
A Probabilistic Approach to Distributed System
Management

Randy N. Schauer
University of Maryland Baltimore County

Department of Computer Science and Electrical
Engineering

Baltimore, MD 21250
+1 410 227 0580

schauer1@umbc.edu

Anupam Joshi
University of Maryland Baltimore County

Department of Computer Science and Electrical
Engineering

Baltimore, MD 21250
+1 410 455 2590

joshi@cs.umbc.edu

ABSTRACT
Large-scale distributed systems are playing an increasing role in
computational research, production operations, information
processing, and application hosting. The continuous management
of such systems is a critical consideration when focusing on
reliability, availability, and security. As the number of commodity
components within these systems continue to grow, it becomes
increasingly difficult to track the multitude of parameters required
to ensure optimal performance from the system, especially in
those systems that have been built through expansion and not as
an initial purchase of identical nodes. In this paper, we discuss the
use of statistical inference, specifically Markov Logic Networks,
in a distributed multi-agent system to provide the most effective
means of managing these parameters. We showcase an
architecture that provides services to manage a system’s
configuration throughout its life-cycle, and is capable of resolving
differences after identifying potential mis-configurations using
conflict discovery and resolution modules.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: markov processes, probabilistic
algorithms, statistical computing.

I.2.3 [Artificial Intelligence]: Deduction and Theorem Proving –
deduction, inference engines, uncertainty.

I.2.4 [Artificial Intelligence]: Knowledge Representation
Foundations and Methods – predicate logic, temporal logic.

K.6.4 [Management of Computing and Information Systems]:
System Management – centralization/decentralization.

General Terms
Algorithms, Management, Reliability, and Experimentation.

Keywords
Configuration, Distributed, Management, Probability.

1. INTRODUCTION
Data centers, particularly those providing high-end computing
services, continue to provide more power and resources while

simultaneously implementing green initiatives and virtualized
hosts to leverage appropriate economies of scale. Managing this
complex nest of systems that have varying requirements,
configurations, and access rights in an efficient manner requires a
cadre of highly-trained system administrators. To alleviate
increasing workloads placed on the staff, freeing them up for
more cerebral tasks, the goal of automated system management
must be achieved.

The purpose of our research is to provide a true distributed
approach to system management, with the means to administer
ever-growing systems, both in physical size and density, without
increasing the administration staff. To reach this goal, we must
investigate the use of autonomic principles on each node of a
large distributed system. The primary task to achieve this is
twofold. First, the system must be able to manage aspects of its
configuration without using a central image master, relying only
on the knowledge of its peers. Second, the system must be able to
understand and evaluate its operating environment to identify
issues before they become catastrophic problems. In each of these
scenarios, the system should rely on itself to provide the
necessary means for self-management using a combination of
historical analysis and information relayed from nodes currently
operating in a similar configuration.

Our approach provides a flexible solution that can be adapted to
different types of distributed systems in order to remove the
centralized knowledge base as both a single point of failure and a
network bottleneck. This allows us to implement an intelligent
technique for evaluating potential changes needed to keep the
system in a consistent state. The proposition is that through
dynamically adapting to the current state of the system, a more
consistent, better tuned environment for the end users will be
provided without compromising functionality or availability.

2. ARCHITECTURE
Our current architecture consists of four functions: Data
Gathering, Probabilistic Inference, Conflict Discovery, and
Resolution. Each of these functions provides a necessary service,
with the Probabilistic Inference function being the most complex
and important in determining if the system configuration is
accurate or not.

2.1 Data Gathering
The Data Gathering module exists on each node in a distributed
system, collecting information about parameters, properties and

Copyright is held by the author/owner(s).
ICAC’10, June 7–11, 2010, Washington, DC, USA.
ACM 978-1-4503-0074-2/10/06.

settings to allow for a complete analysis of system state. Once the
data is gathered, it is placed into the appropriate format for the
Probabilistic Inference module, and passed off to be consolidated
into a single input deck for analysis.

2.2 Probabilistic Inference
The Probabilistic Inference model verifies that every system node
is approximately identical to other related nodes. By performing
comparisons on multiple nodes, statistical relational learning
methods will be used to determine the optimal configuration and
make adjustments as necessary. Due to the infinite possible
optimal configurations for differing environments, a statistical
relational learning method is the preferred inference mechanism,
specifically Markov Logic Networks (MLNs) [1].

