A Machine Learning Approach to Linking FOAF Instances

Jennifer Sleeman and Tim Finin
University of Maryland, Baltimore County
Baltimore MD 21250
{jsleem1,finin} @umbc.edu

Abstract

The friend of a friend (FOAF) vocabulary is widely used on
the Web to describe individual people and their properties.
Since FOAF does not require a unique ID for a person, it
is not clear when two FOAF agents should be linked as co-
referent, i.e., denote the same person in the world. One ap-
proach is to use the presence of inverse functional proper-
ties (e.g., foaf:mbox) as evidence that two individuals are the
same. Another applies heuristics based on the string similar-
ity of values of FOAF properties such as name and school
as evidence for or against co-reference. Performance is lim-
ited, however, by many factors: non-semantic string match-
ing, noise, changes in the world, and the lack of more so-
phisticated graph analytics. We describe a supervised ma-
chine learning approach that uses features defined over pairs
of FOAF individuals to produce a classifier for identifying
co-referent FOAF instances. We present initial results using
data collected from Swoogle and other sources and describe
plans for additional analysis.

Introduction

One of the most widely used Semantic Web ontologies
is FOAF (Friend of a Friend) which defines classes and
properties useful for describing people, their attributes, and
their relationships to other people, organizations and objects.
FOAF’s popularity is evident in the social networking sites
that publish profiles using FOAF, the number of RDF docu-
ments using the FOAF namespace, the number of foaf: Agent
instances or the volume of RDF triples using FOAF terms
(bil ; Ding et al. 2005). The widespread use can be explained
by the common need to publish, find and reason with basic
data on people and also the lightweight and practical design
of the FOAF vocabulary.

A person new to the Semantic Web studying the design of
the FOAF vocabulary might initially be perplexed. One of
the principles underlying the Semantic Web is that it enables
us to give concepts and individuals URIs that serve as unique
identifiers, removing much of the ambiguity that comes with

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

using human language and representation systems that are
not designed to be distributed and open. The FOAF ontology
allows one to create a foaf:Agent instance that indeed rep-
resents a single, unique individual and to describe its prop-
erties and relations. What it does not include is a property
that represents a globally unique identifier (GUID) that can
be used to recognize when two foaf:Agent individuals are
co-referent, i.e., refer to the same individual whether real or
fictional. Though recently it has become popular to use the
FOAF instance URI as the GUID, this does not guarantee
that a person cannot be represented by more than one URL.

What we are left with is a problem that is common to other
representation systems, including natural language descrip-
tions, database address records, and even official govern-
ment records — we describe individuals by enumerating their
relevant attributes and properties. Given two such descrip-
tions and depending on the context and task at hand, we
may find enough evidence to conclude that the individuals
are or are not co-referent. If there is enough supporting ev-
idence to conclude that individuals are co-referent, the pro-
cess of ’smushing’ (http://wiki.foaf-project.org/w/Smushing
2010) can be applied, combining the profiles. ’Smushing’
FOAF profiles can bring together information from vari-
ous sources that are determined to represent the same ’per-
son’. One can choose to rely solely on the presence of
owl:sameAs, as this property is meant to link individuals
(Bechhofer er al. 2004). However, relying on this prop-
erty alone to ’smush’ data is not effective, as its presence
is not always found and it can also be represented inaccu-
rately. There are multiple techniques used to both identify
co-referent FOAF profiles and that perform some type of
smushing’ (Shi et al. 2008; Price, Rawles, & Flach 2004;
Hogan, Harth, & Decker 2007).

OWL’s InverseFunctional property class (IFP) can help pro-
vide a way to recognize co-referent profiles, but it does
not offer a complete solution. The FOAF vocabulary de-
fines, for example, foaf:homepage and foaf:mbox to be in-
verse functions, providing strong evidence that two FOAF
agents are co-referent if they share an identical value for ei-
ther of those properties. However, with the popularity of
social networking sites that support FOAF extraction of pro-
files, extracted FOAF profiles do not always include such

an inverse functional property and sometimes these prop-
erties can be misused. This was discovered by previous
work (Shi et al. 2008; Hogan, Harth, & Decker 2007,
http://blog.aidanhogan.com/2008/10/god-entity.html 2008).
For example, (http://blog.aidanhogan.com/2008/10/god-
entity.html 2008) describes how a list of FOAF profiles pro-
duced by exporters with empty foaf:mbox values all con-
tained duplicate foaf:mbox_shalsum values. In (Hogan,
Harth, & Decker 2007), it was discovered that a large por-
tion of FOAF profiles which contained foaf:weblog prop-
erty, contained a duplicate value for each profile, repre-
senting the community web logs. In (Shi er al. 2008),
foaf:weblog and foaf:homepage in particular were found to
be representing collective sites. In our own data, we have
found foaf:homepage values representing community web
sites and we have also found FOAF profile with the absence
of inverse functional properties altogether. It is not uncom-
mon for several people to share a common value that is con-
tained within an inverse functional property.

