
Enforcing Secure and Robust Routing
with Declarative Policies

Palanivel Kodeswaran, Wenjia Li, Anupam Joshi
and Tim Finin

Computer Science and Electrical Engineering
University of Maryland, Baltimore County

Baltimore, MD 21250
{palanik1, wenjia1, joshi, finin]@cs.umbc.edu

Filip Perich
Shared Spectrum Company

Vienna, Virginia 22182
fperich@sharedspectrum.com

Abstract—Internet routers must adhere to many polices govern-
ing the selection of paths that meet potentially complex con-
straints on length, security, symmetry and organizational prefer-
ences. Many routing problems are caused by their misconfigura-
tion, usually due to a combination of human errors and the lack
of a high-level formal language for specifying routing policies
that can be used to generate router configurations. We describe
an approach that obviates many problems by using a declarative
language for specifying network-wide routing policies to auto-
matically configure routers and also inform software agents that
can diagnose and correct networking problems. Our policy
language is grounded in ontologies encoded in the Semantic Web
language OWL, supporting machine understanding and interop-
erability. Polices expressed in it can be automatically compiled
into low-level router configurations and intelligent agents can
reason with them to diagnose and correct routing problems. We
have prototyped the approach and evaluated the results both in a
simulator and on a small physical network. Our results show that
the framework performs well on a number of use cases, including
checking for policy coherence, preventing asymmetric routing
patterns, applying organizational preferences, and diagnosing
and correcting failures.

Keywords- declarative network management. policy, agent
based systems

I. INTRODUCTION
BGP is the de-facto routing protocol used in the Internet today
for advertising network reachability. Unlike other routing
protocols, BGP is a policy based routing protocol that allows
operators to control which routes are chosen in the routing
protocol. This flexibility provides operators with the ability to
tweak BGP to enforce the high level goals of their organiza-
tions. However, configuring BGP routers correctly to enforce
organizational goals is a formidable task.

The lack of a high level language for modeling and enforc-
ing network wide routing policies forces operators to manually
configure BGP routers at the lowest level of detail. The result-
ing configurations have no usable semantics associated with
them and consequently cannot be verified for correctness.
Furthermore, the configurations do not always reflect the
organization’s high-level goals. Most configuration files run
into hundreds of lines, further making debugging harder. In fact,
recent studies [2] have shown that human error is a major cause
for a number of BGP related routing failures. This problem

becomes much more severe in the case of military networks
where there is a lack of skilled network operators on the field.
Furthermore, given the dynamic nature of the environment, an
organization’s routing goals can change quickly, requiring a
corresponding rapid change in the BGP configurations. Expect-
ing operators on the field to manually configure the routers
quickly and correctly is unrealistic for medium to large sized
networks. Even away from the field, military networks such as
NIPRNet sometimes make policy decisions due to lack of
skilled manpower and configuration issues that lead to vulner-
abilities, as we discuss later [3].

There is a growing need for a high-level language to model
and configure BGP routing policies. The goal of such a high-
level language is to allow operators focus on the policy deci-
sions rather than on the low-level implementation details. For
example, operators would like to automatically configure
routers to implement existing trust relationships between
autonomous systems (ASs) by merely stating the relationship
type such as customer-provider between them without having
to manually construct the associated export and import filters.
These high-level languages are particularly important in
dynamic environments where operators neither have the time
nor the skills to manually configure routers.

In this paper we describe an ontology-based declarative
language for modeling and configuring BGP routing policies.
Our language is based on Semantic Web languages such as the
Web Ontology Language (OWL) [1] that have well defined
syntax and logical semantics. Consequently, policies expressed
in our language can be formally reasoned over, conflicts and
vulnerabilities discovered and corrections made. Policies
expressed in our language are automatically compiled into
appropriate BGP configurations by our framework. We build
on this declarative framework and construct an argumentation
protocol in which neighboring routers can argue with each
other to diagnose and recover from router misconfigurations.

