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ABSTRACT

Title of Thesis: T2LD - An automatic framework for extracting, interpreting and

representing tables as Linked Data

Varish Mulwad, M.S. Computer Science, August 2010

Thesis directed by: Dr. Timothy Wilking Finin , Professor

Department of Computer Science and

Electrical Engineering

We present an automatic framework for extracting, interpreting and generating linked

data from tables. In the process of representing tables as linked data, we assign every col-

umn header a class label from an appropriate ontology, link table cells (if appropriate) to

an entity from the Linked Open Data cloud and identify relations between various columns

in the table, which helps us to build an overall interpretation of the table. Using the lim-

ited evidence provided by a table in the form of table headers and table data in rows and

columns, we adopt a novel approach of querying existing knowledgebases such as Wiki-

tology, DBpedia etc. to figure the class labels for table headers. In the process of entity

linking, besides querying knowledgebases, we use machine learning algorithms like sup-

port vector machine and algorithms which can learn to rank entities within a given set to

link a table cell to entity. We further use the class labels, linked entities and information

from the knowledgebases to identify relations between columns. We prototyped a system

to evaluate our approach against tables obtained from Google Squared, Wikipedia and set

of tables obtained from a dataset which Google shared with us.
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Chapter 1

INTRODUCTION

In Nineteen Eighty Nine, Sir Tim Berners-Lee proposed and introduced a distributed

hypertext system (Berners-Lee 1989) , which eventually led to the birth of the World Wide

Web. The World Wide Web truly changed the way we do computing and the way we share

information and services. If the 1980s’ and the 1990s’ were the eras of desktop computing,

the 21st century belongs to the Web. The web we know today is a web of hyperlinked

documents in which one document is connected to another document via a hyperlink, which

in turn is connected to another document and so on. This web of hyperlinked documents

is good for humans to navigate and understand, but it makes no sense for machines and

software agents.

The original idea of the web also contained seeds for another web - a smarter and in-

telligent web. Today we identify that web as the Semantic Web. The W3C’s Semantic Web

Activity group1 defines the Semantic Web as a platform providing a common framework

that allows data to be shared and reused across application, enterprise, and community

boundaries. One of the primary goal and vision of the Semantic Web is to create a web

of data instead of a web of documents, a web in which data items present on the web are

connected to each other. The goal of the Semantic Web is also to make the web a platform

1http://www.w3.org/2001/sw/

1
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for sharing data, information and knowledge.

Sir Tim Berners-Lee also introduced the notion of linked data (Bizer 2009) in which

he outlined the best practices for exposing and sharing structured data on the web. The

principles of linked data state that:

• Every data item should be identified by an URI

• The URI should be an http URI which can be dereferenced

• The dereferenced page should provide useful information about the thing

• Every data item should also point to URIs of other related things

For this web of data vision to be realized, we need data to be available in a standard

format suitable for the Semantic Web. There are two key points a) availability of data and

b) data in a standard and structured format. The first point has been already taken care

of as there is a huge amount raw data already present on the Web. In July 2008, Google

software engineers Jesse Alpert and Nissan Hajaj announced that Google had indexed 1

trillion unique URLs2 , which meant one trillion unique documents on the World Wide

Web. The World Wide Web continues to grow, thus as of today we must be having more

than a trillion documents on the Web. A lot of data stored in these documents is actually

stored in html tables. Google researchers (Cafarella et al. 2008) estimated that there are

about 14.1 billion html tables, of which 154 million contain high quality relational data.

There is a lot of data available that is not a part of the web. A wide variety of interesting

domains such as health-care, biotechnology, finance store data in tabular form, either as

spreadsheets, CSV files or database tables. As a part of the Linked Open Data initiative,

the US and UK governments have also shared publicly available government data in tabular

2We knew the web was big... - http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
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City State Mayor Population

Baltimore MD S.Dixon 640,000

Philadelphia PA M.Nutter 1,500,000

Washington DC A.Fenty 595,000

New York NY M.Bloomberg 8,400,000

Boston MA T.Menino 610,000

FIG. 1.1. A simple table about cities in the United States. The column header represents

the type of data stored in columns; values in the columns represent instances of that type.

forms. These tables can be thought of as a collection or a gigantic database of information

and knowledge which should be utilized for enriching our knowledge.

We have a gigantic database of knowledge and information, but it cannot be exploited

on the Semantic Web in its present form. It is possible for humans to convert this massive

raw data into a structured and standard format for the Semantic Web, but it is time consum-

ing and difficult to do so. To be able to exploit this information, we need mechanisms and

systems that can convert this data into a structured and standard format.

In this research, we focus on the converting the data stored in a tabular form to a

structured format. A table can be defined as a two-dimensional presentation of logical rela-

tionships between groups of data (Vanoirbeek 1992). The table columns header represents

the type of data that is stored in that particular column, whereas the values in the column

represent the instances of the type. The values in the same row of the table hold some form

of relationship amongst each other.

Consider a simple table shown in Figure 1.1. Given the structure of the table, there is

a lot of information that can be extracted from the table. Using the column header, along

with the column and row contents, we can query knowledge bases to figure out what data

is stored in the table. For instance the values in column 1 could be cities in the US or

could be references to football teams of the respective cities. Querying knowledge bases
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like Wikipedia, DBpedia (Bizer et al. 2009) we can figure out that these are largest cities

in their respective states on the east coast of the United States. We can also determine that

the column 3 contains people. On further fine grain reasoning we can determine that it’s

a type of politician or type of mayor. Querying DBpedia, we can figure out that mayor is

a property of the ontology that could be used to describe column 1. Finally we can also

figure out that the values in the last column of the table are actually values of the property

population and the property population is associated with the data stored in column 1.

This thesis presents a mechanism to convert the data stored in tables into linked data.

The process of converting data stored in tables to linked data involves the following steps.

For every column header in the table, we label it with a class label from an appropriate

ontology. Every table cell value is linked to an appropriate entity from the linked data

cloud. We also identify and discover relationships that may exist between the columns of

the table. All this information is then published as RDF on the Semantic Web. To achieve

this task, we use the information from table column headers, table rows and the values in

the columns and we query Wikitology (Finin & Syed 2010) knowledge base (KB), which

consist information from Wikipedia, DBpedia, Freebase (Bollacker et al. 2008), WordNet

(Miller 1995) and Yago (Suchanek, Kasneci, & Weikum 2007). Processing the results

returned by our KB, we predict the class labels for every table column header. Using this

additional evidence, we re-query our KB to complete the step of linking the table cells

to entities from the linked data cloud. Once the entity linking is complete, we discover

relations between the columns.

So for example, when we convert the data in table in figure 1.1 into linked data, we

will assign column header city a class label like dbpedia-owl:city. We also link the table

cell value Baltimore to its DBpedia page - http://dbpedia.org/resource/Baltimore. Further

we also discover the relation dbpedia-owl:largestCity between columns 1 and 2 of the table.

We have also prototyped a system which implements the mechanism described above
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to convert tables into linked data. We test our approach against tables generated from

Google Squared3, tables extracted from Wikipedia pages and tables from a dataset of tables

occurring on the web, Google shared with us.

3http://www.google.com/squared



Chapter 2

BACKGROUND AND RELATED WORK

In this chapter, we provide some background knowledge about the knowledge bases

we use and then describe some related work that has been pursued in the fields of the World

Wide Web and Databases in understanding and interpreting tables.

2.1 Wikitology

Wikitology is a hybrid knowledge base (KB) of structured and unstructured informa-

tion from Wikipedia, which is augmented with structured information from DBpedia, Free-

base, WordNet and Yago. Wikitology is comprehensive KB since its base is the English

language articles from Wikipedia. Wikipedia is a collaborative encyclopedia developed by

web users from around the world. It has around 15 million articles in multiple languages,

with more than 3.2 million articles in English 1. Every Wikipedia article is associated with

only one concept (e.g. person, location, organization etc.) and all articles on Wikipedia are

organized into categories and sub - categories. All the Wikipedia articles also have links

between themselves which leads to the creation of huge graph of concepts on Wikipedia.

Most Wikipedia concepts have infobox associated with it, which stores information related

to the concept in a semi - structured format. Evaluations have shown that article quality on

1http://en.wikipedia.org/wiki/Wikipedia

6
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Wikipedia is pretty high (Hu et al. 2007).

Wikitology captures the free text, the concepts graph and the infobox information

and integrates this information with the information of the Wikipedia concept from other

KB’s. Wikitology uses a specialized Lucene (Hatcher & Gospodnetic 2004) IR index to

integrate unstructured as well as structured information related to every Wikipedia concept.

The IR index enhances and also at the same time simplifies the query process allowing

applications and user to make unstructured queries (search using words in a documents),

structured queries (search for all dbpedia-owl:person) and combination of structured and

unstructured terms in the same query (search using words in all articles/concepts of the

type dbpedia-owl:person).

The version of Wikitology we used uses the information from the March 2008 dump

of Wikipedia, DBpedia version 3.4, Freebase dump from 2009 and WordNet version 3.0.