In the rest of this paper we discuss the problem of decid-
ing when RDF descriptions of two FOAF agents are likely
to be co-referent. One common approach is to use the pres-
ence of FOAF properties declared to be inverse functions
(Shi ez al. 2008; Golbeck & Rothstein 2008; A. & H. 2005;
Hogan, Harth, & Decker 2007) (e.g., foaf:mbox) as a val-
idation that two individuals are the same. A second (Price,
Rawles, & Flach 2004) applies heuristics based on the string
similarity of values of FOAF properties such as name and
school as evidence for or against co-reference. We describe
a supervised machine learning approach using features de-
fined over pairs of FOAF individuals to produce a classifier
for identifying co-referent FOAF instances. Our approach is
comparable to (Price, Rawles, & Flach 2004), we rely not
strictly on the semantics of FOAF but a combination of se-
mantics and the data itself. We take this one step further
by using a Support Vector Machine (SVM) to classify the
data rather than using a heuristics-based approach. This en-
ables us to generalize our method such that new co-referent
examples can be discovered without requiring the heuristics
to frequently change. We present initial results using data
collected from a number of sources on the Web. We also de-
scribe plans to add additional features that should improve
performance.

Other approaches as mentioned above are successfully de-
termining co-referent profiles by using different methods but
they may require changes to heuristics based on newly dis-
covered patterns in the data. For example, using a strict I[FP
approach, one has to learn the cases of when files are not
properly using IFPs as intended. In purely heuristic string
similarity approaches, common properties are not always
present in both profiles and noise in the data can obfuscate
the fact that two profiles represent the same person. Noise
and anomalies in the data can feasibly be captured in a clas-
sification model.

Our technique could also be abstracted and applied to other

domains, in particular it can be used to disambiguate people
on the web. On the web, a person’s name can be common
enough that if one were to perform a search for a person,
they would receive results that are relevant to a number of
entities that share that common name. Ideally one would be
able to cluster data that is pertinent to each entity relating
solely to that entity. This is a common problem currently
addressed by a number of *Web People Search Engines’ that
attempt to combine and cluster information representing a
single entity (Artiles, Gonzalo, & Sekine 2009). We would
like to note that clustering is part of our approach but an in-
depth discussion on this topic goes beyond the scope of this

paper.

In this paper we refer to a FOAF individual as a FOAF in-
stance or a FOAF profile interchangeably. We do not pre-
sume a FOAF document is equal to a single FOAF instance.
We do however validate FOAF documents before processing
them, using a set of rules, as defined later in this paper. We
also tend to currently use documents that are typically rep-
resenting a single person, however the next version of our
software will use multi-person documents as well.

Approach

The overall approach we are developing is similar to the
one used in other co-reference problems, such as (Volz et
al. 2009; Mayfield et al. 2009). Given a collection of FOAF
instances to compare, we would like to cluster them into sets
that we believe refer to the same person in the world. This
process is divided into three stages: (i) generating candidate
pairs, (ii) classifying the candidates as co-referent or not,
and (iii) creating clusters.

Overview

Generating candidate pairs. Given a potentially large
collection of N FOAF instances we could proceed by test-
ing each of the N*(N+1)/2 - N possible pairs to see which
are co-referent. Since the vast majority of the pairs will not
be matched and the co-reference test will be relatively ex-
pensive, we start by filtering the possible pairs to produce
a smaller set of candidates using a computationally simple
heuristic test. The result is a set of FOAF instance pairs that
can be used for both training and generating a test set that
will be run through the classifier in step two.

Classification. The co-reference classifier takes a pair of
FOAF instances and decides if they are co-referent or not.
The construction and training of this classifier is described
in the next section. Depending on the system used, our clas-
sifier might return a Boolean answer (co-referent or not) or
an answer together with a score that can be used as certainty
measure.

