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Abstract

We describe the initial results of a project aimed at adapting the Cyc system for use in an
agent architecture.  Two Cyc systems that share a large common core of knowledge but
differ in additional knowledge they possess were able to reason together to solve problems
that neither could solve on its own.  A rudimentary interface was constructed for Cyc that
allowed it to communicate with other KQML-speaking agents.  The Cyc reasoning
algorithm was modified to allow it to ask other agents for help in developing a proof to
answer a query.  We were able to demonstrate that Cyc can be adapted to work in an agent-
oriented architecture and to get several Cyc-based agents to reason in a tightly-coupled
manner.  A number of interesting research issues remain concerning how to do so
efficiently.

                                    
1 This work was supported in part by the Department of Defense u n d e r
contract MDA904-95-C-2084, by the Air Force Office of Scientific R e s e a r c h
under contract F49620-92-J-0174, and by the Advanced Research Pro jec ts
Agency monitored under USAF contracts F30602-93-C-0177 and F30602-93-C-
0028 by Rome Laboratory.
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1 . Introduction

A key feature of the agent model of computation is that agents (be they personal agents or
distributed agents) must have access to various kinds of expertise.  Each agent will embody
some, but perhaps not all, of the expertise it will need to conduct its affairs.  Two agents
might be expected to share a large core of knowledge, but no two agents are likely to hold
exactly the same knowledge.  Thus,  an agent might be justified in seeking help from
another agent to perform inference in an area for which it lacks expertise.

 The distribution of inference across several agents has been studied for years under the
rubric of “Distributed AI.”   However, traditional DAI approaches are unlikely to work well
in an agent architecture for use across the Internet, both because shared resources (such as
a blackboard) will not be readily available, and because communication costs will often
dominate computation costs.

The purpose of our system, the Cycic Friends Network (CFN), is to explore cooperative
inference across the Internet.  We are using the Cyc knowledge base and inference engine
as our testbed.  We are building a system that distributes inference across two or more Cyc-
based agents.  We aim to develop a system architecture that will allow for dynamic resource
discovery, that will minimize communication costs, and that will be upwardly scaleable.

Our approach to inference in this environment is to place overall control of the inference
process in the hands of a single initiating agent.  The KQML language will allow the
controlling agent to send unsolved subgoals to other agents.  We adopt a mediated
architecture to allow an agent to locate other agents with the desired expertise.

In the following sections, we first discuss Cyc and KQML.  We then describe how we
adapted the Cyc inference engine to handle distributed inference.  After presenting two
examples, we show how this inference mechanism has been embedded in an agent
architecture.  Finally, we discuss open research issues, and give our conclusions.

2 . The Cyc System

2 . 1  The Philosophy of the Cyc Project

Cyc is a large, multi-contextual knowledge base and inference engine developed by
Cycorp, Inc., in Austin, Texas.  The goal of the Cyc project is to break the “software
brittleness bottleneck” by constructing a foundation of basic commonsense knowledge—a
semantic substratum of terms, rules, and relations—that will enable a variety of
knowledge-intensive products and services.  Cyc is intended to provide a “deep” layer of
understanding that can be used by other programs (such as domain-specific expert systems)
to make them more flexible.  Cyc has provided the foundation for ground-breaking pilot
applications in the areas of heterogeneous database browsing and integration, captioned
image retrieval, and natural language processing.

2.2 The Cyc Knowledge Base

The Cyc knowledge base (KB) is a formalized representation of a vast quantity of
fundamental human knowledge: facts, rules of thumb, and heuristics for reasoning about
the objects and events of everyday life.  The medium of representation is the formal
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language CycL, described below.  The KB consists of terms—which constitute the
vocabulary of CycL—and assertions that relate those terms.  These assertions include both
simple ground assertions and rules.  Cyc is not a frame-based system: the Cyc team thinks
of the KB instead as a sea of assertions, with each assertion being no more “about” one of
the terms involved than another.

The Cyc KB is divided into about 100 “microtheories,” each of which is a bundle of
assertions focused on a particular domain of knowledge.  The microtheory mechanism
allows Cyc to independently maintain assertions that are prima facie contradictory, and
enhances the performance of the Cyc system by focusing the inference process.

