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Abstract—Internet routers must adhere to many polices govern-
ing the selection of paths that meet potentially complex con-
straints on length, security, symmetry and organizational prefer-
ences.  Many routing problems are caused by their misconfigura-
tion, usually due to a combination of human errors and the lack 
of a high-level formal language for specifying routing policies 
that can be used to generate router configurations.  We describe 
an approach that obviates many problems by using a declarative 
language for specifying network-wide routing policies to auto-
matically configure routers and also inform software agents that 
can diagnose and correct networking problems.  Our policy 
language is grounded in ontologies encoded in the Semantic Web 
language OWL, supporting machine understanding and interop-
erability.  Polices expressed in it can be automatically compiled 
into low-level router configurations and intelligent agents can 
reason with them to diagnose and correct routing problems.  We 
have prototyped the approach and evaluated the results both in a 
simulator and on a small physical network. Our results show that 
the framework performs well on a number of use cases, including 
checking for policy coherence, preventing asymmetric routing 
patterns, applying organizational preferences, and diagnosing 
and correcting failures. 

Keywords- declarative network management. policy, agent 
based systems 

I. INTRODUCTION 
BGP is the de-facto routing protocol used in the Internet today 
for advertising network reachability. Unlike other routing 
protocols, BGP is a policy based routing protocol that allows 
operators to control which routes are chosen in the routing 
protocol. This flexibility provides operators with the ability to 
tweak BGP to enforce the high level goals of their organiza-
tions. However, configuring BGP routers correctly to enforce 
organizational goals is a formidable task.  

The lack of a high level language for modeling and enforc-
ing network wide routing policies forces operators to manually 
configure BGP routers at the lowest level of detail. The result-
ing configurations have no usable semantics associated with 
them and consequently cannot be verified for correctness. 
Furthermore, the configurations do not always reflect the 
organization’s high-level goals. Most configuration files run 
into hundreds of lines, further making debugging harder. In fact, 
recent studies [2] have shown that human error is a major cause 
for a number of BGP related routing failures. This problem 

becomes much more severe in the case of military networks 
where there is a lack of skilled network operators on the field. 
Furthermore, given the dynamic nature of the environment, an 
organization’s routing goals can change quickly, requiring a 
corresponding rapid change in the BGP configurations. Expect-
ing operators on the field to manually configure the routers 
quickly and correctly is unrealistic for medium to large sized 
networks. Even away from the field, military networks such as 
NIPRNet sometimes make policy decisions due to lack of 
skilled manpower and configuration issues that lead to vulner-
abilities, as we discuss later [3]. 

There is a growing need for a high-level language to model 
and configure BGP routing policies. The goal of such a high-
level language is to allow operators focus on the policy deci-
sions rather than on the low-level implementation details. For 
example, operators would like to automatically configure 
routers to implement existing trust relationships between 
autonomous systems (ASs) by merely stating the relationship 
type such as customer-provider between them without having 
to manually construct the associated export and import filters. 
These high-level languages are particularly important in 
dynamic environments where operators neither have the time 
nor the skills to manually configure routers. 

In this paper we describe an ontology-based declarative 
language for modeling and configuring BGP routing policies.  
Our language is based on Semantic Web languages such as the 
Web Ontology Language (OWL) [1] that have well defined 
syntax and logical semantics. Consequently, policies expressed 
in our language can be formally reasoned over, conflicts and 
vulnerabilities discovered and corrections made. Policies 
expressed in our language are automatically compiled into 
appropriate BGP configurations by our framework.  We build 
on this declarative framework and construct an argumentation 
protocol in which neighboring routers can argue with each 
other to diagnose and recover from router misconfigurations. 

We differ from previous tomography based “black-box” 
approaches such as NetDiagnoser [7] by employing a “white-
box” approach that provides visibility into operator policies 
expressed in our language. In addition to locating the cause of 
failures, we also try to recover from the failure by router 
reconfigurations if so allowed by policy.  We fathom scenarios 
where operator policies may prevent router reconfigurations 



due to privacy and security concerns. In these cases, we alert 
the network operator providing them with the location and 
cause of the failure, thereby saving precious time in diagnosing 
network failures. 