We differ from previous tomography based “black-box”
approaches such as NetDiagnoser [7] by employing a “white-
box” approach that provides visibility into operator policies
expressed in our language. In addition to locating the cause of
failures, we also try to recover from the failure by router
reconfigurations if so allowed by policy. We fathom scenarios
where operator policies may prevent router reconfigurations

due to privacy and security concerns. In these cases, we alert
the network operator providing them with the location and
cause of the failure, thereby saving precious time in diagnosing
network failures.

We see two main contributions in this work: (1) defining an
ontology-based, declarative language for expressing BGP
routing policies and (2) using this to solve some key problems
in the military networking context. The rest of the paper is
organized as follows. In section II, we review related work. We
describe our declarative language and argumentation protocol
in sections III and IV, respectively. In section V, we present
our system architecture, and describe example scenarios in
section VI. In section VII, we discuss issues related to the
practical deployment of our approach and finally conclude in
section VIII.

II. RELATED WORK
There has been a great deal of work recently in the develop-
ment of declarative languages for network management which
space does not permit us to exhaustive survey. In [4], Hinrichs
et al. propose a generic declarative network management
framework that can be used for configuring many pieces of
network management such as ACLs, NATs, QoS etc. at a
single place. Their policy engine applies policy decisions at the
granularity of individual unidirectional flows. Further the
language also has support for conflict detection and policy
prioritization for conflict resolution. Performance results from
actual deployments showed that the policy based flow man-
agement framework typically performed well in these envi-
ronments and promised good scalability.

Voellmy et al. in [5] propose Nettle, a domain specific em-
bedded language in Haskell for BGP configuration. They use
the type safety checks of the language to ensure that common
configuration errors are avoided. RPSL [6] is used by ISPs to
express their routing policies that are stored in Internet Routing
Registries. However, none of these languages have implicit
support for reasoning. Wang et al. propose a unified framework
for the specification, design, implementation and verification of
networking protocols in a logic based framework in [7]. The
authors describe a framework in which logical statements
describing the high level properties of network protocols can be
specified and verified for correctness. Further, these logical
statements can be automatically translated into NDlog pro-
grams for distributed execution through a property preserving
transformation. The framework also supports inferring logical
statements directly from NDlog programs. While the above
framework deals with the verification of network protocol
behavior in general, our work focuses on automatically creating
BGP router configurations from high level policies.

III. ONTOLOGICAL FRAMEWORK FOR ROUTING POLICIES
In this section, we present our ontology based declarative
language for expressing network-wide routing policies. There
are several advantages to developing an ontology-based
language for routing policies for a distributed enterprise
setting such as the military. The language is generic and can
be used to express the policies of different organizations and
sub-organizations. The ontological approach enables reusing

existing ontologies such as those developed in [19] as well as
naturally supporting evolution. New policies can be modeled
as they become relevant to the organization by updating the
appropriate ontologies. Furthermore, the logical basis of the
language automatically supports reasoning and conflict resolu-
tion among policies. This becomes critical when policies are
created at different sites and hierarchical levels of the organi-
zation and could potentially conflict with each other.

As part of this work, we have developed an ontology using
OWL [1] and RDF [11] for representing routing policies. Our
ontology models BGP routing concepts such as neighbors,
autonomous systems, and network prefix. We also model the
different types of policies and policy rules as one of permis-
sive, obligatory and prohibitive. These policies typically
influence whether route updates are accepted, shared or denied.
We support policies that represent preferences, e.g., prefering
routes from one AS over another depending on their relation-
ship. The relationship itself could be based on multiple factors
such as economical and political [12].

Our framework also supports prioritization of policies
which becomes useful in the context of resolving conflict
among multiple policies. The policies expressed in our lan-
guage are automatically translated into appropriate BGP level
router configurations. Our framework handles typical BGP
scenarios seen in practice that include specifying neighbors,
preferring one AS over the other as well as configuring export
and import filters.