At this writing, the Cyc KB contains approximately 50,000 terms and approximately
500,000 assertions.  New assertions are continually added to the KB both by human
knowledge enterers and by Cyc itself as a product of the inference process.

2 . 3  CycL: The Cyc Representation Language

CycL, the Cyc representation language, is an extraordinarily flexible knowledge
representation language that augments first-order predicate calculus (FOPC) with
extensions to handle equality, default reasoning, skolemization, and some second-order
features.  (For example, quantification over predicates is allowed in some circumstances,
and complete assertions can appear as intensional components of other assertions.)  CycL
uses a form of circumscription, includes the unique names assumption, and can use the
closed world assumption where appropriate.

2 . 4  Inference in Cyc

The Cyc inference engine performs general logical deduction (including modus ponens,
modus tolens, and universal and existential quantification), using various well-known
named inference mechanisms (inheritance, automatic classification, etc.) as special cases.
Cyc performs best-first search over proof-space using a set of proprietary heuristics, and
uses microtheories to optimize inference by restricting search domains.

The Cyc KB contains hundreds of thousands of assertions. Many approaches commonly
taken by other inference engines (such as frames, RETE match, Prolog, etc.) do not scale
well to KBs of this size. As a result, the Cyc team has been forced to develop new
techniques.

Cyc also includes several special-purpose inference modules for handling a few specific
classes of inference. One such module handles reasoning concerning collection
membership and disjointness.  Others handle equality reasoning, temporal reasoning, and
mathematical reasoning.

3 . Knowledge Query and Manipulation Language

To address many of the difficulties of communication among intelligent agents, we must
give them a common language. In linguistic terms, this means that they must share a
common syntax, semantics and pragmatics.  Getting information processes or software
agents to share a common syntax is a major problem. There is no universally accepted
language in which to represent information and queries.  Languages such as KIF, extended
SQL, and LOOM have their supporters, but there is also a strong position that it is too early
to standardize on any representation language.  As a result, it is currently necessary to say
that two agents can communicate with each other if they have a common representation
language or use languages that are inter-translatable. 
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Assuming the use of a common or translatable language, it is still necessary for
communicating agents to share a framework of knowledge to interpret the messages they
exchange. This is not really a shared semantics, but rather a shared ontology. There is not
likely to be one shared ontology, but many. Shared ontologies are under development in
many important application domains such as planning and scheduling, biology and
medicine.  The pragmatics of communicating software agents involves such issues as
knowing with whom to talk and how to find them as well as knowing how to initiate and
maintain an exchange. The Knowledge Query and Manipulation Language (KQML) is
concerned primarily with this kind of pragmatics and secondarily with semantics. It is a
language and a set of protocols that support software agents in identifying, connecting with
and exchanging information with other agents.  In this section we present the KQML
language, its primitives and supported protocols, and the software environment of KQML-
speaking applications.

The KQML language consists of three layers: the content layer, the message layer, and the
communication layer. The content layer bears the actual content of the message, in the
agents' own representation language. KQML can carry expressions encoded in any
representation language, including languages expressed as ASCII strings and those
expressed using a binary notation.  Some KQML-speaking agents (e.g., routers, general
brokers, etc.)  may ignore the content portion of the message, except to determine where it
ends.

The communication level encodes a set of message features that describe the lower level
communication parameters, such as the identity of the sender and recipient, and a unique
identifier associated with the communication.

The message layer is used to encode a message that one application would like to transmit
to another. The message layer forms the core of the KQML language, and determines the
kinds of interactions one can have with a KQML-speaking agent. A primary function of the
message layer is to identify the protocol to be used to deliver the message, and to supply a
speech act or performative that the sender attaches to the content (such as that it is an
assertion, a query, a command, or any of a set of known performatives). In addition, since
the content may be opaque to a KQML-speaking agent, this layer also includes optional
features that describe the content language, the ontology it assumes, and a description of
the content (such as a descriptor naming a topic within the ontology).  These features make
it possible for KQML implementations to analyze, route and properly deliver messages
despite the inaccessibility of their content.

The syntax of KQML is based on a balanced parenthesis list.  The initial element of the list
is the performative; the remaining elements are the performative’s arguments as
keyword/value pairs.  Because the language is relatively simple, the actual syntax is not
significant and can be changed if necessary in the future.  The syntax reveals the roots of
the early implementations, which were done in Common Lisp; it has proven to be quite
flexible.