We see two main contributions in this work: (1) defining an 
ontology-based, declarative language for expressing BGP 
routing policies and (2) using this to solve some key problems 
in the military networking context. The rest of the paper is 
organized as follows. In section II, we review related work. We 
describe our declarative language and argumentation protocol 
in sections III and IV, respectively. In section V, we present 
our system architecture, and describe example scenarios in 
section VI. In section VII, we discuss issues related to the 
practical deployment of our approach and finally conclude in 
section VIII. 

II. RELATED WORK 
There has been a great deal of work recently in the develop-
ment of declarative languages for network management which 
space does not permit us to exhaustive survey. In [4], Hinrichs 
et al. propose a generic declarative network management 
framework that can be used for configuring many pieces of 
network management such as ACLs, NATs, QoS etc. at a 
single place. Their policy engine applies policy decisions at the 
granularity of individual unidirectional flows. Further the 
language also has support for conflict detection and policy 
prioritization for conflict resolution. Performance results from 
actual deployments showed that the policy based flow man-
agement framework typically performed well in these envi-
ronments and promised good scalability. 

Voellmy et al.  in [5] propose Nettle, a domain specific em-
bedded language in Haskell for BGP configuration. They use 
the type safety checks of the language to ensure that common 
configuration errors are avoided. RPSL [6] is used by ISPs to 
express their routing policies that are stored in Internet Routing 
Registries. However, none of these languages have implicit 
support for reasoning. Wang et al. propose a unified framework 
for the specification, design, implementation and verification of 
networking protocols in a logic based framework in [7]. The 
authors describe a framework in which logical statements 
describing the high level properties of network protocols can be 
specified and verified for correctness. Further, these logical 
statements can be automatically translated into NDlog pro-
grams for distributed execution through a property preserving 
transformation. The framework also supports inferring logical 
statements directly from NDlog programs.  While the above 
framework deals with the verification of network protocol 
behavior in general, our work focuses on automatically creating 
BGP router configurations from high level policies. 

III. ONTOLOGICAL FRAMEWORK FOR ROUTING POLICIES 
In this section, we present our ontology based declarative 
language for expressing network-wide routing policies. There 
are several advantages to developing an ontology-based 
language for routing policies for a distributed enterprise 
setting such as the military. The language is generic and can 
be used to express the policies of different organizations and 
sub-organizations. The ontological approach enables reusing 

existing ontologies such as those developed in [19] as well as 
naturally supporting evolution. New policies can be modeled 
as they become relevant to the organization by updating the 
appropriate ontologies. Furthermore, the logical basis of the 
language automatically supports reasoning and conflict resolu-
tion among policies. This becomes critical when policies are 
created at different sites and hierarchical levels of the organi-
zation and could potentially conflict with each other. 

As part of this work, we have developed an ontology using 
OWL [1] and RDF [11] for representing routing policies. Our 
ontology models BGP routing concepts such as neighbors, 
autonomous systems, and network prefix. We also model the 
different types of policies and policy rules as one of permis-
sive, obligatory and prohibitive. These policies typically 
influence whether route updates are accepted, shared or denied. 
We support policies that represent preferences, e.g., prefering 
routes from one AS over another depending on their relation-
ship. The relationship itself could be based on multiple factors 
such as economical and political [12]. 

Our framework also supports prioritization of policies 
which becomes useful in the context of resolving conflict 
among multiple policies. The policies expressed in our lan-
guage are automatically translated into appropriate BGP level 
router configurations. Our framework handles typical BGP 
scenarios seen in practice that include specifying neighbors, 
preferring one AS over the other as well as configuring export 
and import filters. 

For the rest of the paper, we focus on aspects of the frame-
work that are used for configuring import and export filters. In 
this discussion, we define a policy as a rule that specifies how 
to handle a route update. Since we limit our discussion to 
import/export policies, the set of allowable actions include 
accepting/rejecting a route update from a neighbor and shar-
ing/denying a route advertisement to a neighbor. For example, 
the valley free policy [20] that requires a provider to announce 
its customer’s prefixes to its upstream provider and peers can 
be expressed as follows using the familiar Prolog rule syntax. 

 
shareUpdate(Update, Node, Neighbor) :-  
  origin(Update, Source), 
  customer(Source, Node), 
  provider_or_peer(Neighbor, Node). 