2.2 DBpedia

The DBpedia project aims to extract structured information from Wikipedia. DBpedia

makes Wikipedia data available in RDF, so as to allow sophisticated and structured queries

over Wikipedia. The DBpedia knowledge base (as of April 2010) contains more than 3.4

million things. DBpedia has its own Ontology to describe data stored in DBpedia. The

Ontology has over 259 classes and more than 1200 properties. DBpedia provides access to

its data via periodically released dumps or a public SPARQL (Prud’hommeaux & Seaborne

2007) end point2.

2http://dbpedia.org/sparql
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2.3 Freebase

Freebase is collaboratively built database of structured data contributed by users and

also data collected from many sources such as Wikipedia and MusicBranz. As of 2008,

Freebase contained around 125,000,000 tuples, more than 4000 types and more than 7000

properties. Freebase stores its data in a graph based tuple store and provides a public

read/write access to it via a HTTP based graph query API using a ”Meta Query Language”

(Flanagan 2007).

2.4 WordNet

WordNet is a lexical database of the English Language. Nouns, verbs, adjectives and

adverbs are grouped to represent a unique lexical concept. These group of similar words are

interlinked via “conceptual semantic” and “lexical” relations, which results in the creation

of network of related words and concepts.

2.5 Yago

Yago is knowledge base that includes facts extracted automatically from Wikipedia

and WordNet, unified using a combination of rule-based and heuristic methods. Yago con-

tains more than 2 million entities and knows more than 20 million facts about them.

2.6 Related Work

Extracting, interpreting and understanding data from tables is a problem of interest to

many areas such as Databases, Web Systems and the Semantic Web.

In the Database domains, understanding tables is of key interest in Data Integration

(Ziegler & Dittrich 2004), (Pantel, Philpot, & Hovy 2005). In the area of Web and Web
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Systems, tables have received attention from researchers who want to learn techniques of

extracting and indexing tables (Cafarella et al. 2008) to improve the search experience of

the user. Recent work on web tables (Lin et al. 2010) also focused on expanding web tables

by discovering new relations using hyperlinks present in web tables.

Researchers in the area of the Semantic Web have had particular interests in tabular

data because of its semi - structuredness which can be utilized to convert legacy tabular

data into RDF (Lassila & Swick 1999). One direction of focus has been Database schema

to Ontology mappings. Barrasa et.al (Barrasa, scar Corcho, & Gmez-prez 2004) define

database schema to ontology mapping as a set of correspondences (i.e. mapping elements)

that relate the vocabulary of a relational DB schema with that of an ontology. The goal

of this work is to map or relate DB’s tables, columns, primary and foreign keys, etc.,

with ontology’s concepts, relations, attributes etc. Some of the other work in Database

schema to Ontology Mappings includes (Hu & Qu 2007), (Papapanagiotou et al. 2006),

and (Lawrence 2004).

The problem of mapping databases to RDF has received formal attention from the

World Wide Web Consortium (W3C). The W3C has formed a working group to create

a standard for exposing Relational Databases as RDF. On June 8, 2010 the group pub-

lished it’s first working draft, which captures use-cases and requirements to map Relational

Databases to RDF (Auer et al. 2010). The eventual goal of the working group is create a

specification language for mapping relational databases to RDF and OWL (OWL 2004).

The other direction of research in Semantic Web with respect to tabular data is con-

verting data stored in spreadsheets to RDF. RDF123 (Han et al. 2008) is a system that

translates spreadsheet data into RDF. RDF123 allows the user to control and define the

mappings between spreadsheet data and RDF. Users create a graphical RDF123 template

which specifies how each row in the spreadsheet should be mapped into RDF. Each spread-

sheet cell can either map either to a RDF node or to a literal value (i.e. a string). Some of the
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other systems that map spreadsheets to RDF include (Bizer & Seaborne 2004), (Langegger

& Wob 2009), (Golbeck et al. 2002).

While systems like RDF123 are useful in mapping data into RDF, the problem with

such systems is that it requires human intervention. Users need to define and specify the

mappings in which they need to select the appropriate properties or specify RDF terms

from an Ontology, which means additional task of searching for ontology as well. Users

who are not well - versed with the Semantic Web may find difficulty is using such systems.

Finally these systems do not generate data that is linked. The RDF data generated by such

systems are just literal strings, instead of resources on the Semantic Web.

Our work focuses on not only generating data in a serialization of RDF, but it also on

automatic procedures of linking the data so that it can interpreted as a resource, instead of

just a literal string.



Chapter 3

TABLES TO LINKED DATA

The process of converting data stored in tables into linked data is not a trivial one. A

table provides evidence in the form of table rows, table columns and table headers. These

evidences need to be combined together to get a better interpretation of the table. The

table header often describes the type of entities present in the column, a particular column

in a table often contain the same type of entities and the table row stores all entities that

may be related to one another. Suppose we had a string “Michael Jordan” in a table about

basketball players. The table header for a column containing the string could be Name, all

the values in the column could be names of various basketball players and the row of the

table may include other information related to the player such as team, birth place, position

etc. Thus using various sources of evidence we can disambiguate and identify the correct

Michael Jordan, which is the basketball player in the given table and not Michael Jordan,

the Berkeley professor.

We break down the process of converting tables into linked data to the following tasks

-

• Associate class labels from appropriate ontology for every column

• Linking the table cell values to appropriate entities

• Identifying and discovering new relationships between table columns

11
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FIG. 3.1. An overview of the approach for converting tabular data to linked data

Figure 3.1 gives a high level overview of the approach adopted. Given an input ta-

ble, we use table headers, rows and columns as a part of the query to the knowledge base

(KB). The results obtained from the KB are processed to predict a class label for every

column. Using the predicted class labels as additional evidence we re-query the KB. The

results obtained from the KB are used in the process of linking table cells to entities. The

linked entities are further used in the process of identifying relations between the various

columns in the table. All this information can be published on the Semantic Web in some

serialization of RDF. We use Wikitology as a KB since, Wikitology exploits the knowledge

from Wikipedia and augments it with the knowledge from other structured KBs’ such as

DBpedia, Freebase, Wordnet and Yago.

In the following sections, we describe in detail how each task is accomplished. In

the final section of this chapter (section 3.5), we describe certain cases which need to be

handled in a slightly different way.
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3.1 Associating Class Labels with Columns

Algorithm 1 “PredictClassLabel” An algorithm to pick the best class to be associated with

a column

1: Let S be the set of k strings in a table column.

2: For each s in S, query KB to get a ranked list of top N possible Wikipedia instances

along with their types or class labels and their predicted page ranks.

3: From the k × N instances, generate a set of class labels that can be associated with a

column. Let C be this set.

4: Create a matrix V [ci, sj] of class label - string pairings where 0 < i < size of (C), 0 <

j < size of (S)

5: Assign a score to each V [ci, sj] based on the highest ranking instance that matches ci.

The instance’s rank R and its predicted Page Rank is used to assign a weighted score

to V [ci, sj] (we use w = 0.25):

Score = w × (1 / R) + (1 w) × (Normalized PageRank)

6: If none of the instances for a string match the class label being evaluated assign the

pair V [ci, sj] a score of 0.

7: Choose the class label ci which maximizes its score over the entire column (S) to be

associated with the column.

The class label for every column is determined by the type of entities stored in the

column. We develop an algorithm “PredictClassLabel” (see Algorithm 1) to associate a

class label with every column. For a given vocabulary and a table column, the algorithm

picks the best class to associate with the column. Let “S” be the set of “k” strings in a given

column of a table (e.g. S = Baltimore, Boston, New York). For every string in S, we query

the KB with using a custom query module described in Section 3.1.1. The KB returns a

list of ordered top N instances (with the most relevant at the top, next relevant one in the

second place and so on) that the string could be linked to, along with their types or class

labels. The results obtained from the KB for the query over “S” would be similar to the

ones shown in Figure 3.2.

Once we query for every string in the column, we would end up with k × N instances

and their types from which we create a set of class labels “C” which contains all possible
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FIG. 3.2. An example of how the results returned by KB could look like

class labels that could be associated with a given column. Such a set “C” for a given

column, would look something similar to

C = {dbpedia-owl:Area, dbpedia-owl:populatedPlace, dbpedia-owl:Person, dbpedia-

owl:Organiztion, dbpedia-owl:Band, ... }

Each class label in C is paired with every string in S, which creates a matrix V [ci, sj]

(where 0 < i < size of (C) and 0 < j < size of (S) ). Such a pairing would be similar to the

one shown in Figure 3.3.

Each class label - string pair is assigned a score based highest ranked instance whose

class label matches the class label being scored. The score is a weighted sum of the in-

stances rank and its predicted page rank as described in Algorithm 1. The page rank

used while scoring is normalized, by dividing it by 7 (since the highest page rank to any

Wikipedia instance is 7). If there is no instance associated with a given string, whose class

label matches the class label being scored, that class label - string pair is assigned a score
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FIG. 3.3. An example of class label and string pairings

of zero. An example of how the scoring would work is shown in Figure 3.4.