A KQML message from agent joe  representing a query about the price of a share of IBM
stock might be encoded as:

  (ask-one
:sender joe

  :content (PRICE IBM ?price)
:receiver stock-server
:reply-with ibm-stock

    :language LPROLOG
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:ontology NYSE-TICKS)

In this message, the KQML performative is    ask-one   , the content is (PRICE IBM ?price),
the ontology assumed by the query is identified by the token NYSE-TICKS, the receiver of
the message is to be a server identified as stock-server  and the query is written in a
language called LPROLOG.

The value of the :content  keyword forms the content level; the values of the :reply-with,
:sender, and :receiver  keywords form the communication layer; and the performative name
(   ask-one   ), together with the :language and :ontology  keywords form the message layer.

In due time, stock-server  might send to joe  the following  KQML message:

(tell
:sender stock-server
:content (PRICE IBM 96.625)
:receiver joe
:in-reply-to ibm-stock
:language LPROLOG
:ontology NYSE-TICKS)

A query similar to the above    ask-one    query could be conveyed using standard Prolog as the
content language in a form that requests the set of all answers as:

(ask-all
:content "price(ibm, Price)"
:receiver stock-server
:language standard_prolog
:ontology NYSE-TICKS)

The original message asks for a single reply; this second request message asks for a set of
answers as a reply. If we prefer each response to be sent separately instead of as a single
large collection, we can use the    stream-all    performative (to save space, we will no longer
repeat fields that are the same as in the above examples):

(stream-all
:comment "?VL is a large set of symbols"
:content (PRICE ?VL ?price))

The    stream-all    performative asks that a set of answers be turned into a stream of replies. To
exert control over this set of reply messages we can wrap another performative around the
preceding message:

(standby
:content (stream-all
:content (PRICE ?VL ?price)))

The    standby     performative expects a KQML expression as its content. It requests that the
agent receiving the request receive the stream of messages one at a time; each time, the
sending agent transmits a message with the      next    performative. The exchange of next/reply
messages can continue until the stream is depleted or until the requesting agent sends a
    discard     message (i.e. discard all remaining replies) or a    rest    message (i.e. send all of the
remaining replies now).
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A different set of answers to the same query can be obtained (from a suitable server) with
the query:

(subscribe
:content (stream-all

:content (PRICE IBM ?price)))

This performative requests all future changes to the answer to the query, i.e., it requests
that a stream of messages be generated to reflect changes in the trading price of IBM stock.

Although KQML defines a set of reserved performatives, it is neither a minimal required set
nor a closed one. A KQML agent may choose to handle only a few (perhaps one or two)
performatives.  The set is extensible; a community of agents may choose to use additional
performatives if they agree on their interpretation and the protocol associated with each.
However, an implementation that chooses to implement one of the reserved performatives
must implement it in the standard way.

Some of the reserved performatives are shown in Figure 1. In addition to standard
communication performatives such as    ask    ,    tell   ,     deny    ,     delete   , and protocol-oriented
performatives such as    subscribe   , KQML contains performatives related to the non-protocol
aspects of pragmatics, such as    advertise    (which allows an agent to announce what kinds of
KQML messages it is willing to handle); and    recruit    (which can be used to find suitable
agents for particular types of messages).  For example, the server in the above example
might have earlier announced:

(advertise
:ontology NYSE-TICKS
:language LPROLOG
:content (stream-all

:content (PRICE ?x ?y)))

This is roughly equivalent to announcing that it is a stock ticker and inviting monitor
requests concerning stock prices. This advertise  message is what justifies the subscriber’s
sending the stream-all message.

Category Name

Basic query evaluate, ask-if, ask-about, ask-one, ask-all
Multi-response query stream-about, stream-all, eos
Response reply, sorry
Generic informational tell, achieve, cancel, untell, unachieve
Generator standby, ready, next, rest, discard, generator
Capability-definition advertise, subscribe, monitor, import, export
Networking register, unregister, forward, broadcast, route

Figure 1. KQML has about two dozen reserved performative names, which fall i n t o
these seven categories.
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4 . Adapting Cyc to an Agent Architecture

Inference in Cyc can be viewed as a search through proof-space.  Each node in the search
tree contains the following information:

parent: the parent node of this node in the search
formula: the current set of literals that we are attempting to prove

    via: the assertion used to infer our current formula from our parent's
formula

       mt: the current microtheory in which we are doing inference

Cyc performs best-first search over this search space using a set of proprietary heuristics.
After choosing the most promising outstanding unexpanded node, the node is examined to
determine how it might be expanded.