Clustering. Once the candidate pairs are classified, we are
left with a set of pairs thought to be co-referent. We can con-
sider this to be a graph where the nodes are the original set
of FOAF instances and an edge exists between two nodes
just in case they were a candidate pair and the classifier de-
termined that they were co-referent. The final step is to find
connected components in the graph, each of which repre-
sents a set of FOAF profiles that represent the same person.

In the remainder of this section we describe the process of
generating candidate pairs and classification in more detail.
The clustering step is still under development.

Generating Candidates

Candidates are generated based on a simple heuristic that is
used to generate potential pairs that are likely to match. Us-
ing the properties common among pairs of FOAF instances,
we calculate a simple score based on string matches. The
objective of this process is to produce a subset of potential
candidates that is smaller than the total set, thereby remov-
ing any unnecessary matching attempts that would result in
a non-match. On average, we generate a candidate set for
each url of 9 potential matches based on processing 60,000
FOAF profiles of which 10,000 did not pair at all.

Co-reference Classifier

We use a Support Vector Machine (SVM) for classifying our
data. A SVM provides a way to classify both linear and
nonlinear (Joachims 2002). We chose to use a SVM due
to its accuracy and performance (Joachims 2002). SVMs
were successfully applied to other text classification prob-
lems (Mayfield et al. 2009) that were similar to this prob-
lem. We could potentially have a large number of relevant
features and SVMs are known for supporting such a require-
ment (Joachims 1998). We used a simple linear kernel and
the feature set is based on FOAF properties.

We designated the FOAF properties shown in table 1 to be
of relevance to our classification. We chose these properties
based on statistics of our dataset and based on the likelihood
that they would provide data that would be distinguishable.
A distance measure is calculated for each property and used
as a feature. In addition, for each property, a feature is gen-
erated indicating whether the feature is inverse functional.
In the case of foaf:knows, matches are calculated for the set
of ’Persons’ that an instance "knows’ and used as a feature.
We are continually adding features as the system matures.

Implementation

The system is written in Java and uses a MySQL database
to store data. It performs Swoogle ingestion and other in-
gestions based on crawled data. Triples are parsed using

Current FOAF properties used as features |
foaf:family _name
foaf:name
foaf:mbox_shalsum
foaf:phone
foaf:birthday
foaf:nick
foaf:firstname
foaf:givenname
foaf:surname
foaf:mbox
foaf:jabberID
foaf:msnChatID
foaf:yahooChatID
foaf:weblog
foaf:aimChatID
foaf:homepage
foaf:icqChatID
foaf:accountname
foaf:img
foaf:schoolhomepage
foaf:publications
foaf:knows

Table 1: These FOAF properties were used to develop fea-
tures for the FOAF instance co-reference classifier.

Jena (Carroll et al. 2003) and stored in a MySQL table. In
addition, a hash of FOAF properties is stored, along with
general information. Candidate pairs are generated by us-
ing a heuristic that simply eliminates pairs that are not likely
to match. Candidate pairs are used to formulate a training
set and a test set. When generating training and test sets, a
heuristic is used to determine whether a particular item is a
positive or negative case. This is done to reduce the time
it takes to gather our training and test sets. We cannot al-
ways accurately determine if items are positive or negative.
Therefore only classes that can confidently be classified as
negative or positive with this heuristic are labeled, others
are not labeled. By doing so we are able to generate a large
number of classes (particularly negative classes) without a
lot of manual work. A Confusion matrix is generated for the
test set and we record accuracy, recall and precision. Our
classifier can then be used to test pairs of FOAF instances.

Data Sources

Our data sources include both FOAF instances retrieved
based upon a list of URLs extracted from Swoogle (Ding
et al. 2004), a set of FOAF instances based on a web
crawler crawling a set of URLSs of sites based on the follow-
ing list [http://esw.w3.org/topic/FoafSites], FOAF instances
parsed from the Billion Triple Challenge 2009 smaller test
dataset (http://vmlion25.deri.ie/index.html) and other social
networking web sites that produce FOAF data. We are cur-
rently using a small subset of data to perform initial evalua-

tion of the system, with plans to use larger data sets as our
system matures. When retrieving documents based on the
Swoogle (Ding et al. 2004) listing, an attempt is made to
retrieve the latest version of the document and if the latest
version is no longer accessible we retrieve the cached ver-
sion from the Swoogle database. Our data set currently con-
tains over 2 million FOAF instances and our current work is
based upon 60,000 FOAF instances.