For the rest of the paper, we focus on aspects of the frame-
work that are used for configuring import and export filters. In
this discussion, we define a policy as a rule that specifies how
to handle a route update. Since we limit our discussion to
import/export policies, the set of allowable actions include
accepting/rejecting a route update from a neighbor and shar-
ing/denying a route advertisement to a neighbor. For example,
the valley free policy [20] that requires a provider to announce
its customer’s prefixes to its upstream provider and peers can
be expressed as follows using the familiar Prolog rule syntax.

shareUpdate(Update, Node, Neighbor) :-
 origin(Update, Source),
 customer(Source, Node),
 provider_or_peer(Neighbor, Node).

The above rule specifies that Node shares Update with its
Neighbor if the update originated at a Customer and Neighbor
is a peer or provider with respect to Node. Our framework
translates the above policy into the following BGP configura-
tion fragment

 Router bgp ASN(Node)
 Neighbor IPAddrOfRouter(Customer) filter-list 1 in
 ip as-path access-list 1 permit ^ASN(Customer)$

where ASN(X) represents the Autonomous System Number of
AS X. Any route that is not explicitly shared is not advertised
to a neighbor.

A. Creating a Routing Knowledge Base
The knowledge base contains facts, rules and any piece of
information that is useful in deciding the routing policy of the

organization such as the operating policy, traffic matrix, time
of the day etc. Minimally, the knowledge base contains a high
level representation of the network wide routing policies of the
organization. The knowledge base is initially loaded with the
following minimal set of base rules that specify the operating
policy of the node, conditions for sharing/denying route
updates as well as for retracting policies.

(?Node follow ?Policy) :-
 (?Node trust ?Authority),
 (?Authority issues ?Policy) (Rule 1)

Rule 1 states that a node follows a policy issued by a trusted
entity. Nodes assert that they trust their parent organization.
Additionally, nodes could be configured to trust external
organizations as well.

(?Node shareRouteAdvt ?Address) :-
 (?Node follow ?Policy),
 (?Policy sharesRouteAdvt ?Address) (Rule 2)

Rule 2 asserts that a node shares a route advertisement for an
address block with a neighbor as long as it follows a policy
that permits sharing the advertisement.

(?Node denyRouteAdvt ?Address) :-
 (?Node follow ?Policy),
 (?Policy deniesRouteAdvt ?Address) (Rule 3)

Rule 3 is similar to Rule 2 for denying route advertisements to
neighbors.

(?Authority retracts ?OldPolicy) :-
 (?Authority issues ?NewPolicy),
 (?Authority issues ?OldPolicy),
 (?NewPolicy replaces ?OldPolicy) (Rule 4)

Rule 4 specifies that an authority can retract a policy by
issuing a replacement policy. Retractions typically occur when
a higher priority policy replaces a lower priority one as well as
when a later version of a policy replaces the older one. When a
new policy is created, the rules representing the policy are
asserted into the knowledge base along with the asserted and
inferred facts. For example, the valley free policy that denies
sharing non-originating prefixes to a provider makes the
following assertion into the knowledge base of AS C

“ValleyFreePolicy deniesRouteAdvt 12.1/16”

where 12.1/16 corresponds to a prefix not originating in AS
“C”. We can thus automatically create the knowledge base
from the policies expressed in our language. The knowledge-
base thus created is used in the argumentation protocol de-
scribed in the next section.

IV. ARGUMENTATION FRAMEWORK
We provide a high level overview of the argumentation
protocol [21] used for diagnosing and recovering from router
misconfigurations. The core idea is for the router agents to
exploit the reasoning capability of our declarative policies to
collaboratively reason with neighbors to diagnose routing

failures and recover from them by reconfiguring routers. Our
argumentation protocol is based on the FATIO [14] protocol
and consists of the six message types.