The standard expansion options are:

lookup: simplify using ground assertions from the KB
backchain: backchain using rules from the KB

These options use formulas from the knowledge base to unify and transform the current
formula using standard resolution theorem proving.  Cyc provides a way to extend the
expansion options beyond these standard ones through the addition of heuristic-level
modules (HL modules).  These modules are special-purpose reasoning tools designed to
efficiently handle formulas with particular syntactic forms.  Each HL module has three
parts:

enabler: is this HL module currently available?
recognizer: when given a search node, does the HL module apply?
expander: produces all child nodes of an applicable search node

Among the implemented HL modules are:

isa: handle formulas involving #$instanceOf
genls: handle formulas involving #$genls (i.e., superset)
equality: handle formulas involving #$equals

To allow inference to span two agents in CFN, we added a new HL module:

external: handle any formula by asking a different Cyc agent

The enabler for this HL module is merely a control variable. Its simplest recognizer is
trivial—all formulas pass. The expander performs a remote function call to the other Cyc
agent asking it to expand the search node as if it were one of its own.  The process works
like this:

1. Agent A (the caller) decides to use its external HL module to ask Agent B (the
callee) to expand the current search node.

2. Agent A passes the state information from the current search node to Agent B.

3. Agent B creates a single search node from this information.
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4. Agent B then expands this single node just as if it were a node in one of its own
inferences.  This produces a (possibly empty) set of child nodes.   To prevent
possible infinite looping, Agent B disables its external HL module during
expansion; this places the inference process squarely under the control of the single
initiating agent.

5. Agent B returns to Agent A a list containing the state information for each of the
child nodes that it computed.

6. Agent A creates a child node from each of the items it receives from Agent B.

If Agent B has knowledge that Agent A does not, in step (4) it will be able to expand the
node in ways that Agent A could not. Agent A is then able to continue reasoning even
though it was unable to perform one of the steps itself—it effectively trusts the answer
from Agent B and forges on.

Geography
Knowledge

Political
KnowledgeCore of Common

Knowledge

Common
Geography
Ontology

Common
Political
Ontology

GEO POL

Figure 2. The core of common knowledge and largely disjoint extensions min imize
chances of conflicts, contradictions and inconsistencies.

5. The GeoPolitical Example

Consider the following two queries:
• Which Middle Eastern countries are believed likely to attack another country?
• Who are some elected heads of state of countries north of the equator?

Answering each of these requires drawing on knowledge from two different domains:
geography and politics.  The second query is expressed in CycL as:

;; elected heads of government of countries north of the equator
(#$LogAnd
   (#$headOfGovernmentOf $x $y)
   (#$hasAttributes $x #$Elected)
   (#$northOf $y #$Equator))
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To demonstrate the ability of the multiple-Cyc-agent architecture to perform distributed
inference, we created two distinct Cyc agents running on separate machines that possessed
slightly different knowledge bases. This organization is shown in Figure 2. Both agents
held the very large set of core knowledge common to all Cyc agents.  Moreover, both
agents possessed the vocabulary for talking about both the geography domain and the
politics domain.  But one of the agents (designated the Geo agent) possessed, in addition,
specific facts and rules about the geography domain, while the other (the Pol agent)
possessed specific facts and rules about the politics domain.

Common Knowledge

The Core Cyc KB (~500,000
assertions).

Vocabulary for both the geography
domain and the politics domain
(bordersOn, northOf, Equator,
headOfStateOf, ElectedLeader, etc.)

The Geo Agent

All of the above, plus:

    Ground       assertions    stating:

• which countries border on which other
countries;

• which countries are in which regions,
continents, and hemispheres;

• which continents are in which
hemispheres; and

• the northern hemisphere is north of the
equator.

A    rule    stating:

• If region A is part of region B, and
region B is direction D from region C,
then region A is direction D from region
C.