Documents are retrieved from both blog and non-blog web
sites. We do not distinguish these documents as was done
in previous work (Ding et al. 2005) because this property
has little effect on our work. Duplication of documents is
handled during the feature generation phase.

The criteria we use to determine that a document is a valid
FOAF document include the following:

e The document must be a valid RDF document. If the doc-
ument is not valid, it will fail to be parsed by the RDF
parser and therefore not accepted.

e The document must use the FOAF namespace.

e The document must contain at least one foaf:Person class
instance.

Many FOAF documents contain multiple FOAF profiles.
In some cases, a document is intended as a profile for a
single individual but it includes foaf:knows links to other
foaf:Person instances included in the document. In other
cases, there is not a primary foaf:Person instance, as might
be the case for a document about a paper that includes multi-
ple authors, each represented as a foaf:Person. We currently
focus on profiles that include a single individual which may
or may not include foaf:knows.

Feature Set

Property-specific features include the following types:

1. Inverse functional properties

2. Simple distance measures of properties common to both
instances

3. More complex distance measures, which might include
unpacking semantic information (e.g., the geographical
distance between to geotags) and resolving entity men-
tions (e.g., Baltimore) to linked data nodes

4. Partial analysis of the graphs centered on the instances,
such as the immediate (one-hop) social networks formed
by foaf:knows properties

Simple distance metrics were calculated using the levin-
shtein distance (Levenshtein 1966) method however future
work will support a configurable way to specify which dis-
tance method the user would prefer to use.

FOAF’s InverseFunctional Properties |

foaf:mbox_shalsum
foaf:mbox
foaf:jabberID
foaf:msnChatID
foaf:yahooChatID
foaf:weblog
foaf:aimChatID
foaf:homepage
foaf:icqChatID
foaf:isPrimaryTopicOf
foaf:openid
foaf:shal

Table 2: FOAF’s inverse functional properties provide
strong evidence for co-reference

Inverse Functional Property. Inverse functional proper-
ties are useful in that properties which are defined as inverse
functional should provide some degree of certainty that if we
match a property among two FOAF instances that is an in-
verse functional property, the two instances could represent
the same person given that the property relates to uniquely
defining the person. Though the specification (Brickley &
Miller 2003) states that for a FOAF instance a foaf:mbox
should not be used to represent two different individuals,
it is not unlikely that two individuals could share an email
address. Previous work (Shi et al. 2008; Hogan, Harth,
& Decker 2007; http://blog.aidanhogan.com/2008/10/god-
entity.html 2008) also provide examples of how these prop-
erties can be misused. Of our 60,000 FOAF instance 550
did not contain an inverse functional property. We also
made observations where certain inverse functional proper-
ties contained duplicate data. Therefore we chose not to rely
solely on this as a definitive match indicator. An inverse
functional property feature is used as an additional feature
that increases the likelihood that a match between FOAF in-
stances could represent the same person.

Simple Property Matching Distance. A simple property
match is when a single property matches within the two
FOAF instances being evaluated. For example, foaf:name
matches in both instances.

Partial Property Matching Distance. In some cases, a
property has a subpart which represents uniqueness that can
be used as a distinguishing string to be matched to a subpart
of the same property in a different instance. For example,
part of the foaf:weblog property offers a partial match.

Cross-Property Matching Distance. In some cases, ei-
ther a full property or a subpart of a property can be used
to match a different property in another FOAF instance. In
some of our gathered FOAF instances we discovered prop-
erties that were commonly cross-matched. For example, a

<foaf:Person rdf:ID="me">

<foaf:name>Daniel Krech</foaf:name>
<foaf:nick>eikeon</foaf:nick>
<foaf:mbox_shalsum>5a8...d022</foaf:mbox_shalsum>
<foaf:homepage rdf:resource="http://eikeon.com/"/>
</foaf:Person>

<foaf:Person rdf:ID="me">

<foaf:name>Daniel Krech</foaf:name>

<foaf:mbox rdf:resource="mailto:eikeon@eikeon.com"/>
<foaf:nick>eikeon</foaf:nick>

</foaf:Person>

Sources:
http://www.advogato.org/person/eikeon/foaf.rdf
http://eikeon.com/foaf.rdf

Figure 1: Simple property match

<foaf:Person>

<name>Richard Stallman</name>

<homepage rdf:resource="http://www.gnu.org/"/>
<weblog rdf:resource="http://identi.ca/rms"/>
</foaf:Person>