 
The above rule specifies that Node shares Update with its 
Neighbor if the update originated at a Customer and Neighbor 
is a peer or provider with respect to Node. Our framework 
translates the above policy into the following BGP configura-
tion fragment  

 
  Router bgp ASN(Node) 
  Neighbor IPAddrOfRouter(Customer) filter-list 1 in 
  ip as-path access-list 1 permit ^ASN(Customer)$ 
 
where ASN(X) represents the Autonomous System Number of 
AS X. Any route that is not explicitly shared is not advertised 
to a neighbor. 

A. Creating a Routing Knowledge Base 
The knowledge base contains facts, rules and any piece of 
information that is useful in deciding the routing policy of the 



organization such as the operating policy, traffic matrix, time 
of the day etc. Minimally, the knowledge base contains a high 
level representation of the network wide routing policies of the 
organization. The knowledge base is initially loaded with the 
following minimal set of base rules that specify the operating 
policy of the node, conditions for sharing/denying route 
updates as well as for retracting policies. 
 

(?Node follow ?Policy) :- 
  (?Node trust ?Authority), 
  (?Authority issues ?Policy)            (Rule 1) 

 
Rule 1 states that a node follows a policy issued by a trusted 
entity. Nodes assert that they trust their parent organization.  
Additionally, nodes could be configured to trust external 
organizations as well. 
 

(?Node shareRouteAdvt ?Address) :- 
  (?Node follow ?Policy), 
  (?Policy sharesRouteAdvt ?Address)                  (Rule 2) 

 
Rule 2 asserts that a node shares a route advertisement for an 
address block with a neighbor as long as it follows a policy 
that permits sharing the advertisement. 
 

(?Node denyRouteAdvt ?Address) :- 
  (?Node follow ?Policy), 
  (?Policy deniesRouteAdvt ?Address)   (Rule 3) 

 
Rule 3 is similar to Rule 2 for denying route advertisements to 
neighbors. 
 

(?Authority retracts ?OldPolicy) :- 
  (?Authority issues ?NewPolicy), 
  (?Authority issues ?OldPolicy), 
  (?NewPolicy replaces ?OldPolicy)   (Rule 4) 

 
Rule 4 specifies that an authority can retract a policy by 
issuing a replacement policy. Retractions typically occur when 
a higher priority policy replaces a lower priority one as well as 
when a later version of a policy replaces the older one. When a 
new policy is created, the rules representing the policy are 
asserted into the knowledge base along with the asserted and 
inferred facts. For example, the valley free policy that denies 
sharing non-originating prefixes to a provider makes the 
following assertion into the knowledge base of AS C 
 

“ValleyFreePolicy deniesRouteAdvt 12.1/16” 
 

where 12.1/16 corresponds to a prefix not originating in AS 
“C”. We can thus automatically create the knowledge base 
from the policies expressed in our language. The knowledge-
base thus created is used in the argumentation protocol de-
scribed in the next section. 

IV. ARGUMENTATION FRAMEWORK 
We provide a high level overview of the argumentation 
protocol [21] used for diagnosing and recovering from router 
misconfigurations. The core idea is for the router agents to 
exploit the reasoning capability of our declarative policies to 
collaboratively reason with neighbors to diagnose routing 

failures and recover from them by reconfiguring routers. Our 
argumentation protocol is based on the FATIO [14] protocol 
and consists of the six message  types. 

The Ask message is used by the initiating agent to query its 
neighbor for a route to a destination prefix. The recipient of 
Ask responds with either a Confirm or Deny, depending on 
whether the query evaluates to true or false. On receiving a 
Confirm or Deny, the initiating agent can challenge the neigh-
bor’s response with a Challenge message if it does not agree 
with the neighbor. Following this, the neighbor responds with 
a Justify message containing a partial proof tree [15] of the 
neighbor’s evaluation of the Ask query against its knowledge 
base. If the initiating agent does not agree with the neighbor’s 
query evaluation, it responds with an Assert message. This 
message contains assertions that the initiating agent believes in 
that invalidate the neighbor’s evaluation. Such situations arise 
for example when the neighbor is following an older version 
of a policy or when one policy replaces another. The neighbor 
now evaluates the assertions and if they are acceptable, recon-
figures the router according to the new policy and responds 
with a Confirm message. Note that the argumentation may not 
always converge, in which case the network operator is alerted 
along with a log of the argumentation executed so far. 