Once the entire matrix of class label - string pairings are assigned a score, the class

label that maximizes its score over the entire column is chosen to be associated with the

column header. The final sum score is also normalized between zero and one by dividing

it by number of rows in a given table. A class label is considered as candidate class label

for a column only if it has a score higher than a cutoff score. We do so since if a label

has less score, it is less likely to be a correct label that can represent all the strings in the

column. We use a cutoff score of 0.3. The score is chosen on a heuristic that the class label

should get 30 % of the total score. For every column, we associate a class label from four

vocabularies - DBpedia Ontology, Freebase, Wordnet and Yago.

3.1.1 Custom Query Module for Wikitology

For every table cell / string in the column, we query Wikitology to determine which in-

stances of the KB the table cell can link to. The interface to Wikitology is via a specialized

IR index, which allows structured, unstructured as well as a combination of structured and

unstructured queries. Some of the fields in the Wikitology index include title (Wikipedia
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Processing - [Baltimore, dbpedia-owl:Area] pair

Results from the query to KB for the String Baltimore:

(R = 1) Baltimore, {dbpedia-owl:Place, dbpedia-owl:Area}, PR = 6

(R = 2) Baltimore County, {dbpedia-owl:Place, dbpedia-owl:Area}, PR = 4

(R = 3) John Baltimore, {yago:AmericanConductors,yago:LivingPeople} PR = 5

Score = (0.25 x 1 / 1) + (0.75 x 6 / 7) = 0.892

Since the 1st ranked instance has a class label that matches the class label being evaluated,

R is set to 1 and Page Rank is set to 6

Processing - [Baltimore, dbpediaowl:Band] pair

Results from the query to KB for the String Baltimore:

Results from the query to KB for the String Baltimore:

(R = 1) Baltimore, {dbpedia-owl:Place, dbpedia-owl:Area}, PR = 6

(R = 2) Baltimore County, {dbpedia-owl:Place, dbpedia-owl:Area}, PR = 4

(R = 3) John Baltimore, {yago:AmericanConductors,yago:LivingPeople} PR = 5

Score= 0

Since the class does not match any of the entities for Baltimore, the pair gets a score of 0

FIG. 3.4. An example of how score is assigned to each class label - string pair
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concept title), first sentence (first sentence of the Wikipedia page for a concept), contents

(contents of the Wikipedia concept page), page rank (approximate page rank for Wikipedia

concept (Syed et al. 2010)), redirects (redirects associated with the Wikipedia concept),

types (Freebase entity types, DBpedia, WordNet and Yago types for the Wikipedia con-

cept), linked concepts (includes all the associated concepts for a given Wikipedia concept),

categories (which category the Wikipedia concept belongs to) and property values (contains

DBpedia infobox properties and values for a given Wikipedia concept).

We develop a custom query module in which the column header, the table cell string

and the row data is mapped to the various fields of the Wikitology index. The table cell

string is mapped to title field since the Wikipedia title often includes the name of the con-

cept. The table cell string is also mapped to the redirects field of the index. The table cell

along with the column header is also mapped to first sentence field, since the first sentence

of a Wikipedia page article often mentions the name of the concept as well as its type. For

example the first sentence of the Wikipedia page of Maryland is “The state of Maryland

is an American state ...” which includes both the concept name “Maryland” and its type

“state”. The column header is also mapped to the types and categories field of the index.

The table cell with a boost of 4.0 and the row data is mapped to the contents field and the

linked concepts field of the index. The table row values excluding the table cell that is

being queried are mapped to the propertiesValues field of the index. All the fields in query

have a “or” clause association amongst themselves. Figure 3.5 describes the query.

To get types associated with a Wikipedia concept, we also query DBpedia using its

public SPARQL endpoint. Since we query different KB’s we also need to handle dispar-

ity of the data that may be present in these KB’s. For example the same concept maybe

be referred by two different names in different KB’s - Baltimore is referred to as “Bal-

timore, Maryland” in Wikitology whereas DBpedia refers to it as “Baltimore”. To over-

come such disparity, we use the “redirects” feature of Wikipedia. Every Wikipedia concept
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Input: Table Cell Value (String)

Table Row Data (RowData)

Table Column Header (ColumnHeader)

Output: Top “N” matching instances from KB (TopN)

Query = wikiTitle: String (or)

redirects: String (or)

firstSentence: String, ColumnHeader (or)

types: ColumnHeader (or)

categories: ColumnHeader (or)

contents: (String) ˆ 4.0, RowData (or)

linkedConcepts: (String) ˆ 4.0, RowData (or)

propertiesValues: RowData

FIG. 3.5. Description of the query to Wikitology for a table cell

has redirects page associated with it, which captures all other titles the Wikipedia con-

cept maybe referred to by. For example some of the redirects of Annapolis Maryland are

Annapolis, Maryland, Anapolis, Maryland, Annapolis, Annapolis, MD.

Thus to get all types associated with a concept, we also query all the redirects of a

concept, to avoid missing out on any data due to disparity between KB’s. The SPARQL

queries to get redirects from DBpedia and types associated with a concept from DBpedia

are described in Figure 3.6. For a given Wikipedia concept, first all the redirects are ob-

tained from DBpedia using the SPARQL query for redirects. For each redirect, we get the

types associated with it, using the SPARQL query for types. Finally the types returned by

Wikitology and DBpedia are merged to create a set of types associated with the Wikipedia

instance.
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FIG. 3.6. SPARQL Query to get redirects and types for a given instance

3.2 Linking the Table Cells

Once the class labels for every column are predicted, we proceed to link the table cells

to instances / entities from the Wikipedia / DBpedia. We develop an algorithm “LinkTable-

Cells” (see Algorithm 2) for linking table cells to entities. The algorithm works as follows.

Let “S” be the set of k strings in a given table (e.g. S = Baltimore, Boston, New York, etc.).

For every string s in S, we re-query the KB with using a custom query module described

in Section 3.2.1. The KB returns a list of ordered top N instances that the string could be

linked to, along with their approximate page rank. The results obtained from the KB for

the query would be similar to the ones shown in Figure 3.2.

Let I be the set of Instances that can be linked / associated with a table cell string s. For

every instance i in I, we calculate the Levenshtein distance (Levenshtein 1966) between the

table cell string s and i. Since the same string can be referred by several names (for e.g. the

basketball team Los Angeles Lakers is referred to by names such as Lakers, L.A.Lakers,
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Algorithm 2 “LinkTableCells” - An algorithm to link table cell to entities

1: Let S be the set of strings in a table.

2: for all s in S do

3: Query the KB and get top N instances that the string can be linked to. Let I be this

set of instances for the string.

4: for all i in I do

5: Get all the other names associated with i. Let this set be O

6: Calculate the Levenshtein distance between s and all o ∈ O

7: Choose the best (smallest) Levenshtein distance between s and any o ∈ O

8: Similarly calculate the Dice score between s and all o ∈ O

9: Choose the best (largest) Dice score

10: Create a feature vector for i. The vector includes the following features: i′s Wik-

itology index score, i′s page rank, i′s page length, best Levenshtein distance and

best Dice score

11: end for

12: Input feature vectors of all i ∈ I to a SVM Rank Classifier. The Classifier outputs a

ranked list of instances in I

13: Select the instance which is top ranked. Let it be topi

14: To feature vector of topi, append two new features - the SVM Rank score for the topi

and the difference of scores between the top two instances ranked by SVM Rank

15: Input this vector to another classifier which produces a label “yes” or “no” for the

given vector

16: If the classifier labels the feature vector a “yes”, link the string s to instance topi else

Link it to NIL.

17: end for
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Los Angeles Lakers etc.), we get possible other names that i can be referred with. We

describe the process of getting other names for i in Section 3.2.2. Let O be the set of other

names for i. We calculate the Levenshtein distance between the table cell string s and all o

∈ O. Smaller the Levenshtein distance means, the strings maybe more similar, zero being

an exact match. We choose the best (i.e. smallest) Levenshtein distance between table cell

string and o. In a similar manner, we also calculate the Dice Score (Salton & Mcgill 1986)

between the table cell string s and all o ∈ O. The score we get back is a number between

0 and 1. If the Dice Score is 1 or tending to 1, means that the two strings are similar. We

choose the best (i.e. largest) Dice Score.

Along with the Levenshtein distance, Dice Score, we get the instance i’s Wikitology

Index score, i’s page length and its approximate page rank. All these values become a part

of a feature vector f (i). For all i ∈ I, we generate an f (i) to get a set of feature vectors F.

We input F to a classifier that returns a ranked list of items in F. Since for every string s we

have a set of Instances I from which we have to choose the best i, we think it is appropriate

to build a classifier that can learn to rank instances within a given set. We describe how the

classifier is trained in section 3.2.3.

We select the instance i which gets the top rank assigned by the classifier.To the feature

vector of the selected i, f (i) we append two more features - the score assigned to f (i) by

the previous classifier and the difference between the scores of the top two instances in

the ranked list generated the previous classifier. This new feature vector f’(i) is passed to

another SVM classifier which produces a label “yes” or “no”. “Yes” indicates that the table

string s should be linked to i and “no” indicates that s should be not linked to i and instead

s should be linked to “NIL”. “NIL” indicates that the KB has no knowledge or information

about the entity s. The purpose of the second classifier is to determine whether the table

cell string s should be linked to the top ranked instance i or not. We describe how we train

this classifier in section 3.2.4.