<foaf:Person>

<foaf:name>Richard Stallman</foaf:name>
<foaf:nick>rms</foaf:nick>
<foaf:mbox_shalsum>685...ecd</foaf:mbox_shalsum>
<foaf:homepage rdf:resource="http://www.gnu.org/"/>
<foaf:weblog rdf:resource="http://.../person/rms/..."/>
</foaf:Person>

Sources:
http://www.advogato.org/person/rms/foaf.rdf
http://identi.ca/rms/foaf

Figure 2: The partial match between the weblog values is
evidence for co-reference.

foaf:name string part would correspond to a foaf:nick.

Candidate Designation

The heuristic for determining candidates is used to reduce
the set of URIs to be processed. Candidates are generated
based on a simple heuristic that is used to remove pairs that
are unlikely to match. We calculate a simple score based on
string matches of common properties and use a threshold as
a way to control the filter for candidates. Properties are as-
sociated with a weight given how likely they are to indicate
a match. The weight is based upon how likely the prop-
erty will contain a value that is unique and therefore pro-
viding stronger evidence that the profiles are co-referent if
matched. If the property is an IFP then the weight would
likely be higher than an non-IFP property. For instance,
foaf:firstname is weighted lower than foaf:mbox. For each
possible pair of FOAF instances, an exact match is attempted
for each property. If the exact match returns a false match

<foaf:Person>

<mbox_shalsum>ed. ..a3</mbox_shalsum>

<name>Nitro Velvet</name>

<weblog rdf:resource="http://identi.ca/nitrovelvet"/>
</foaf:Person>

<foaf:Person>

<foaf:name> </foaf:name>
<foaf:nick>nitro</foaf:nick>
<foaf:homepage rdf:resource=""/>
</foaf:Person>

Sources:
http://identi.ca/nitrovelvet/foaf
http://robots.net/person/nitro/foaf.rdf

Figure 3: A More complex value match

then a partial match is attempted. If the weighted average
of all the properties is below a set threshold then a cross-
property match is attempted for all the properties. By per-
forming this step we can significantly reduce the number
of potential matches per url which has improved total run-
ning time. This step also produces a richer set of candidate
pairs as we eliminate the cases which are confidently not
co-referent.

Generating the Training and Test Set

We use this filtered subset of candidates to generate both
training sets and test sets. A distance measure is calcu-
lated for each pair of properties. If a property is cross-
matchable then we cross-match the property with other
cross-matchable properties. For each distance measure we
also use the average size of the property value as an addi-
tional feature. In addition, the fact that a property is an IFP
is also used as a feature. If the profile contains foaf:knows
properties then the graphs are used to generate additional
features. For specific strings, such as names and urls, trans-
formations are used and aliases are retrieved and used as
additional features.

In an attempt to reduce the time it takes to create training
and test sets that are labeled as positive or negative, we use
a simple heuristic as we process each feature. This heuristic
produces a likelihood value of the pair representing a posi-
tive or negative case. This does not provide a way to classify
our pairs but a rough guide that reduces our manual efforts
to generate training and test sets for our classifier. In addi-
tion to this process, when parsing pairs that are "’known’ to
be negative or positive, a negative and positive test pair table
is populated. We build our positive test pair table by first ex-
porting user FOAF profiles from a Yahoo social networking
site [http://www.mybloglog.com]. We then parse this FOAF
information and find the user’s Twitter account. We then use
[http://semantictweet.com/], a FOAF generator for Twitter
profiles, to get a second FOAF profile for that individual.

We will continue to build this table of positive profiles by
using this approach with other social networking sites that
produce FOAF data.

Classification

We used SVMLight (Joachims 1999) with a linear kernel
and standard parameters to build our model for classifica-
tion. Our system enables one to perform a training pro-
cess that will generate a training file and call upon SVM-
Light to generate a model. The model can then be used to
perform predictions for both our test sets and any pair of
FOAF instances that wish to be matched. We return either
the value returned by the classifier or a true/false value de-
pending upon how the system is called upon.

Initial Results

Our current work includes one training set of 500 cases (250
positive cases and 250 negative cases) and two different test
sets. One of our test sets represents cases that should be
“easy’ to classify (1000 cases - 500 positive cases and 500
negative cases) and our second set represents harder to clas-
sify cases (50 cases). Our next set of tests will include a
substantially larger set of examples from our data sets.