V. SYSTEM ARCHITECTURE 
In this section, we describe our system architecture, wh.ich 
includes routers and their agents and a common reasoner and 
planner, as shown in Figure 1. 

Planner: The planner is the front end used by the network 
administrator to create network wide routing policies. Typi-
cally, this is a graphical user interface with support to view 
network status such as topology and traffic load on links. The 
planner created policies are then distributed to router agents in 
the network. The GUI based planner typically allows the 
operator on the field to use a policy wizard to create high level 
routing policies rather than dealing with low level configura-
tion details.  Similarly, when the routing goals of the organiza-
tion change over time, the operator can use the planner to view 
the current operating policies and edit them to reflect changing 
needs. In addition to generating a RDF representation of the 
policies, our planner also generates a human understandable 
representation of the policies to aid in understanding and 
debugging of policies 

 
Figure 1. System Architecture 



Agent Framework: Each router is bound to an agent that 
is responsible for controlling and configuring the underlying 
physical router through a query and control interface. Policies 
created by the network operator are sent to the agents which 
are responsible for configuring the routers in line with the 
policies. Typically, the agents have an onboard reasoner or 
invoke a centralized reasoner to transform the policies into 
appropriate configurations. Agents communicate with each 
other during argumentation using an out of band communica-
tion channel such as an overlay network. 

Reasoner: The Reasoner generates BGP configurations 
from the specified policies. Typically, each agent has its own 
reasoner, although a centralized reasoner for all agents seems 
possible for small to medium sized networks. The configura-
tions generated by the reasoner are sent back to the calling 
agent, which then applies it to the underlying router.   

Router: The physical router which performs packet proc-
essing and is controlled by the router agent. 

We have implemented a hierarchical policy structure in our 
system in which operators can write policies for different sites 
at various organizational levels.  Each agent can have its own 
local set of policies as well. Additionally, an agent can make 
local assertions about its neighbors including configuration 
data like IP addresses, AS Number and relationship type. The 
network wide policies are then merged with local policies at 
the node to form a unified policy which is used for generating 
the configurations. The ontological basis of our framework 
enables merging of policies as well as detecting conflicts. In 
our framework, we assume that network wide policies have 
higher priority compared to local policies during conflict 
resolution. 

VI. USE CASES 
In this section, we demonstrate the utility of our framework 
through a set of use cases.  These use cases show how our 
framework eases the configuration of routers for a variety of 
military scenarios. The first two use cases deal with automati-
cally choosing routes and configuring export/import filters 
based on the political relationship between a pair of ASs. The 
third use case deals with asymmetric routing that makes 
deploying firewalls for security in the enterprise infeasible.  
We propose a route injection coupled with selective advertis-

ing based solution to alleviate this problem and show how our 
framework can be used to automatically inject the routes as 
well as configure export filters.  The fourth use case demon-
strates our argumentation protocol for diagnosing packet 
dropping.  

We have implemented our framework on a small router 
testbed of Cisco 1811 Series [17] routers. Our agent infrastruc-
ture is written in Java and uses a directory-based service for 
agent communication. During set up, each agent is bound to a 
router and communication is established with the router 
through telnet. We use the open source Jess [18] rule engine 
for generating BGP configurations from policies specified in 
our language. 