The Ask message is used by the initiating agent to query its
neighbor for a route to a destination prefix. The recipient of
Ask responds with either a Confirm or Deny, depending on
whether the query evaluates to true or false. On receiving a
Confirm or Deny, the initiating agent can challenge the neigh-
bor’s response with a Challenge message if it does not agree
with the neighbor. Following this, the neighbor responds with
a Justify message containing a partial proof tree [15] of the
neighbor’s evaluation of the Ask query against its knowledge
base. If the initiating agent does not agree with the neighbor’s
query evaluation, it responds with an Assert message. This
message contains assertions that the initiating agent believes in
that invalidate the neighbor’s evaluation. Such situations arise
for example when the neighbor is following an older version
of a policy or when one policy replaces another. The neighbor
now evaluates the assertions and if they are acceptable, recon-
figures the router according to the new policy and responds
with a Confirm message. Note that the argumentation may not
always converge, in which case the network operator is alerted
along with a log of the argumentation executed so far.

V. SYSTEM ARCHITECTURE
In this section, we describe our system architecture, wh.ich
includes routers and their agents and a common reasoner and
planner, as shown in Figure 1.

Planner: The planner is the front end used by the network
administrator to create network wide routing policies. Typi-
cally, this is a graphical user interface with support to view
network status such as topology and traffic load on links. The
planner created policies are then distributed to router agents in
the network. The GUI based planner typically allows the
operator on the field to use a policy wizard to create high level
routing policies rather than dealing with low level configura-
tion details. Similarly, when the routing goals of the organiza-
tion change over time, the operator can use the planner to view
the current operating policies and edit them to reflect changing
needs. In addition to generating a RDF representation of the
policies, our planner also generates a human understandable
representation of the policies to aid in understanding and
debugging of policies

Figure 1. System Architecture

Agent Framework: Each router is bound to an agent that
is responsible for controlling and configuring the underlying
physical router through a query and control interface. Policies
created by the network operator are sent to the agents which
are responsible for configuring the routers in line with the
policies. Typically, the agents have an onboard reasoner or
invoke a centralized reasoner to transform the policies into
appropriate configurations. Agents communicate with each
other during argumentation using an out of band communica-
tion channel such as an overlay network.

Reasoner: The Reasoner generates BGP configurations
from the specified policies. Typically, each agent has its own
reasoner, although a centralized reasoner for all agents seems
possible for small to medium sized networks. The configura-
tions generated by the reasoner are sent back to the calling
agent, which then applies it to the underlying router.

Router: The physical router which performs packet proc-
essing and is controlled by the router agent.

We have implemented a hierarchical policy structure in our
system in which operators can write policies for different sites
at various organizational levels. Each agent can have its own
local set of policies as well. Additionally, an agent can make
local assertions about its neighbors including configuration
data like IP addresses, AS Number and relationship type. The
network wide policies are then merged with local policies at
the node to form a unified policy which is used for generating
the configurations. The ontological basis of our framework
enables merging of policies as well as detecting conflicts. In
our framework, we assume that network wide policies have
higher priority compared to local policies during conflict
resolution.

VI. USE CASES
In this section, we demonstrate the utility of our framework
through a set of use cases. These use cases show how our
framework eases the configuration of routers for a variety of
military scenarios. The first two use cases deal with automati-
cally choosing routes and configuring export/import filters
based on the political relationship between a pair of ASs. The
third use case deals with asymmetric routing that makes
deploying firewalls for security in the enterprise infeasible.
We propose a route injection coupled with selective advertis-

ing based solution to alleviate this problem and show how our
framework can be used to automatically inject the routes as
well as configure export filters. The fourth use case demon-
strates our argumentation protocol for diagnosing packet
dropping.

We have implemented our framework on a small router
testbed of Cisco 1811 Series [17] routers. Our agent infrastruc-
ture is written in Java and uses a directory-based service for
agent communication. During set up, each agent is bound to a
router and communication is established with the router
through telnet. We use the open source Jess [18] rule engine
for generating BGP configurations from policies specified in
our language.