The Pol Agent

All of the above, plus:

    Ground       assertions    stating:

• the types of governments (democratic,
communist, authoritarian, etc.) of
several countries;

• the level of military strength of several
countries; and

• the heads of state of several countries.
 
    Rules    stating:

• If a country with an authoritarian
government and high military strength
borders on a country with low military
strength, then the former is likely to
attack the latter.

• If a country has a democratic
government, then the head of state of
that country is an elected leader.

If all the knowledge described above were present in one Cyc agent, that agent
could easily give answers to the example queries, using chains of inference such as
the following to answer our two example queries.  For the first query, “Which
Middle Eastern countries are believed likely to attack another country?,”  the
following reasoning leads to the answer “Iraq is likely to attack Kuwait.”
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• If a country with an authoritarian government and high military strength
borders on a country with low military strength, then the former is likely to
attack the latter.

• Iraq has an authoritarian government.
• Iraq has a strong military.
• Kuwait has a weak military.
• Iraq borders on Kuwait.
• Iraq is located in the Middle East.

The second example, “Who are some elected heads of state of countries north of the
equator?”   results in the answer “John Major”  by the following reasoning:

• If a country has a democratic government, then the head of state of that
country is an elected leader.

• Great Britain has a democratic government.
• John Major is the head of state of Great Britain.
• If region A is part of region B, and region B is north of region C, then

region A is north of region C.
• Europe is in the northern hemisphere.
• The northern hemisphere is north of the equator.
• Great Britain is in Europe.
 

Note that both example queries depend on knowledge from both domains.  Example One
draws on ground assertions from the geography domain, and on both ground assertions
and a rule from the politics domain.  Example Two goes further, drawing on both ground
assertions and a rule from each of the two domains.  In addition, Example Two requires a
repeated application of a rule in the geography domain.

6. Agent Architecture

The architecture we use for distributed problem solving and cooperative information
processing uses the brokerage concept, wherein a centralized agent termed the ‘broker’
provides mediation and translation services. Effective matchmaking between servers and
clients is provided by a knowledge-sharing infrastructure. Servers inform the broker about
the knowledge they possess by using the    advertise    performatives. If an intelligent agent
needs information from external sources, it sends a request to this broker agent. The
broker, which maintains a registry of the agents in the domain, directs the query to the
agent that might have enough specialized knowledge to answer the query.  This architecture
is shown in Figure 3.
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GEO
CYC

POL
CYC

Broker

ANS

Name

Server

Generic

Router

Internet

ACA

Agent

Control

Agent

Agent

Generic
components

CYC 
components

Figure 3.  The demonstration architecture.

This intermediate forwarding of request (and later of the reply), called content-based
routing, has many advantages:

• Individual agents do not have to keep track of what kind of information can be
obtained from which agent.

• Information suppliers and consumers can continuously issue and retract
advertisements and requests, so information does not tend to become stale.

• Content-based routing helps avoid replication of information, thereby maintaining
consistency across the system.  In other words, updating information in each agent
is unnecessary, because the broker always has access to the most up-to-date
information.

• The model is scaleable because the number of agents can increase without
significant changes to the agent code. 

 

7 . Research Issues

We are currently exploring two main research issues—when should one agent seek help
from another and how should two agents interact?

7 . 1 When should one agent seek help from another?

Because communication costs will dominate computation costs in the distributed
environment of CFN, it is important to choose to externally expand a node of the inference
tree only when doing so is likely to lead to the desired proof.  The approach with which we
are currently experimenting is to select a subgoal to be solved externally only after a
complete local search; information about the predicates that compose the failed search tree
are then used to decide which subgoals should be sent to another agent during a second
round of inference.  This approach is  effectively a form of iterative deepening.
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An alternative architecture that is already in place includes knowledge about which agent
knows about which domains directly in the Cyc image.  Each Cyc agent is given
knowledge of what it knows and what other agents know.  When a node is selected for
expansion, Cyc determines whether it is an expert in that node's predicate.  If it is, no
external expansion is performed.  If it is not, Cyc selects an agent that has the requisite
expertise, and determines whether that agent is reachable.  In essence we check whether an
expert for a literal exists.  This approach works well for a small set of tightly-coupled Cyc
agents.