22

Input: Table Cell Value (String)

Table Row Data (RowData)

Table Column Header (ColumnHeader)

Predicted Class Labels for Columns (ClassLabels)

Output: Top “N” matching instances from KB (TopN)

Query = wikiTitle: String (or)

redirects: String (or)

firstSentence: String, ColumnHeader (or)

types: ColumnHeader (or)

categories: ColumnHeader (or)

contents: (String) ˆ 4.0, RowData (or)

linkedConcepts: (String) ˆ 4.0, RowData (or)

propertiesValues: RowData (and)

typesRefValues: ClassLabels

FIG. 3.7. Description of the re-query to Wikitology for a table cell

3.2.1 Re-querying Wikitology

For every string s in S, we re-query our KB - Wikitology to determine the top N

possible instances that s can be linked with. An important addition to the re-query module

as compared to the initial query (section 3.1.1) is the use of class labels. We use the class

labels predicted for every column as additional evidence in the re-query. The modified

query is described in Figure 3.7. Besides the fields that were present in the previous query

(Figure 3.5), we include the following additional field in the query:

• typesRef - typesRef is an exact match field for the field “types” from the Wikitology

index. The class labels of a column are mapped to the typesRef field. By including

the typesRef, we restrict the types of instances returned by the KB to types described

in the class label
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FIG. 3.8. SPARQL Query to get other names for a given instance

While all the other fields in query have a “or” clause amongst themselves, the typesRef

is “anded” with the rest of the fields in the query, which means the instance returned by the

KB should have one of types or class labels from the predicted class labels for the column

which the table string s belongs to.

3.2.2 Commonly Used Names for Entities

The same string (entity) can be referred by several names. For e.g. the basketball

team Los Angeles Lakers is referred to by names such as Lakers, L.A.Lakers, Los Angeles

Lakers etc. Thus to get the most accurate values for the Levenshtein distance and the Dice

score between a table cell string s and instance i, we gather all possible names, the instance

is referred to by. We obtain this information from DBpedia. Every instance in DBpedia

has a “rdfs:label” property associated with it, which maps the instance to other names, the

instance can be referred to by.

We map the Wikitology instance to the DBpedia instance. To avoid the problem of

disparity of data between the two KB’s, we first get all the redirects associated with the

instance. Then for every redirect for the instance, we query the public SPARQL end point

of DBpedia to get all the names the instance can be referred by. The SPARQL query for

redirects is described in Figure 3.6 and the SPARQL query for getting others names (via

rdfs:label) is described in Figure 3.8.
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3.2.3 Learning to Rank

For every string s in S, we get a set of Top N instances (I) to which s can be linked

to. Since we have to pick the best and the most appropriate one to link, we decide to use a

machine learning algorithm, which can learn to learn to rank instances within a given set.

We use SV M rank 2 algorithm of Joachims (Joachims 2006) for this purpose. SV M rank

takes a feature set of n instances as input and returns a ranked list of instances back as

output.

We build the feature vector based on measures that can be broadly categorized into

two categories - similarity measures and popularity measures. For an instance i from the

KB to be linked to the table cell string s, it must be similar to s and it must be a popular

entity within the KB. We include the similarity measures as a part of the feature vector,

since the table cell string and the instance in the KB are likely to have same or similar

names. And in situations where there are many good candidate entities to which a string

can be linked to, its’ often the case that the more popular or well-known candidate entity

is often the correct answer. Hence we include the popularity measures in the feature vector

as well.

The similarity measures included in the Feature vector are - the Levenshtein distance

and the Dice Score. The popularity measures included in the Feature vector are - the

instance’s Wikitology index score, its approximate page rank and its Wikipedia article page

length. Instead of using the actual page length, we use a normalized page length. We

normalize the page length, by taking a log to the base 10 of the page length.

2http://www.cs.cornell.edu/People/tj/svm light/svm rank.html
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3.2.4 ”To Link or Not to link, that is the question”

We train a second classifier to decide whether to link the table cell string to the top

ranked entity returned by SV M rank or not. There can be cases where all the Top N in-

stances returned by the KB maybe the incorrect ones to link. Such a case is very likely

when the table cell string we are querying, may be a new entity and the KB has no infor-

mation or knowledge about the it.

We use a binary SVM classifier SMO provided in Weka (Hall et al. 2009) which takes

a feature vector as input and produces a label “yes” or “no” as output. The label “yes”

indicates that the table cell string should be linked to the top ranked instance and the label

“no” indicates that it should be linked to “NIL”. “NIL” is similar to choosing an “None of

the above” option.

Two new features are added to the existing feature vector - the score assigned to top

ranked instance by SV M rank and the difference in score between the top two instances in

the list generated by SV M rank. We choose these features since if the top ranked instance

is a correct choice then it gets a much higher score as compared to other instances in the

list.

3.3 Identifying Relationships between columns

We develop an algorithm “IdentifyColumnRelations” (see Algrothm 3). Given two

columns whose strings are linked to Wikipedia / DBpedia entities, it identifies the best

possible relation between those two columns. The algorithm works as follows. Let Ci and

Cj be set of k strings each (whose values are linked) in any two given columns I and J. Let

every kth string from Ci and Cj be sk,i, sk,j respectively. For every kth string in both the

columns we query DBpedia to identify relations between the two strings sk,i and sk,j . We

describe the query process in section 3.3.1. Let the set of relation between every such sk,i
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Algorithm 3 “IdentifyColumnRelations” - An algorithm to identify relations between two

columns

1: Let Ci and Cj be sets of k strings each (which are linked to entities from DBpedia) in

columns I and J

2: For every kth string (sk,i, sk,j) in Ci and Cj , query DBpedia to get set of relations

between sk,i, sk,j . Let that set be Rk

3: Generate a set of candidate relations CR between Ci and Cj from the relation sets Rk

between each of the kth strings in Ci and Cj

4: for all r in CR do

5: for k = 1 to sizeOf(Ci) do

6: if r ∈ Rk then

7: score = score + 1

8: end if

9: end for

10: Normalize the score: score = score / number of rows in the table

11: end for

12: Choose the relation r from CR that gets the highest score

and sk,j be Rk.

Once we identify relations between all the pair of strings between the two columns,

we generate a set of candidate relations CR from the set of relations Rk between each sk,i

and sk,j . Each candidate relation in CR is assigned a score. For every relation r in CR, we

check if r appears in Rk (where 0 < k < number of rows i.e. number elements in columns

Ci or Cj). If r appears Rk, then score of r is incremented by 1. Finally the sum score of r

is normalized to a number between zero and one, by dividing the sum score by number of

rows. Once all the relations in CR are assigned a score, the relation with the best (highest

score) is chosen as the relation between the columns I and J.

Once the relationships are identified between two columns, the next step is figure out

which relations would best describe the table as a whole. There might be many relations

that may exist between various columns in a table. For example if we had a table with four

columns, column one might be related with columns 2, 3 and 4; column 2 with columns 1

and 4 and column 3 with columns 1 and 4 as well. Not all relations might be relevant and
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useful in interpreting and describing the table overall, thus we need to figure out more the

relevant relations.

We address this issue via a heuristic based approach. Every table has a primary column

or a significant column, which can uniquely identify each row of the table. For example if

we go to the table in Figure 1.1, column one “City” would a primary column / significant

column of the table. We choose all relations between the primary column and any other in

the table column with which the primary column is related.

Our definition of a “primary column” is as follows - The column that has relation with

most other columns in the table is chosen as the primary column. If we go back to the table

in Figure 1.1, the column “City” is related with most other columns in table. City is related

with State, Mayor and Population. Thus the Column City would be chosen as the primary

column. In the example mentioned above of table with four columns, column 1 would be

chosen as the primary column.

Another heuristic that can be applied to choose a primary column, would be choosing

the left most column as the primary column, since generally in most tables, the left - most

column is the more significant or important column around which the table is structured.

We recognize that our current work and approach of selecting the best possible relations to

describe and interpret the table overall is pretty preliminary. We discuss some of the issues

and other possible approaches in the Future Work chapter.

3.3.1 Querying DBpedia to identify relations

To identify relations between two strings we query the DBpedia. Since the strings

are linked at this stage, we can query the public SPARQL endpoint of DBpedia using their

URIs. The data in DBpedia is stored in form of the following triple - “Subject : Predicate

/ (Property) : Object”. When a SPARQL query is made over DBpedia data, it also needs

to follow the same organization. The Subject in a SPARQL query needs to be URI and
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the object can be either a literal string or a URI. The predicate can be any of the properties

present between any two instances of DBpedia (e.g. rdfs:label, rdf:type etc). The predicate

is our case is the relation we want to identify between the two instances.

