metric for model

efficacy.

The metric discussed in Chapter 5, called there “recall”, evaluates based on how many

of the things that should have a non-“none” label end up with the correct label. For the

sake of less ambiguous discussion, we will call this metric “simple recall”. This is a useful

metric, but it may hide some useful subtleties. For example,suppose that taking some

existing model and adding training data from some worker causes the model’s performance

to go down in predicting person entities, but increases its performance on organization

entities. The simple recall metric will show that this worker has had an overall zero effect

on the quality of the model produced, while really there are both positive and negative

effects of adding this worker. If we care more about finding organization entities than

people, we might wish to include this worker’s contribution, despite the fact that this will

hurt the model’s performance on “person” labels. A slightlymore complicated metric can
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FIG. A.1. A small example confusion matrix.

show us that this effect is happening.

We can easily build a confusion matrix for this problem: how many times was there

a token that should have been labeledx, but was labeledy? We will label the rows as

“should have been labeledx”, and the columns as “was labeled by this model asx”, as

shown in Figure A.1. A perfect model will have a diagonal confusion matrix: whenever a

thing should have been labeledx, it was labeledx. A model that produces slightly incorrect

results will produce a confusion matrix strongly weighted toward the diagonal, and a model

that predicts by random choice will have columns whose expected sum is the same, and

rows whose components are expected to be proportional to thedistribution of the correct

labels.

Using this confusion matrix, we can come up with precision and recall numbers per

label. In other words, we can answer questions like “of thoseentities that should have been

labeled ‘person’, what fraction of them got that label?”. For this example, we will find this

number by summing across the row labeled “person”, and then dividing the entry “person,

person” by the row sum. This number will be less than or equal to 1, since the entries

of the matrix are positive and the row sum includes the singleelement in the numerator.

Similarly, we can find the fraction of entries who were labeled “person” which should have

had that label by summing down the “person” column and dividing “person, person” by that

column sum. These two numbers are the recall and precision, respectively, of the model for

the label “person”. We will call this type of metric the “person recall” or “person precision”
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of a model, or more generally the “complex recall” or “complex precision”.

Presented below are a large number of graphs. First we have the positive evaluation

method: use the answers from one worker to construct a model,then evaluate the goodness

of that model with one of the complex metrics and compare thatto the worker’s Worker-

Rank score. Next is negative evaluation, in which models based on subsets of the MTurk

results which exclude one worker are built and compared to the WorkerRank of that worker.

Finally, we include a new type of graph, based on choosing random subsets of sizen of

the results from MTurk. Here the goal is to see how much data weshould collect before

concluding that our model is sufficiently good (or at least, as good as it is going to get).

These random subsets are chosen independently: there is no guarantee that a subset of size

k + ǫ will be a superset of the subset of sizek. This third evaluation method can show how

many answers should be gathered to train a good model; as longas the precision or recall

for the desired label increases, it might be worth trying to collect more data.

Finding a straight-line correlation in the first two sets of graphs would be nice, but

as discussed in Chapter 5, such a correlation would be betweentwo things that should not

necessarily be related, in that both things are indirectly related to the actual quality of the

data.
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FIG. A.2. Precision and recall for “none” term, for the positiveevaluation method.



36

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001

 0.01

 0.1

 1

P
re

ci
si

on

WorkerRank score

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001

 0.01

 0.1

 1

R
ec

al
l

WorkerRank score

FIG. A.3. Precision and recall for “organization” term, for thepositive evaluation method.
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FIG. A.4. Precision and recall for “person” term, for the positive evaluation method.



38

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001

 0.01

 0.1

 1

P
re

ci
si

on

WorkerRank score

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001

 0.01

 0.1

 1

R
ec

al
l

WorkerRank score

FIG. A.5. Precision and recall for “place” term, for the negative evaluation method.
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FIG. A.7. Precision and recall for “organization” term, for thenegative evaluation method.
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FIG. A.8. Precision and recall for “person” term, for the negative evaluation method.
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FIG. A.9. Precision and recall for “place” term, for the negative evaluation method.
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FIG. A.10. Precision and recall for “none” term, on the increasing size-k subsets.
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FIG. A.11. Precision and recall for “organization” term, on theincreasing size-k subsets.
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FIG. A.12. Precision and recall for “person” term, on the increasing size-k subsets.
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FIG. A.13. Precision and recall for “place” term, on the increasing size-k subsets.
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