A. Routing Preferences 
ASs typically prefer routes from certain neighbors over others.  
In the military scenario, this could rise from political relations 
such as the US preferring routes from friendly nations such as 
NATO partners compared to non-NATO ASs. This preference 
is generally achieved in BGP by appropriately setting the local 
preference of routes obtained from neighbors. The higher the 
value, the more likely the route is to be chosen. In our frame-
work, operators can write an obligatory policy using the 
abstraction of a trust relationship to prefer routes from one AS 
over the other. Furthermore, the local knowledge base contains 
the parent organizations of the neighbors and can thereby infer 
the trust associated with a neighbor.  For example, in the case 
of US routers preferring routes from a neighboring NATO AS 
(AS 200), our framework generates the following configura-
tion (assuming a default local preference of 100) 
 

routerbgp 100 
neighbor 120.120.10.2 remote-as 200 
neighbor 120.120.10.2 route-map inlocal in 
ip as-path access-list 1 permit ^200.* 
route-map inlocal permit 10 
match as-path 1 
set local preference 200 
 

B. Export/Import Filter Configuration 
Similar to route preferences, ASs might want to enforce 
security by selectively sharing route advertisements with their 
neighbors. For example, US routers might want to share 
private networks with only other US routers. Similarly, they 
may not want to share certain other routes with non-NATO 
routers.  Using our framework, operators can write a prohibi-
tive policy that configures an export filter to deny sharing 
route advertisements to a neighbor based on the relationship 
type. As in the earlier case, the local knowledge base contains 
enough information about each neighbor to infer the relation-
ship type. For example, using our framework, an operator can 
write a policy that denies sharing a private network 12.1/16 
with non-US routers. This results in the following configura-
tion for the neighbor 120.120.10.2 belonging to a non US 
organization 
 
Router bgp 100 
neighbor 120.120.10.2 remote-as 200 
neighbor 120.120.10.2 distribute-list 1 out 
access-list 1 deny 12.1.0.0 0.0.255.255 

 
Figure 2. The DoD uses DISA maintained routers to 
provide connectivity within the Non-secure Internet 

Protocol Router Network (NIPRNET) and to the external 
Internet. 

 



C. Asymmetric Routing 
A common characteristic observed in the Internet is asymmet-
ric routing. As a result, packets between the same end hosts 
traverse different paths along the forward and backward 
directions. In particular for the military, this poses significant 
security vulnerability as follows. The U.S. Defense Informa-
tion Systems Agency (DISA) is responsible for maintaining 
the Non-secure Internet Protocol Router Network (NIPRNET) 
for exchanging information freely between departments, 
services, bases, posts, and ships throughout the entire world. 

To accomplish the task, DISA has established a set of 
geographically dispersed border routers providing connectivity 
within the large number of small military networks throughout 
the world.  Additionally, these border routers connect the 
military networks to the external Internet as shown in Figure 
2., making it vulnerable to security attacks. In order to limit 
and respond to security attacks, the military would like to 
employ firewalls for controlling ingress and egress traffic.  The 
deployment of firewalls, however, is limited due to the 
asymmetric nature of the Internet which makes validating that 
incoming responses are actually requested since requests and 
responses could use different egress and ingress routers. 

A typical routing based solution to alleviate this enterprise 
security problem involves selective prefix advertisements with 
the goal of ensuring that all ingress and egress traffic for a end 
host pass through the same router. Consider the scenario 
shown in Figure 3. Assume the client belongs to 10.1/16 and 
the following BGP configurations for the left and right routers. 
 
Left Router 
Router bgp 100 
neighbor 120.120.10.2 remote-as 200 
neighbor 120.120.10.2 distribute-list 1 out 
access-list 1 deny 10.1.0.0 0.0.255.255 
 
Right Router 
Router bgp 100 
Neighbor 120.120.10.4 remote-as 200 
Network 10.1.0.0 

These configurations ensure that only the right router shares 
advertisements for 10.1/16 with its neighbors, and therefore all 
traffic destined for 10.1/16 enters the network only through the 
right router. Similarly, the network is configured to route all 
egress traffic from 10.1/16 through the right router. This 
enables deploying a firewall to verify that all inbound traffic is 
in fact requested. Manually configuring each router to enforce 
this solution for large networks such as NIRPNET seems 
impractical.  On the other hand, our policy based framework 
can  
be used to automate the configuration process for large scale 
networks through a single DoD policy that states  
• “A router shall route incoming Internet originated traf-

fic only for prefixes that use it for outgoing Internet-
destined traffic ” 