Calculated Measures. After running our classifier, a con-
fusion matrix is generated based on calculated precision, re-
call, and accuracy of the test set and the predicted values.

The following measures were calculated for our current test
sets:

[Test | Precision | Recall | Accuracy |

1000 easy cases | 97.5% 100% 98.7%
50 hard cases 73.33% 75.86% | 63.41%

These measures are based on preliminary tests and really
provide us with a foundation for our future work. Our frame-
work enables us to run various sized tests and change fea-
tures accordingly by examining the calculated measures for
each test generated by our analyzer.

Evaluation

When building our training and test set, we automatically
determine if an item is a positive or negative test case. We
use this technique as a way to reduce the time it takes to
build the training and test sets. However, we clearly can-
not accurately label all of our cases but we can fairly con-
fidently label extreme negative and extreme positive cases.
For instance if two FOAF profiles have exactly the same
foaf:mbox or exactly the same foaf:mbox_shalsum we can

safely make this a positive case. What we have found is
we can generate many negative test cases but far fewer pos-
itive cases. To address this issue we now generate a positive
training and test table based upon known positive profiles.

When we determine property matches among strings, we do
not currently distinguish common and non-common strings.
This actually can decrease the accuracy of our classifier. Our
future work looks to address this problem.

Future Work

We are currently improving our training/test set and adding
additional features for our classification. Our initial work
used the basic features of the FOAF vocabulary. Based on
what we have learned, more information can be obtained
by using properties from the other categories of the FOAF
vocabulary, by using synonyms and word expansions and by
including common misspellings. The methodology we use
to determine if a pair of FOAF documents is co-referent can
be applied to other domains. Future work will also apply our
methodology to other domains.

Future work will include exploiting additional properties
within the instance that are not of the FOAF vocabulary and
using these properties to provide additional evidence as to
whether a pair of FOAF instances represent the same in-
dividual or not. A portion of our collected FOAF docu-
ments had non-FOAF vocabularies that offered additional
information such as ’author’. By exploiting these additional
properties, we could increase accuracy particularly when a
FOATF property is absent and the non-FOAF property offers
the same meaning.

Many properties asserted about FOAF instances have string
values that refer to entities. Examples from the core FOAF
vocabulary are foaf:Organization and foaf:fundedBy. We
would like to recognize that two strings refer to the same
entity when their values are different but known aliases or
alternate names. Luckily, for many entities, it is easy to
generate lists of known aliases drawing on resources such
as Gazetteers, Wikipedia and Freebase. We have developed
lists of known aliases for organizations and places from data
extracted from Wikipedia and Freebase. The data includes
set of aliases for about 270K places and S0K organizations.
For example, the alias set for UMBC includes variations
on the Universities name due acronyms, abbreviations, and
punctuation.

In general, a given string can be a member of several alias
sets. This is especially true for acronyms and abbreviations.
The current system does not yet exploit these lists but we
plan to do so in the next version, probably as an additional
string matching metric, e.g., the two instances have a prop-
erty whose values differ but are in members of a known set
of aliases.

As mentioned above, owl:sameAs can be used to ’smush’
FOAF profiles. In addition, if there is a Functional Property
(Brickley & Miller 2003) present we could make use of this
information to aide in our determination as to whether two
instances are co-referent. If a Functional Property is present
in both profiles and the profiles are said to be representing
two different individuals then the value of that property must
also be different.

We can also use a ’smushed’ instance as an input into our
system to provide futher evidence as to whether that newly
’smushed’ instance is co-referent with others in the database.
This is an interesting enhancement that we plan to explore
in our future work.

The FOAF co-referent problem described here is also a com-
mon problem in non-FOAF domains. Our approach can be
abstracted and applied to other domains. In particular, in-
stance matching (Ferrara ef al. 2008) among ontologies is a
domain that could benefit from such a co-referent solution.
Entity clustering (Artiles, Gonzalo, & Sekine 2009) is also
another domain which could benefit from our co-referent so-
lution.

Conclusion

We have described an approach that uses supervised ma-
chine learning to generate a classifier which can be used to
identify co-referent FOAF instances for linking. We cur-
rently use the basic set of FOAF properties as features for
our classifier and plan to add more FOAF properties as the
accuracy of our system improves. Our method is different
from past methods (Shi et al. 2008; Golbeck & Rothstein
2008; A. & H. 2005) that used inverse functions and string
similarity heuristics. We are still early in our work and ex-
pect to see more accurate results as we increase the size of
our training set and expand our feature sets. We believe that
our methodology could be applied to other domains for solv-
ing similar problems.