When we query DBpedia for relations between two instances, we need to consider the

following things -

1. Properties and relations have a direction. We can obtain one relation when string in

column I is the subject and another one when the string in Column J is the subject. For

example the relation between George Bush (as subject) and Barack Obama (as object)

would be “successor” whereas the relation between Barack Obama (as subject) and

George Bush (as object) would be “predecessor”.

2. There is disparity within DBpedia itself on how data is represented. Given two

instances and a relation between them, the object in the relation is sometimes is

represented as URI and in some other cases is represented as a literal string. For

example the relation largest city between Baltimore and Maryland is represented as

<http://dbpedia.org/Maryland> dbpprop:largestCity <http://dbpedia.org/Baltimore>,

whereas the relation team between Kobe Bryant and Los Angeles Lakers is repre-

sented as <http://dbpedia.org/Kobe Bryant> dbpprop:team “Los Angeles Lakers”.

Even though a DBpedia page for Los Angeles Lakers exists, it is not linked.

Taking these factors into account, we use the following approach when we query

DBpedia. As mentioned before, since there is disparity between the data stored in different

KBs (viz. Wikitology and DBpedia), we first get the set of redirects for both the strings

(sk,i and sk,j). The SPARQL query for redirects is the same as described in Figure 3.6. For

each of the redirects for sk,i and sk,j , we query DBpedia to obtain the relations between

both the strings as described in Figure 3.9.
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FIG. 3.9. SPARQL Query to get relations / properties between two instances

We make two types of queries. The first query is when the string sk,j is referred with

its URI in the “object” part of the query. In the second query, the string sk,j is referred as

a literal string in the “object” part of the query. As mentioned before, a string may have

many other names that it can be referred with, hence we get all other names that the string

sk,j can be referred to by and repeat the second query by using all possible other names as

literal string in “object” part of the query.

3.4 Representing Tables as linked data

Based on the data generated in the previous steps, we develop a template which can

be used to generate a linked data representation of table. The template is described in

Figure 3.10. We generate the output in Notation 3 or N3 (Berners-Lee & Connolly 2008),

a serialization of RDF. We decided to use the N3 representation since it is much more

compact and human readable as compared to RDF.

Every column header is associated with a class label from an appropriate ontology. We

use the “rdfs:label” property from the RDF Schema (Brickley & Guha 2004) to associate

the column header string with the class label. For example R rdfs:label L states that L is a

human readable label (or common name) for the resource R.
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A template in N3 format:

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

“ColumnHeader1” is rdfs:label of PredictedClassLabel1 .

“ColumnHeader2” is rdfs:label of PredictedClassLabel2 .

“TableCellString” is rdfs:label of CellValueURL .

CellValueURL a PredictedClassLabel .

property rdfs:domain PredictedClassLabel1 .

property rdfs:range PredictedClassLabel2 .

Where:

ColumnHeader - is a column header from the table

TableCellString - is a string representing a table cell

PredictedClassLabel - is the class label associated with the column

CellValueURL - is the DBpedia url, the table cell string is linked to

property - is the relation discovered between the two columns

FIG. 3.10. A template for representing tables as linked data in N3

Every table cell is also linked to an entity from DBpedia. We also use the “rdfs:label”

property to associate a table cell string with the url. The type of table cell string is described

by the predicted class label for the column of the string. We use the “rdf:type” property to

capture this information in the output. N3 notation allows us to make use of “a” instead

of rdf:type. Thus the statements :Bob a :Person and :Bob rdf:type :Person are equivalent.

We make use of “a” for rdf:type property in our template. To describe the relation iden-

tified between two columns, we use the the “rdfs:domain” and “rdfs:range” property. P

rdfs:domain C states that the subject of a triple having predicate as P, can be an instance

of class C. P rdfs:range C states that the object of a triple having predicate as P, can be an

instance of class C.

The template in Figure 3.10 uses variables ClassLabelPredicted, TableCellString, Cel-

lValueURL and property. Replacing these variables with actual strings from a table and the
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@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix dbpedia: <http://dbpedia.org/resource/> .

@prefix dbpedia-owl: <http://dbpedia.org/ontology/> .

@prefix dbpprop: <http://dbpedia.org/property/> .

“City”@en is rdfs:label of dbpedia-owl:City .

“State”@en is rdfs:label of dbpedia-owl:AdminstrativeRegion .

“Baltimore”@en is rdfs:label of dbpedia:Baltimore .

dbpedia:Baltimore a dbpedia-owl:City .

“MD”@en is rdfs:label of dbpedia:Maryland .

dbpedia:Maryland a dbpedia-owl:AdministrativeRegion .

dbpprop:LargestCity rdfs:domain dbpedia-owl:AdminstrativeRegion .

dbpprop:LargestCity rdfs:range dbpedia-owl:City .

FIG. 3.11. A example of how the template could be used for representing tables as linked

data in N3

predicted class labels, urls will generate a linked data representation of the table. Figure

3.11 describes an example with actual values.

Algorithm 4 can be used to generate a linked data representation of the table as N3.

Given a table, along with its predicted class labels for a column, table cells linked and

relation between columns discovered, Algorithm 4 iteratively uses the template in Figure

3.10 to generate linked data representation for a given table.

3.5 Special Cases

3.5.1 Column containing Numbers

The approaches discussed so far work well when the values in the given column are

strings. But there are columns in tables that contains numbers - population (see Figure 1.1),
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Algorithm 4 “GenerateLinkedData” - An algorithm to represent tabular data in N3

1: Let C be the set of Column Headers of the table and PCL be the set of Predicted Class

labels for column headers.

2: Let S be the set of Strings from a table which can be linked and U be the set of the urls

to which the strings are linked to .

3: Let getColumn be a method which returns a column header, given a string.

4: Let R be a method that returns a relation between the columns in the table. R (C1, C2)

will return the relation between columns C1 and C2.

5: Insert the appropriate prefixes in the N3 file.

6: for all c in C do

7: Insert the following triple in the file:“c”@en is rdfs:label of PCL(c) .

8: end for

9: for all s in S do

10: Insert the following triple in the file:

“s”@en is rdfs:label of U(s) .

U(s) a PLC(getColumn(s)) .

11: end for

12: for all ci,cj in R do

13: Insert the following triples in the file:

R(ci,cj) rdfs:domain PLC(ci) .

R(ci,cj) rdfs:range PLC(cj) .

14: end for
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telephone numbers, social security numbers etc. We need to develop different mechanism

to handle columns that contain numbers.

Numbers are not entities that can be linked to entities of a KB. In fact, numbers are

generally values of some property associated with entities in the KB. For example if we

go back to the table in Figure 1.1, the values in the column “Population” are values of the

property “population” and the property population is associated with the strings in column

one “City”.

We propose the following approach to handle columns that contains numbers. Once

it is identified that a column contains numbers, we try to detect what kind of numbers the

column stores (for example telephone numbers, SSN etc.). Now consider the first row of

the table. For every string in row, we query DBpedia to check if any property is returned

that has the number (or its near approximate) as its value for that property.

Once we identify the string whose property has a value from the column that contains

numbers, we check if all other strings in the same column also have the same the property

for the respective numbers in the column that contain numbers, the values in the column of

numbers can be linked to the strings as values of the identified property.

3.5.2 Column containing Acronyms

Another case which we need to handle differently is acronyms. Columns can consist

of acronyms of states, stock tickers, organizations, measurement units etc. Although these

are strings and can be queried for, a better approach would be detecting that the column

contains acronyms and expanding the acronyms during the query process.

Acronyms are generally small and are of three to five characters in length. We can

check the length of all the strings in a given column. If the length of all the strings is five or

less, we can consider that column for further acronym processing. Once we determine that

the column may contain acronyms, we can query the strings of the columns against well-
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known acronyms databases to determine what they stand for. Replacing acronyms with

their expanded forms will enhance the class label prediction, entity linking and relation

identification process.



Chapter 4

EVALUATION

We developed a prototype to test the validity of the approach described in Chapter 3.

We describe our data set in section 4.1, our evaluation for class label prediction for columns

in section 4.2, our evaluation for linking table cells in section 4.3 and evaluation for column

relations in section 4.4.

4.1 Data Set

Our test data consists of fifteen tables obtained from Google Squared, Wikipedia and

data set of tables shared by Google researchers. The table topic and their columns are

described in Figure 4.1 and a summary of the data set is presented in Figure 4.2. Over-

all the fifteen tables have 199 rows, 56 columns and 639 entities. However four tables

included one column each which had numbers in them. In our current evaluation we ex-

cluded columns which contain numbers, leaving 52 columns for assigning class labels to

and 611 entities to be linked.