This policy is distributed to all routers in NIRPNET. Addi-
tionally, each border router asserts the IP address block that it 
manages in its local knowledge base. With these two pieces of 
information, our policy framework is able to create appropri-
ate BGP configurations to enforce the above described secu-
rity solution. In this automated solution, an agent is responsible 
for periodically evaluating the state of the BGP and internal 
routing protocols.  Whenever the agent discovers that a path 
has been added for an internal prefix, the agent can query the 
managing agent for the internal prefix to find out whether or 
not this router is on its preferred path to the Internet.  If the 
router is on the path, then the agent allows the prefix to be 
exported to Internet peers.  On the other hand, if the router is 
not on the path, then the agent configures a BGP export filter to 
block the export of that prefix to its peers. 

D. Traffic Dropping Diagnosis 
We consider the following scenario where each router is 
loaded with one of the following two policies 
• “DropPolicy” drops traffic destined for 12.1/16 
• “AllowPolicy” allows traffic destined for 12.1/16 

When a router detects that its traffic is being dropped by an 
intermediate router, the router initiates an argumentation. The 
argumentation proceeds in two steps. In the first step, the 
router queries each upstream router to see if they are config-
ured to drop traffic to 12.1/16.  At the end of the first step, the 
router locates the upstream router responsible for dropping 
traffic. In the second step, the router argues with the dropping 
router following the argumentation protocol described earlier. 
At the end of argumentation, the dropping router either recon-
figures its policy to allow traffic or alerts a human operator if a 
conflict rises. 

VII. DEPLOYMENT ISSUES 
In this section we discuss three issues related to the practical 
deployment of our approach.  

1) Changes to Existing Routers: We note that our 
approach does not require any changes to the underlying 
routers.  The agent communication framework can be built as 
an overlay on top of the existing ip networks. The only 
requirement is for the routers to support a query and control 

 
Figure 3. Policy automated framework for controlling 

ingress flow 



interface to the agent for example through telnet. Almost all 
routers support configuration through telnet which can then be 
used as the agent interface.  

2) Security and Privacy:  The argumentation protocol 
shares routing policies with neighboring domains as part of the 
failure diagnosis and some operartors may not prefer this 
sharing due to privacy concerns. Additionally, there is a 
reconfiguration process that also takes place as part of 
argumentation. We propose a two level solution to this privacy 
concern. At the first level, the operator could configure the 
argumentation to not share the policy information but merely 
respond to only Ask messages with a Confirm or Deny.  For 
example, an agent could say that it doesn’t export a route but 
not specify the policy that denies the sharing. In this case, the 
neighboring agent could either continue the argumentation 
with this limited information or alert its human operator. At 
the second level, the operator could configure the argumen-
tation to continue as normal, but not perform the reconfigura-
tions. All router reconfigurations need to either  be from a list 
preapproved by the operator or perfromed manually .  

3) Policy Conflicts: When the argumentation protocol 
does not converge due to policy conflicts, having a centralized 
policy store where the entire routing policy of the organization 
is stored could mitigate such scenarios. In these cases, the 
argumentation protocol could consult the centralized 
repository to resolve conflicts. Alternatively, the operator 
could be alerted with a log of the argumentation. 

VIII. CONCLUSIONS 
We have described an approach to managing network routers 
by using a declarative language for specifying network-wide 
routing policies to automatically configure routers and also 
inform software agents that can diagnose and correct network-
ing problems.  This can solve a variety of problems including 
the selection of paths that meet complex constraints on length, 
security, symmetry and organizational preferences as well as 
diagnosing and fixing routing problems caused by router 
misconfiguration.  Our policy language is grounded in ontolo-
gies designed in the Semantic Web language OWL, supporting 
machine understanding and interoperability.  Polices ex-
pressed in it can be automatically compiled into low-level 
router configurations and intelligent agents can reason with 
them to diagnose and correct routing problems.  We have 
prototyped the approach and evaluated the results in both a 
simulator and on a small physical network. Our results show 
that the framework performs well on a number of use cases, 
including checking for policy coherence, preventing asymmet-
ric routing patterns, applying organizational preferences, and 
diagnosing and correcting failures. 
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