MLNs provide a first-order predicate knowledge base with a
weight applied to each formula. The logic being used allows for
an initial set of conditions that capture the rules needed to make
informed decisions in the inference phase. The softening
constraints that a MLN provides as compared to strict first-order
logic allows for an expanded view of options when changes are
being considered [3]. The probabilistic inference performed
within MLNs provides an effective means to distribute the
calculation of the correct configuration, while still ensuring that
nodes will sustain a secure operational baseline for their users.

As systems age, node configurations can and do change to
accommodate updated software, libraries, patches and hardware
replacements. Once a potential issue is discovered, nodes will use
the probabilistic inference engine to form an agreement on which
configuration value is correct. To ensure each node is sending an
accurate description of itself for each set of comparisons, time
comparisons will occur at multiple stages to determine if they
were gathered at the “same” time across the cluster. Latency is a
concern for any type of distributed system, but can pose
additional issues in situations such as this.

2.3 Conflict Discovery and Resolution
The Conflict Discovery module performs the final analysis of the
Probabilistic Inference module’s results. At this stage, the data is
reviewed to determine what, if any, corrective actions need to be
taken on various nodes. During the course of analysis, corrective
actions are grouped by node, and communicated back to the
appropriate Resolution module.
The Resolution module exists on each node, and is responsible for
performing the actual corrective actions as dictated by the
Probabilistic Inference and Conflict Discovery modules.
Depending on the results of the analysis phase, a node may or
may not have to wait for idle time to correct itself to prevent
interference with user jobs. The Resolution module verifies that
the conflict still exists prior to taking corrective action to ensure
the planned action still corrects the identified problem.

3. INFERENCE MODEL APPROACH
Our inference models contain a number of setting, parameter and
environment values that require consistency across a large
distributed system. A statistical approach to solving these issues
as they arise can take all the known factors into account and

weight them to minimize uncertainty and determine the most
valid option.

The MLN probabilistic inference calculations are being
performed using the Alchemy System for Statistical and
Relational Artificial Intelligence [2]. In this system, there are two
stages which must be executed in order to perform the analysis.
The first stage is weight learning with the MLN formulas and
training data knowledge base. The system allows for both
generative and discriminative learning, providing new weighted
MLN data that will be used for the inference model.

The second stage takes the weighted MLN output and uses that
along with the evidence knowledge base to perform an inference
calculation on the network. The system allows for various types
of inference, including Gibbs sampling, MC-SAT, simulated
tempering, and Maximum A Posteriori (MAP). The output of
each inference calculation is the statistical probability that an
evidence predicate is not true.

The goal of this set of inference models is to form a distributed,
intelligent system integrity validation product that ensures an
optimal configuration while simultaneously watching for
attempted infiltrations. Performing configuration control in this
manner will greatly improve the productivity of staff responsible
for maintenance on both large and small distributed systems.

4. CONCLUSION
The management of distributed systems such as large
computational clusters is a non-trivial task. As systems continue
to grow in size and both the quantity and quality of services
offered, there will continue to be adoption of these systems in
industries outside what has been seen as the norm in the past. The
ability for all types of distributed systems to diagnose and recover
from performance and configuration issues without resorting to a
centralized knowledge base is the next great stride in allowing
systems to self-manage their reliability and stability in this high-
end community.

The prototype system we have built utilizes a novel approach to
performing a probabilistic model-based diagnosis. We are
removing single points of failure for diagnosis and allowing the
system to correct different types of issues itself. This prototype
system and the results as a means to incorporate industry best
practices along with some of the latest research being done in the
area of statistical relational learning and autonomic computing.

5. REFERENCES
[1] L. Getoor and B. Taskar, Introduction to Statistical

Relational Learning (The MIT Press, Cambridge, MA,
2007).

[2] S. Kok, P. Singla, M. Richardson, and P. Domingos. The
Alchemy system for statistical relational AI. Technical
Report, Department of Computer Science and Engineering,
University of Washington,
http://www.cs.washington.edu/ai/alchemy, 2005.

[3] M. Richardson, and P. Domingos. Markov Logic Networks.
Machine Learning, 62, 107-136, 2006.