We also classified the columns and the entities in the data set into four categories -

Person, Place, Organization and Others. The distribution of entities across these four cat-

egories is shown in Figure 4.3 and the distribution of columns across these four categories

is shown in Figure 4.4. 45 % of the entities are Places, 20 % are Person, 10 % are Orga-
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Table Topic Columns Source

US States State, Capital City, Largest

City,Governor

Google Squared

US Presidents President, Party, Vice

President,Preceded by,

Succeeded by

Google Squared

Basketball players Name, College, Team,

Nationality,Place of Birth

Google Squared

US Cities City, State, Mayor, Popu-

lation

Google Squared

Rivers in Europe River, Length, Basin

Countries,Mouth, Origin

Google Squared

Fortune 500 Companies Item Name, Industry,

Ceo,Headquarters, Type

Google Squared

James Bond Movies Item Name, Director,

Country, Cinematogra-

pher, Preceded By

Google Squared

American Films of 2009 Title, Director, Genre,

Notes

Wikipedia

American Music Awards

of 2009

Artist, Song Wikipedia

Foreign Born United States

Politicians

Name, Country of Birth,

Positions Held

Wikipedia

Hospitals in Kenya Name, Locale, Opened Wikipedia

National Capitals City, Country Wikipedia

Technology Companies Company, Location,

Founded, Industry

Wikipedia

Country Capital Country, Capital Google Dataset

Country Currency Country, Currency, Cur-

rency Code

Google Dataset

FIG. 4.1. Table topics, their columns and source
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Number of Tables 15

Total Number of Rows 199

Total Number of Columns 56 (52)

Total Number of Entities to be Linked 639 (611)

FIG. 4.2. Summary of the data set used in Evaluation

nizations and 25 % are others (like Films, Songs, Nationality etc.). 40 % of the columns

contained Places, 25 % contained Persons, 12 % contained Organizations and 23 % con-

tained other types of data.

4.2 Evaluation for Class label prediction for Columns

The evaluation for class label prediction for columns was bit tricky since labeled data

did not exist. We did not have tables with column headers associated with class labels

from appropriate ontologies. Hence we decided to use human judgment to test how we

fare in this task. We evaluate our class labels predicted from the DBpedia ontology only,

since it would be fairly easy for our human judges to browse the DBpedia ontology if they

wished to, when they are evaluating. All the three human judges were graduate students in

Computer Science who have completed a graduate level course on Artificial Intelligence;

however they had no background in the Semantic Web and linked data.

For each of the 52 columns, our system generates a set of possible classes, ranks each

class in the set and picks the top one. In the first evaluation, we compare the ranked list that

we generate against a “gold standard” ranked list.

To generate a “gold standard” ranked list, we asked three human judges to rank each

of the class labels in set generated for every column. We asked them to rank the most

relevant as 1, the next relevant one as 2 and so on. The complete evaluation guideline given
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FIG. 4.3. The percentage of entities in each of the four categories

FIG. 4.4. The percentage of columns in each of the four categories
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to the human judges is specified in Appendix A.1. Since there were three judges, each class

label in a set got three ranks (or scores); we calculated the average rank for each class label

and sorted the set of class labels based on average rank. The class label with the smallest

average rank was ranked 1; the second one was ranked 2 and so on.

We use Mean Average Precision (Manning, Raghavan, & Schütze 2008) to compare

the ranked list generated by the system against the gold standard. Given a query q, the

Mean Average Precision is defined as follows -

AveragePrecision(q) =

∑
N

n=1
P(n) × R(n)

total number of relevant labels for q

Where:

R(n) - is the relevance at n. If the class label ranked “n” in the system generated set is a

relevant one then R(n) is 1,else it is 0.

P(n) - is the precision at n. It measures the relevance of the top n results.

P(n) =
Number of relevant class labels of rank n or less

N

N - is the number of labels retrieved. For our evaluation we consider the top 3 labels

retrieved.

We define relevance as follows - For each column, we consider the top three ranked

labels by the users as the relevant class labels for that column. Thus we restrict the total

number of relevant class labels per column to 3. For a given column any label which is not

in the top 3 ranked labels is considered as not relevant.

Mean average precision is useful in comparing two ranked sets. It’s commonly used

in the Information Retrieval domain to compare two sets of ranked results. Mean average

precision captures the ordering of the documents returned by a query, giving importance

to higher ranked documents. If the ordering of documents in both the ranked sets is same

or similar, then Mean Average Precision will be 1 or will tend towards 1. It will be on the

lower side of 1 (tending to zero), if the ordering of the elements does not match.
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FIG. 4.5. Distribution of Mean Average Precision for table columns

The distribution of mean average precision between the system generated ranked set

of labels and the gold standard ranked list is given in Figure 4.5. Our algorithm fares mod-

erately as compared to human judgment; for 80.75 % of the columns, the MAP between

the system generated ranked set of labels and the gold standard ranked list is greater than

0. A MAP greater than 0 indicates that there is at least one relevant label in the relevant

ranked position in the system generated list.

We also calculated recall between systems’ generated ranked set of labels and gold

standard ranked list of labels. This measure helps us to check whether our algorithm is

producing relevant set of labels for every column or not. We define Recall (R) as -

R =
Number of relevant labels retrieved

Total Number of relevant labels

The definition of relevance remained the same; for each column, we consider the top
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FIG. 4.6. Distribution of Recall values for table columns

three ranked labels by the users in the gold standard as the relevant class labels for that

column, thus restricting the total number of relevant class labels per column to 3.

The recall between the system generated ranked set of labels and the gold standard

ranked list is given in Figure 4.6. Our algorithm does fairly well predicting relevant class

labels in the top 3 ranks. For 75 % of the columns, Recall between the system generated

ranked set of labels and the gold standard ranked list is 0.6 or greater.

We also wanted to compare how frequently system produced top three ranked label

matches against the top three of the gold standard. Figure 4.7 presents this comparison.

15.38 % of the times the system’s top 1 and 2 matched with the gold standard’s top 1 and

2; 23.08 % of the times, system’s rank 3 label matched with the gold standard’s ranked 3

label.

In our final evaluation for class label prediction, we went back to our three human
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FIG. 4.7. A comparision of how many times the top 3 ranked labels match with the top 3

ranked labels from the gold standard list

judges. In this evaluation the human judges were asked to evaluate our predicted labels

for a given column. The human judges were presented a “yes / no” question for every

column. For a given column, the judges were asked whether the predicted label was a

correct one or not. The evaluation guideline (see Appendix A.2) specified that even though

a more accurate label may exist for a given column, the judges needed to decide whether

the predicted label is fair and a correct one for a column. The prediction for a class label

was considered to be correct if two out of the three judges agreed that it was a correct and

fair prediction.

The results of the “correctness evaluation” are presented in Figure 4.8. On an overall

basis, the judges considered 40 out of the 52 class labels predicted to be correct giving us

an accuracy of 76.92 %. We also checked the accuracy within the four categories in which

the columns were distributed. We obtained the highest accuracy in identifying columns that
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FIG. 4.8. A category-wise breakdown for class label correctness

contained Places (90.48 %), followed by Persons (76.92 %). However we had moderate

success in identifying columns which contained Organizations (66.67 %) and other types

of data (58.33 %) (movies, songs etc.).

To conclude the evaluation for class label predictions, our evaluation measures (recall

and the “correctness evaluation”) show that our approach is indeed producing relevant and

correct labels, but the other measures (Mean Average Precision and Rank Comparison)

show that we are enjoyed moderate success in ranking the labels within the predicted set

well and predicting the most accurate label as class label for a column.
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4.3 Evaluation for linking table cells

For the evaluation of linking table cells to entities, we manually hand labeled the

611 table cells to their appropriate Wikipedia / DBpedia pages. We compared the system

generated link against the expected link for each table cell.

Our results for linking table cell to entities are presented in Figure 4.9. Overall we

were able to correctly link 66.12 % of the table cell strings to the appropriate entity from

Wikipedia / DBpedia. A look at the breakdown of accuracy based on the categories (see

Figure 4.9 shows that we had the highest accuracy in linking Persons (83.05 %) followed

by linking Places (80.43 %). We have moderate success in linking Organization (61.90

%), but we fare poorly in linking other types of data like movies, nationality, songs, types

of business and industry etc. with an accuracy of just 29.22 %.

In cases where the KB had no knowledge about an entity, our algorithm is supposed

to link such an entity to “NIL”. Our dataset had 24 entities and in all the 24 cases, we were

able to predict correctly that the table cell should be linked to “NIL”. As a preliminary

evaluation, we can say that our approach works well, in cases when KB has no knowledge

about the instance.

Comparing the entity linking results against our previous work where we used a

heuristic based method for linking table cells to entity (Syed et al. 2010), we have im-

proved our accuracy in linking places by a good margin (18.79 %) and accuracy for linking

persons and organizations slightly decreased (by 7.71 % and 4.77 % respectively). How-

ever this would not be that fair a comparison since the initial results from the previous

method are for a small subset1 of the current data set.

In the following two subsections, we discuss the performance of our two classifiers -

the first one which learns to rank entities within a set (SV M rank classifier) and the second

1The subset had 171 entities to link
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FIG. 4.9. A category-wise breakdown accuracy for linking table cells
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Correctly predicted top ranked instance 215

Incorrect predicted top ranked instance 7

Total number of instances 222

FIG. 4.10. The classifier accuracy for test data

one which predicts whether to link to the top one or not (Binary SVM yes/no classifier).