A. Routing Preferences
ASs typically prefer routes from certain neighbors over others.
In the military scenario, this could rise from political relations
such as the US preferring routes from friendly nations such as
NATO partners compared to non-NATO ASs. This preference
is generally achieved in BGP by appropriately setting the local
preference of routes obtained from neighbors. The higher the
value, the more likely the route is to be chosen. In our frame-
work, operators can write an obligatory policy using the
abstraction of a trust relationship to prefer routes from one AS
over the other. Furthermore, the local knowledge base contains
the parent organizations of the neighbors and can thereby infer
the trust associated with a neighbor. For example, in the case
of US routers preferring routes from a neighboring NATO AS
(AS 200), our framework generates the following configura-
tion (assuming a default local preference of 100)

routerbgp 100
neighbor 120.120.10.2 remote-as 200
neighbor 120.120.10.2 route-map inlocal in
ip as-path access-list 1 permit ^200.*
route-map inlocal permit 10
match as-path 1
set local preference 200

B. Export/Import Filter Configuration
Similar to route preferences, ASs might want to enforce
security by selectively sharing route advertisements with their
neighbors. For example, US routers might want to share
private networks with only other US routers. Similarly, they
may not want to share certain other routes with non-NATO
routers. Using our framework, operators can write a prohibi-
tive policy that configures an export filter to deny sharing
route advertisements to a neighbor based on the relationship
type. As in the earlier case, the local knowledge base contains
enough information about each neighbor to infer the relation-
ship type. For example, using our framework, an operator can
write a policy that denies sharing a private network 12.1/16
with non-US routers. This results in the following configura-
tion for the neighbor 120.120.10.2 belonging to a non US
organization

Router bgp 100
neighbor 120.120.10.2 remote-as 200
neighbor 120.120.10.2 distribute-list 1 out
access-list 1 deny 12.1.0.0 0.0.255.255

Figure 2. The DoD uses DISA maintained routers to
provide connectivity within the Non-secure Internet

Protocol Router Network (NIPRNET) and to the external
Internet.

C. Asymmetric Routing
A common characteristic observed in the Internet is asymmet-
ric routing. As a result, packets between the same end hosts
traverse different paths along the forward and backward
directions. In particular for the military, this poses significant
security vulnerability as follows. The U.S. Defense Informa-
tion Systems Agency (DISA) is responsible for maintaining
the Non-secure Internet Protocol Router Network (NIPRNET)
for exchanging information freely between departments,
services, bases, posts, and ships throughout the entire world.

To accomplish the task, DISA has established a set of
geographically dispersed border routers providing connectivity
within the large number of small military networks throughout
the world. Additionally, these border routers connect the
military networks to the external Internet as shown in Figure
2., making it vulnerable to security attacks. In order to limit
and respond to security attacks, the military would like to
employ firewalls for controlling ingress and egress traffic. The
deployment of firewalls, however, is limited due to the
asymmetric nature of the Internet which makes validating that
incoming responses are actually requested since requests and
responses could use different egress and ingress routers.

A typical routing based solution to alleviate this enterprise
security problem involves selective prefix advertisements with
the goal of ensuring that all ingress and egress traffic for a end
host pass through the same router. Consider the scenario
shown in Figure 3. Assume the client belongs to 10.1/16 and
the following BGP configurations for the left and right routers.

Left Router
Router bgp 100
neighbor 120.120.10.2 remote-as 200
neighbor 120.120.10.2 distribute-list 1 out
access-list 1 deny 10.1.0.0 0.0.255.255

Right Router
Router bgp 100
Neighbor 120.120.10.4 remote-as 200
Network 10.1.0.0

These configurations ensure that only the right router shares
advertisements for 10.1/16 with its neighbors, and therefore all
traffic destined for 10.1/16 enters the network only through the
right router. Similarly, the network is configured to route all
egress traffic from 10.1/16 through the right router. This
enables deploying a firewall to verify that all inbound traffic is
in fact requested. Manually configuring each router to enforce
this solution for large networks such as NIRPNET seems
impractical. On the other hand, our policy based framework
can
be used to automate the configuration process for large scale
networks through a single DoD policy that states
• “A router shall route incoming Internet originated traf-

fic only for prefixes that use it for outgoing Internet-
destined traffic ”