Categorizing agents as either ignorant or expert with respect to some body of knowledge is
a useful first approximation to characterizing what an agent knows.  Another general issue
is developing better ways to describe how much an agent knows about a domain.  For
example, it would be helpful to know the relationship between the knowledge sets of two
agents (e.g., that A’s knowledge about geography subsumes B’s) or  the degree of domain
knowledge  “coverage” that an agent or set of agents offers (e.g., agents A, B and C
together  have “complete” knowledge about an organization’s employees).

Whenever information and knowledge from different sources is to be integrated,
inconsistent and contradictory information must be handled.  We have not yet addressed
these problems (beyond using Cyc’s built-in mechanisms for handling contradictions); we
currently assume that agents known as experts with respect to a subject contain only valid
information and sound reasoning procedures.  Dealing with these problems opens up a
number of new research issues that will affect when the reasoning help of other agents will
be sought,  which agents will be selected for interact, and how the information they provide
will be interpreted and integrated. 

7 . 2 How should two agents interact?

There are two main problems that fall under the rubric of agent interaction.  First, how does
an agent decide with which other agents it should communicate?  Second, once an
appropriate agent has been selected, how should the dialogue proceed? 

The solution to the first problem requires the selection of an appropriate agent architecture.
We are experimenting with a variety of mediated architectures; Section 6 described our
basic approach.  The main concern in developing an agent architecture is that it be
scaleable.

A critical open issue is how to generate appropriate meta-data descriptions of an agent’s
knowledge in a way that is useful, automatic, abstractable and easily shared.  An agent’s
meta-data must be useful in helping other agents recognize that it may have information or
knowledge that might be relevant.  This means that there must  be effective procedures for
matching a description of one agent’s information needs (e.g., a query), with another
agent’s knowledge and reasoning capabilities.  We are currently matching at the level of
predicates, which is too fine a granularity for large-scale systems.  One promising approach
that we are beginning to investigate is the use of information retrieval techniques applied to
the symbolic names of knowledge base constants (e.g., names of predicates, functions,
relations, attributes,  domain individuals and domain values.)2  It is important to be able to
generate these meta-data automatically from the knowledge-base.  Indexing or abstracting a

                                    
2 These terms might first undergo some kind of syntactic or semantic decod ing
and might also be augmented by natural language terms associated with t h e i r
semant ics .
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knowledge-base by hand or even semi-automatically will certainly not scale.  By
abstractable, we mean that a meta-data representation should permit representation at
different levels of granularity, generality, or precision.  Again, this is an important criterion
for scalability.  Finally, easy of sharing implies that we do not require two agents to be
similar or to understand the details of each other’s internal representation or reasoning
method to use their meta-data.

The solution to the second problem, what kind of dialogs should agents have, involves in
large part choosing an appropriate set of conversational primitives, together with
conventions for how those primitives will be combined to form valid conversations.  Thus
far, we have been satisfied with the core primitives provided by KQML (i.e., KQML’s
performatives); as our architecture grows in complexity we may need to develop new
conversational conventions.

More interesting questions remain, however, that involve the nature of the content
exchanged by agents.  The simplest relationship between two agents is a client-server
relationship in which one agent sends another a query  and eventually gets back one or
more extensional answers.  Slightly more complicated is a peer-to-peer relationship in
which agents may engage in embedded sub-dialogs. Such conversation is still based on a
query and extensional answer model.   More flexibility is afforded if agents are allowed to
give intensional answers in response to a query.  Still more generality comes in allowing
agents to reply to a query with a more fully elaborated query which corresponds to a partial
proof.  Finally, perhaps the most general abstract model of a dialog is one in which the
basic exchange involves partially elaborated proof trees—Agent A sends agent B a proof
tree, and Agent B extends some portion of the tree and returns it to A.3

8.  Conclusions

The Cycic Friends Network has been successful in demonstrating that Cyc-based systems
can be used  in a distributed agent architecture.  A set of Cyc-based agents sharing a large
common core of knowledge were able to reason together.  Each agent contributed some
specialized knowledge that the others did not have.  The resulting collaboration allowed the
agents to solve problems that no subset could.  The Cyc agents communicated using the
KQML agent communication language with CycL as a content language.  This work has
led to a variety of interesting questions about how best to coordinate inference in an Internet
environment.
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3 This could be used as a model of “mobile computing,” since a partial p r o o f
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contain the data and resources they need. 
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