4.3.1 Evaluation for the SVM rank classifier

We trained the SV M rank classifier using a training data that consisted of 171 queries

each having 10 results returned by the KB (which makes it 1710 feature vectors). For every

query, the instance to which the table cell is supposed to be linked was given the highest

rank and all other instances were given a same lower rank. If the query results did not

include the correct instance, then all the instances were given a same lower rank. For such

a query there would be no top-ranked instance. Within each query the classifier learnt to

order the instances within the set, assigning the highest rank to the correct instance and

lower ranks to the other incorrect instances.

We generated a test - data on similar lines. The test data was an unseen set of data,

which the classifier hadn’t seen when it learnt. The test data consisted of 222 queries each

having 10 results returned by the KB. The results of the classifier on the test data are given

in Figure 4.10, the classifier obtained an accuracy of 96.84 % in correctly identifying the

top ranked instance.

The final test data (for the 611 entities) had 611 queries again with each having 10

results. The accuracy result of the classifier for the 611 entities is shown in Figure 4.11.

The classifier obtained an accuracy of 88.87 % in correctly identifying the top ranked

instance.
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Correctly predicted top ranked instance 543

Incorrect predicted top ranked instance 68

Total number of instances 611

FIG. 4.11. The classifier accuracy for the 611 entities

4.3.2 Evaluation for the SVM binary (yes/no) classifier

The training data for the Binary SVM (yes/no) classifier consisted of 222 feature vec-

tors. The 222 feature vectors were of the instances which were classified as top ranked by

SV M rank classifier. For each vector, we assigned a class label of yes if the top ranked in-

stance was the correct one for linking, else we assigned a class label of no if the top ranked

instance was incorrect one for linking. The distribution of positive (class yes) and negative

(class no) is as follows - the training data had 146 positive examples and 76 negative exam-

ples. The classifier learnt to assign a class label yes to if the linking is correct and a class

label of no, if the classifier thought the linking was incorrect.

The test data was a set of unseen data, not seen by the classifier during the training

phase. It consisted of 171 queries, which were assigned a class label of yes or no on similar

lines described above. The test data had 119 positive examples and 52 negative examples.

The results of the classifier on the test data are given in Figure 4.12. The classifier obtained

an accuracy of 84.79 % in correctly identifying whether to link to the top ranked instance

returned by SVMrank or not. The Precision, Recall and F-Measure values for the test data

are presented in Figure 4.13.

The final test data (for the 611 entities) had 611 queries. The accuracy result of the

classifier for the 611 entities is shown in 4.14. The classifier obtained an accuracy of 88.54

% in correctly identifying whether to link to the top ranked instance returned by SVMrank

or not. The Precision, Recall and F-Measure values for the final test data are presented in
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Correctly Classified Instances 145

Incorrectly Classified Instances 26

Total number of instances 171

FIG. 4.12. Accuracy for test data of the SVM binary Classifier

FIG. 4.13. Precision, Recall and F-Measure for the test data of the SVM binary Classifier
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Correctly Classified Instances 541

Incorrectly Classified Instances 70

Total number of instances 611

FIG. 4.14. The accuracy for SVM binary Classifier for the 611 entities

FIG. 4.15. Precision, Recall and F-Measure of the SVM binary Classifier for all 611

entities

Figure 4.15.

The values of Precision, Recall and F-Measure for both the class labels yes and no, in

both the test sets shows that the classifier does a pretty good job of identifying whether to

link to the top ranked instance or not.

4.4 Evaluation for Column relations

Evaluating relation identified between columns was again tricky since we did not have

labeled data. A solution to this problem would be getting humans to look at tables and
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identify all possible relations between. Humans could annotate the tables to indicate which

columns in the table are related.

We were not sure of the feasibility of the idea, thus we decided to do a pilot experi-

ment. We selected five random tables from our data set and asked three evaluators to iden-

tify if relations existed between pairs of columns in the table. The three evaluators were

fairly successful in identifying columns between which a relation exists, but there were

cases where the evaluators themselves were not sure whether a relation can exist between

given two columns.

Since the tables used in this evaluation were fairly simple and less ambiguous, it was

possible for the evaluators to identify the columns between which a relation exists. How-

ever this approach needs to tested with more complex and ambiguous tables, to see how

the evaluators fare in identifying relations.

For the given five tables, the evaluators were able to identify 20 different relations

between various columns. Of all the columns and relations identified by the user, we choose

all such relations that two out of the three evaluators were able to identify. Our approach

of relation identification did not fare well against the human judgment. We were able to

identify only 5 out of the 20 relations the humans identified, giving us an accuracy of just

25 %.

Our approach did not do well since the basis of Algorithm “IdentifyColumnRelations”

is the table cell strings being linked accurately. The sparseness of data in the KB and the

error in the linking of table cells are possible reasons for the low accuracy. We discuss an

alternate and possible approach for relation identification and discovery in the next chapter.



Chapter 5

DISCUSSION AND FUTURE WORK

Evaluations show that our proposed approach can be used to convert and represent

data stored in tables as Linked Data. However there are many issues and problems that still

need to be handled and addressed. We present some of these issues here.

5.1 Machine Learning based Algorithm for Class Label Prediction

Our evaluation shows that the algorithm “PredictClassLabel” (Algorithm 1, Chapter

3, Section 3.1) works well in predicting a correct label, but is does not work well in ranking

and picking the best or more accurate class label for a column. The algorithm is based on

a couple of heuristics.

The first heuristic used is in the formula for score, which is used to assign a score for

every class label - string pairing. The score is weighted sum of the instance’s Wikitology

rank and its predicted page rank. In the process of weighting we give a higher weight to

Google page rank (w = 0.75) based on the heuristic that more popular the instance / entity

is, more likely it is a correct answer as compared to a less popular one.

The second heuristic is used in the selection of class labels as candidate labels for a

column header. If a particular class label has a sum score (over the entire column) less than

a particular score, we do not select it as a candidate label. We use a cutoff score of 0.3. This
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is based on the heuristic that if a class label has a low score it means that not many strings

contributed or voted towards the class label, and hence it is less likely to be a correct label

that can represent all the strings in the column.

We would like to explore the idea of replacing this heuristic based scoring by some

machine learning techniques. We can build a feature set for all possible class labels for a

column and train a classifier. The feature set for every class label can include the following

features - the normalized sum of instances’ Wikitology rank that voted for the class label,

normalized sum of the approximate page ranks of the same instances, a measure of seman-

tic similarity between the class label and the table column header, and a measure of how

deep the class label is in the hierarchy of classes.

Since there can be more than one correct label for each column (For e.g. in Figure

1.1. for Column 1 “City” the correct labels can be any one of dbpedia-owl:City, dbpedia-

owl:Settlement, dbpedia-owl:PopulatedPlace and dbpedia-owl:Place), we could use an al-

gorithm that can learn to rank instances within a given set.

5.2 Discovery of Relations between columns

The basis of the algorithm “IdentifyColumnRelations” (Algorithm 3, Chapter 3, Sec-

tion 3.3) is on table cell strings being linked to entities from Linked Open Data cloud.

However this approach will not work well if our linking of table cell strings is inaccurate

or if we are not able to link the strings to entities (which can happen when table contains

entities that are not present in the KB). Another shortcoming of this approach is that it

identifies existing relations between strings in the two columns, to identify relations be-

tween columns. Thus we need to figure out an alternative approach for identification and

discovery of new relations between columns.

We are considering exploring the following approach. For any two classes on DB-
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pedia, we discover what all relations exist between all the instances of those two classes.

We can further calculate the probability of occurrence of every such relation given those

two classes. We can discover all such relations between all the classes on DBpedia and

pre-compute and store the probability of each relation given two classes. We can then use

this knowledge in our process of discovery of relation between columns.

For e.g. once we identify the class label of two columns as dbpedia-owl:Politician and

dbpedia-owl:Party, we can look up our KB which will have relations with pre-computed

probabilities given the two classes dbpedia-owl:Politician and dbpedia-owl:Party.

5.3 Representing Tables as Linked Data

We have proposed an initial representation of tables as Linked Data. Our proposed

representation will work well for known entities and entities present in a given KB. How-

ever we will discover a lot of entities in tables that are unknown and we have no knowledge

about. We won’t be able to link such entities with existing entities from the KB, yet in the

process of converting the entire table to Linked Data, we can discover facts and knowledge

about an unknown entity.

For e.g. suppose we had a place like Arbutus in a column of Populated Places. Using

the class label predicted for the column, we discover that the Arbutus is a type of Populated

Place. Based on the relations discovered between the column in which Arbutus is and

other columns in the table, we can discover that Arbutus is located in Administrative region

Baltimore County and the population of Arbutus is the number from the column Population.

How we handle and represent the new information is an area that we will explore in

the coming days. We identify that how we publish known as well as unknown tabular data

as Linked Data on the Semantic Web, how we make published information useful and what

mechanisms do we provide to allow applications and agents to exploit this data, remain
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important questions and issues that need to be addressed.