References

A., H., and H., G. 2005. On searching and displaying RDF data
from the web. In Proceedings of Demos and Posters of the 2nd
European Semantic Web Conference.

Artiles, J.; Gonzalo, J.; and Sekine, S. 2009. Weps 2 evaluation
campaign: Overview of the web people search clustering task. In
18th International World Wide Web Conference.

Bechhofer, S.; Harmelen, F.; Hendler, J.; Horrocks, I.; McGuin-
ness, D.; Patel-Schneider, P.; and L.Stein. 2004. Owl web ontol-
ogy language reference w3c recommendation 10 february 2004.
http://www.w3.org/TR/owl-ref/.

Billion triple challenge 2009 dataset.

Brickley, D., and Miller, L. 2003. Foaf vocabulary specification.
http://xmlns.com/foaf/0.1/.

Carroll, J.; Dickinson, I.; Dollin, C.; Reynolds, D.; Seaborne,

A.; and Wilkinson, K. 2003. The JENA Semantic Web platform:
architecture and design. Technical Report Technical Report HPL-
2003-146, HP Laboratories.

Ding, L.; Finin, T.; Joshi, A.; Pan, R.; Cost, R. S.; Peng, Y.; Red-
divari, P.; Doshi, V. C.; ; and Sachs, J. 2004. Swoogle: A search
and metadata engine for the semantic web. In Proceedings of
the Thirteenth ACM Conference on Information and Knowledge
Management.

Ding, L.; Zhou, L.; Finin, T.; and Joshi, A. 2005. How the
Semantic Web is Being Used:An Analysis of FOAF Documents.
In Proceedings of the 38th International Conference on System
Sciences.

Ferrara, A.; Lorusso, D.; Montanelli, S.; and Varese, G. 2008. To-
wards a benchmark for instance matching. In International Work-
shop on Ontology Matching, volume 431, 2008.

Golbeck, J., and Rothstein, M. 2008. Linking social networks
on the web with FOAF. In Proceedings of the 17th International
World Wide Web Conference.

Hogan, A.; Harth, A.; and Decker, S. 2007. Performing object
consolidation on the semantic web data graph. In In Proceed-
ings of 13: Identity, Identifiers, Identification. Workshop at 16th
International World Wide Web Conference (WWW2007).

2008. The god entity. http://blog.aidanhogan.com/2008/10/god-
entity.html. Accessed January 2010.

2010. Foaf-project.org definition of smushing. http://wiki.foaf-
project.org/w/Smushing. Accessed January 2010.

Joachims, T. 1998. Text categorization with support vector ma-
chines: Learning with many relevant features. In Proceedings of
the European Conference on Machine Learning. Springer.

Joachims, T. 1999. SVMLight: Support Vector Machine. Uni-
versity of Dortmund, http://svmlight.joachims.org/.

Joachims, T. 2002. Learning to classify text using support vector
machines methods, theory, and algorithms. Springer.

Levenshtein, V. 1. 1966. Binary codes capable of correcting dele-
tions, insertions, and reversals. Soviet Physics Doklady 10:707-
710.

Mayfield, J.; Alexander, D.; B, B. D.; Eisner, J.; Elsayed, T.;
and Finin, T. 2009. Cross-document coreference resolution:
A key technology for learning by reading. In Proceedings of
AAAI Spring Symposium on Learning by Reading and Learning
to Read. AAAL

Price, S.; Rawles, S.; and Flach, P. 2004. Estimating whether par-
tial FOAF descriptions describe the same individual. In Proceed-
ings of the Workshop on Friend of a Friend, Social Networking
and the Semantic Web.

Shi, L.; Berrueta, D.; Fernandez, S.; Polo, L.; and Fernandez, S.
2008. Smushing rdf instances: are alice and bob the same open
source developer? In Proceedings of the Third Expert Finder
workshop on Personal Identification and Collaborations: Knowl-
edge Mediation and Extraction, (PICKME 2008), co-located with
the Seventh International Semantic Web Conference.

Volz, J.; Bizer, C.; Gaedke, M.; and Kobilarov, G. 2009. Silk - a

link discovery framework for the web of data. In Proceedings of
the Second Workshop on Linked Data on the Web (LDOW2009).