This policy is distributed to all routers in NIRPNET. Addi-
tionally, each border router asserts the IP address block that it
manages in its local knowledge base. With these two pieces of
information, our policy framework is able to create appropri-
ate BGP configurations to enforce the above described secu-
rity solution. In this automated solution, an agent is responsible
for periodically evaluating the state of the BGP and internal
routing protocols. Whenever the agent discovers that a path
has been added for an internal prefix, the agent can query the
managing agent for the internal prefix to find out whether or
not this router is on its preferred path to the Internet. If the
router is on the path, then the agent allows the prefix to be
exported to Internet peers. On the other hand, if the router is
not on the path, then the agent configures a BGP export filter to
block the export of that prefix to its peers.

D. Traffic Dropping Diagnosis
We consider the following scenario where each router is
loaded with one of the following two policies
• “DropPolicy” drops traffic destined for 12.1/16
• “AllowPolicy” allows traffic destined for 12.1/16

When a router detects that its traffic is being dropped by an
intermediate router, the router initiates an argumentation. The
argumentation proceeds in two steps. In the first step, the
router queries each upstream router to see if they are config-
ured to drop traffic to 12.1/16. At the end of the first step, the
router locates the upstream router responsible for dropping
traffic. In the second step, the router argues with the dropping
router following the argumentation protocol described earlier.
At the end of argumentation, the dropping router either recon-
figures its policy to allow traffic or alerts a human operator if a
conflict rises.

VII. DEPLOYMENT ISSUES
In this section we discuss three issues related to the practical
deployment of our approach.

1) Changes to Existing Routers: We note that our
approach does not require any changes to the underlying
routers. The agent communication framework can be built as
an overlay on top of the existing ip networks. The only
requirement is for the routers to support a query and control

Figure 3. Policy automated framework for controlling

ingress flow

interface to the agent for example through telnet. Almost all
routers support configuration through telnet which can then be
used as the agent interface.

2) Security and Privacy: The argumentation protocol
shares routing policies with neighboring domains as part of the
failure diagnosis and some operartors may not prefer this
sharing due to privacy concerns. Additionally, there is a
reconfiguration process that also takes place as part of
argumentation. We propose a two level solution to this privacy
concern. At the first level, the operator could configure the
argumentation to not share the policy information but merely
respond to only Ask messages with a Confirm or Deny. For
example, an agent could say that it doesn’t export a route but
not specify the policy that denies the sharing. In this case, the
neighboring agent could either continue the argumentation
with this limited information or alert its human operator. At
the second level, the operator could configure the argumen-
tation to continue as normal, but not perform the reconfigura-
tions. All router reconfigurations need to either be from a list
preapproved by the operator or perfromed manually .

3) Policy Conflicts: When the argumentation protocol
does not converge due to policy conflicts, having a centralized
policy store where the entire routing policy of the organization
is stored could mitigate such scenarios. In these cases, the
argumentation protocol could consult the centralized
repository to resolve conflicts. Alternatively, the operator
could be alerted with a log of the argumentation.

VIII. CONCLUSIONS
We have described an approach to managing network routers
by using a declarative language for specifying network-wide
routing policies to automatically configure routers and also
inform software agents that can diagnose and correct network-
ing problems. This can solve a variety of problems including
the selection of paths that meet complex constraints on length,
security, symmetry and organizational preferences as well as
diagnosing and fixing routing problems caused by router
misconfiguration. Our policy language is grounded in ontolo-
gies designed in the Semantic Web language OWL, supporting
machine understanding and interoperability. Polices ex-
pressed in it can be automatically compiled into low-level
router configurations and intelligent agents can reason with
them to diagnose and correct routing problems. We have
prototyped the approach and evaluated the results in both a
simulator and on a small physical network. Our results show
that the framework performs well on a number of use cases,
including checking for policy coherence, preventing asymmet-
ric routing patterns, applying organizational preferences, and
diagnosing and correcting failures.

ACKNOWLEDGMENT
This work was supported by an STTR grant from the Defense
Advanced Research Agency (W31P4Q-06-C-0395), the Air
Force Office of Scientific Research under MURI award
FA9550-08-1-0265 and the NSF under Grant Number
0910838.