5.4 Evaluation Mechanisms

Evaluating the correctness of our work has been indeed a tricky task. A major issue

was availability of labeled data. Although we were able to extract tables from Wikipedia in

which the cell values were linked to their appropriate Wikipedia pages, we did not have any

data in which column headers were linked to class labels or data in which relations between

columns were identified. Thus we had to scale down the number of tables we evaluated our

approach on.

For our evaluation of class label prediction for columns and relation between columns,

we used judgment of three human judges. In the future we would have more human judges

for evaluation of our work. We would explore the use of Amazon Mechanical Turk1to

manage a large scale evaluation.

We also have a large data set of 2500+ tables discovered on the web by Google2. We

plan to annotate (i.e. link the table cells) these tables, so that we can run our experiments

on this large data set of naturally occurring tables found on the web.

Our analysis of Wikipedia shows that there are about 120,000+ tables in various

Wikipedia articles. The advantage of tables found on Wikipedia is that their table cells

are already linked. However not all of these tables hold high quality relational data. We

plan to explore mechanism to extract tables from Wikipedia which contain useful relational

information, which once converted to Linked Data can be exploited applications.

The data set for our current evaluations included very few entities that were not there

in the KB. In the coming future, we also plan to test our approach with tables with entities

1https://www.mturk.com/mturk/welcome
2We would like to thank Dr.Alon Halevy,head of the Structured Data Group of Google Research for

sharing this dataset with us
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that are not present in the KB.



Chapter 6

CONCLUSION

In this thesis we presented an automated framework for extracting, interpreting and

generating Linked Data representation of data stored in tables. In this framework, we

presented an approach for associating and predicting a class label for every column header

in the table. We also presented an approach for linking the table cell strings to appropriate

entities from the Linked Open Data cloud. We also presented mechanism for identifying

and discovering relations between the columns of the tables. We also proposed a Linked

Data representation for tables in N3 serialization.

Evaluations show that we have been fairly successful in representing tables as Linked

Data accurately. Many issues still remain to be addressed as well. Working on the issues

discussed in the previous chapter, we can definitely improve our success rate of converting

and representing tables as Linked Data. One of the problems with the Semantic Web has

always been availability of useful data. With our automated framework, we are unlocking

large amounts of tabular data currently inaccessible and useless for the Semantic Web and

making it more meaningful and useful on the Semantic Web for agents and applications to

exploit. We believe our work will contribute in materializing the web of data vision.
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Appendix A

EVALUATION GUIDELINES

A.1 Evaluation Guidelines for ranking class labels

The following guidelines were presented to the human judges, when they were asked

to rank the class labels for every column.

Evaluation Guidelines

• You are given a table at the top of every evaluation sheet.

• For every column in the table, you are given a list of descriptions or labels that can

be used to describe the values in the column.

• You have to rank the descriptions or labels that will be the best match for all the

values in the column in the context of the entire table.

• The label that is the best match should get the highest rank (1), the second best match

getting the next rank (2), the third best getting a rank of 3 and so on.

• You can choose the ranks from the dropdown box provided besides each label.

• The labels in the options may have a hierarchy associated amongst themselves.

• For example in the DBpedia ontology (from where the labels are) City is a subclass

of PopulatedPlace which in turn is a subclass of Place. In such a case, you may want
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to assign a Rank of 1 to city (since its the finest description), followed by Rank 2 to

PopulatedPlace and Rank 3 to Place.

If you wish to, you can browse the hierarchy of the class labels at -

– http://www4.wiwiss.fu-berlin.de/dbpedia/dev/ontology.htm

– http://mappings.dbpedia.org/server/ontology/classes

An example :

City State Country

Baltimore MD US

Boston MA US

New York NY US

Los Angeles CA US

Suppose you had to choose a label for the column “City” like the one shown above.

Given the options, a possible correct way of ranking would be as follows -

http://dbpedia.org/ontology/Place ... [3]*

http://dbpedia.org/ontology/PopulatedPlace ... [2]*

http://dpedbia.org/ontology/City ... [1]*

None of the above ... [4]*

* - The numbers in the square bracket indicates the rank for the labels for column

“City”.
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A.2 Evaluation Guidelines for correctness of class labels

The following guidelines were presented to the human judges, when they were asked

to evaluate the correctness of the class label predicted for every column.

Evaluation Guidelines

• You are given a table at the top of every evaluation sheet.

• For every column in the table, you are given a class label that describes the values in

the column.

• You have to decide whether the class label is a correct class label for that column or

not.

• If the class label is correct, you should mark “Yes” or if the class label is incorrect

you should mark “No”

• Even though a better and a more accurate class label may exist, in this evaluation,

you need to decide whether the given class label is fair and correct one or not.

An example :

City State Country

Baltimore MD US

Boston MA US

New York NY US

Los Angeles CA US

Q. Is the label http://dbpedia.org/onotlogy/PopulatedPlace a correct label for column

“City”?



60

A. Answer to this question would be “yes”. Even though a more accurate label like

http://dbpedia.org/onotlogy/City exist since its a fair and correct label.

Q. Is the label http://dbpedia.org/onotlogy/Highways a correct label for column

“State”?

A. Answer to this question would be “no”. Since the label is inaccurate for the column
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and Cudré-Mauroux, P., eds., ISWC/ASWC, volume 4825 of Lecture Notes in Computer

Science, 225–238. Springer.



63

[18] Hu, M.; Lim, E.-P.; Sun, A.; Lauw, H. W.; and Vuong, B.-Q. 2007. Measuring article

quality in wikipedia: models and evaluation. In CIKM ’07: Proceedings of the sixteenth

ACM conference on Conference on information and knowledge management, 243–252.

New York, NY, USA: ACM.

[19] Joachims, T. 2006. Training linear svms in linear time. In Proceedings of the

12th ACM SIGKDD international conference on Knowledge discovery and data min-

ing, KDD ’06, 217–226. New York, NY, USA: ACM.

[20] Langegger, A., and Wob, W. 2009. Xlwrap - querying and integrating arbitrary

spreadsheets with sparql. In Bernstein, A.; Karger, D. R.; Heath, T.; Feigenbaum, L.;

Maynard, D.; Motta, E.; and Thirunarayan, K., eds., International Semantic Web Con-

ference, volume 5823 of Lecture Notes in Computer Science, 359–374. Springer.

[21] Lassila, O., and Swick, R. 1999. Resource description framework (rdf): Model and

syntax specification. recommendation. Technical report, W3C.

[22] Lawrence, E. D. R. 2004. Composing mappings between schemas using a reference

ontology. In In Proceedings of International Conference on Ontologies, Databases and

Application of SEmantics (ODBASE, 783–800. Springer.

[23] Levenshtein, V. I. 1966. Binary codes capable of correcting deletions, insertions, and

reversals. Technical Report 8.

[24] Lin, C. X.; Zhao, B.; Weninger, T.; Han, J.; and Liu, B. 2010. Entity relation discovery

from web tables and links. In Rappa, M.; Jones, P.; Freire, J.; and Chakrabarti, S., eds.,

WWW, 1145–1146. ACM.

[25] Manning, C. D.; Raghavan, P.; and Schütze, H. 2008. Introduction to Information

Retrieval. Cambridge University Press.



64

[26] Miller, G. A. 1995. Wordnet: a lexical database for english. Commun. ACM 38:39–

41.

[27] 2004. Owl web ontology language overview. W3c recommendation, World Wide

Web Consortium.

[28] Pantel, P.; Philpot, A.; and Hovy, E. 2005. Aligning database columns using mutual

information. In Proceedings of the 2005 national conference on Digital government

research, dg.o ’05, 205–210. Digital Government Society of North America.

[29] Papapanagiotou, P.; Katsiouli, P.; Tsetsos, V.; Anagnostopoulos, C.; and Had-

jiefthymiades, S. 2006. Ronto: Relational to ontology schema matching. In AIS

SIGSEMIS BULLETIN.

[30] Prud’hommeaux, E., and Seaborne, A. 2007. SPARQL query language for RDF

(working draft). Technical report, W3C.

[31] Salton, G., and Mcgill, M. J. 1986. Introduction to Modern Information Retrieval.

New York, NY, USA: McGraw-Hill, Inc.

[32] Suchanek, F. M.; Kasneci, G.; and Weikum, G. 2007. Yago: A Core of Semantic

Knowledge. In 16th international World Wide Web conference (WWW 2007). New

York, NY, USA: ACM Press.

[33] Syed, Z.; Finin, T.; Mulwad, V.; and Joshi, A. 2010. Exploiting a Web of Semantic

Data for Interpreting Tables. In Proceedings of the Second Web Science Conference.

[34] Vanoirbeek, C. 1992. Formatting structured tables (invited paper). In Proceed-

ings of Electronic Publishing, ’92, International Conference on Electronic Publish-

ing,Document Manipulation, and Typography, Swiss Federal Institute of Technology,



65

Lausanne, Switzerland, April 7-10, 1992, 291–309. New York: Cambridge University

Press.

[35] Ziegler, P., and Dittrich, K. R. 2004. Three decades of data intecration: all prob-

lems solved? In Building the Information Society, volume 156 of IFIP International

Federation for Information Processing, 3–12. Springer Boston.