REFERENCES
[1] S. Bechhofer, F. Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P.

Patel-Schneider, and L.Stein. OWL Web Ontology Language Reference
W3C Recommendation. Technical report, W3C, February 2004.

[2] R. Mahajan, D. Wetherall, and T. Anderson, “Understanding BGP
misconfiguration,” in Applications, Technologies, Architectures, and
Protocols for Computer Communication, vol. 32, no. 4, 2002.

[3] Gibson. Personal Communication.
[4] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,

“Practical declarative network management,” in Proceedings of the 1st
ACM workshop on Research on enterprise networking - WREN ’09.
New York, New York, USA: ACM Press, 2009.

[5] A. Voellmy and P. Hudak. Nettle: A language for configuring routing
networks. In DSL '09: Proc. IFIP TC 2 Working Conference on
Domain-Specific Languages, pages 211-235, Berlin, Heidelberg, 2009.
Springer-Verlag.

[6] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens, D. Meyer, T.
Bates, D. Karrenberg, and M. Terpstra. Routing policy specification
language (RPSL), 1999.

[7] Formally Verifiable Networking. A. Wang, L. Jia, C. Liu, Boon T. Loo,
O. Sokolsky and P. Basu. 8th Workshop on Hot Topics in Networks
(ACM SIGCOMM HotNets-VIII), New York, Oct 2009

[8] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot. NetDiagnoser:
Troubleshooting network unreachabilities using end-to-end probes and
routing data. In Proc. 3rd ACM International Conference on emerging
Networking EXperiments and Technologies, pages 1--12. ACM, 2007.

[9] Y. Huang, N. Feamster, and R. Teixeira, “Practical Issues with Using
Network Tomography for Fault Diagnosis.”

[10] N. Feamster, H. Balakrishnan, and J. Rexford, “Some foundational
problems in Interdomain routing,” in In HotNets, 2004. (Cited on, 2004,
pp. 41–46.

[11] O. Lassila and R. Swick. Resource description framework (RDF) model
and syntax. Technical report, W3C, February 1999.

[12] P. Kodeswaran, S. B. Kodeswaran, A. Joshi, and F. Perich, “Utilizing
semantic policies for managing BGP route dissemination,” in IEEE
INFOCOM 2008 - IEEE Conference on Computer Communications
Workshops. IEEE, 2008, pp. 1–4.

[13] P. Hunter. Pakistan YouTube block exposes fundamental Internet
security weakness:: Concern that Pakistani action affected YouTube
access elsewhere in world. Computer Fraud & Security, 2008(4):10--11,
2008.

[14] P. McBurney and S. Parsons, “Locutions for Argumentation in Agent
Interaction Protocols,” in Proc. International Conference on Auton-
omous Agents, 2004.

[15] A. Eriksson and A.-L. Johansson. Neat explanation of proof trees. In
Proceedings of the 9th international joint conference on artificial
intelligence, pages 379--381. Morgan Kaufmann Publishers Inc., 1985.

[16] B. Quoitin and S. Uhlig, “Modeling the Routing of an Autonomous
System with C-BGP,” 2005.

[17] “Cisco 1811 Series.” , http://www.cisco.com/en/US/products/ps6187/
[18] E. Friedman-Hill. JESS in Action. Manning, 2003.
[19] Ontologies for Distributed Command and Control Messaging. Duc N.

Nguyen, Joseph B. Kopena, Boon Thau Loo, and William C. Regli.
6th International Conference on Formal Ontology in Information
Systems (FOIS), May 2010.

[20] L. Gao, “On inferring autonomous system relationships in the internet,”
IEEE/ACM Transactions on Networking (TON), vol. 9, no. 6, 2001.

[21] Palanivel Kodeswaran, Anupam Joshi, Tim Finin and Filip Perich. “A
Declarative Approach for Secure and Robust Routing”. In Proceedings
of the 3rd ACM Workshop on Assurable and Usable Security, Chicago
2010.

