

!
Abstract— Mobile Ad hoc Networks (MANETs) are susceptible to
various node misbehaviors due to their unique features, such as
highly dynamic network topology, rigorous power constraints and
error-prone transmission media. Significant research efforts have
been made to address the problem of misbehavior detection.
However, little research work has been done to distinguish truly
malicious behaviors from the faulty behaviors. Both the malicious
behaviors and the faulty behaviors are generally equally treated
as misbehaviors without any further investigation by most of the
traditional misbehavior detection mechanisms. In this paper, we
propose and develop a policy-based malicious peer detection
mechanism, in which context information, such as communication
channel status, buffer status, and transmission power level, is
collected and then used to determine whether the misbehavior is
likely a result of malicious activity or not. Simulation results il-
lustrate that the policy-based malicious peer detection mechanism
is able to distinguish malicious peers from faulty peers with high
confidence. Moreover, the mechanism converges to a consistent
view of malicious nodes amongst all the nodes with a limited
communication overhead.

I. INTRODUCTION
MOBILE ad hoc network (MANET) is a self-configuring
network of mobile devices that are connected by wireless

links. In a MANET, each device is willing to serve as a router
and share its transmission power with other devices because it
is required to forward traffic that is irrelevant to its own inter-
est.

Unlike the traditional wired networks, MANETs are gener-
ally more susceptible to malicious attacks as well as failures.
Moreover, there are various sophisticated attacks that are dif-
ficult to identify [1, 2, 3]. Another threat comes from the
compromised nodes that are taken over by an adversary. These
compromised nodes can interfere with almost all of the network
operations, such as route discovery, secure key management,
and packet forwarding. Therefore, misbehavior surveillance
and detection is a crucial method that has been widely used in

Wenjia Li is with the Department of Computer Science and Electrical En-

gineering, University of Maryland, Baltimore County (UMBC), Baltimore, MD
21250 USA (phone: 410-455-3971; e-mail:wenjia1@ umbc.edu).

Anupam Joshi is with the Department of Computer Science and Electrical
Engineering, University of Maryland, Baltimore County (UMBC), Baltimore,
MD 21250 USA (e-mail: joshi@cs.umbc.edu).

Tim Finin is with the Department of Computer Science and Electrical En-
gineering, University of Maryland, Baltimore County (UMBC), Baltimore, MD
21250 USA (e-mail: finin@cs.umbc.edu).

MANETs to protect them from both external attackers and
internal malicious nodes (see, for instance, [4, 6, 7]).

The misbehaviors observed by neighboring peers typically
include dropping, modification, and misrouting of packets at
the network layer, as well as false Request/Clears in the MAC
layer [8]. However, many of these events may also occur due to
environmental and mobility related reasons, not just malicious
intent. For instance, a packet may be dropped when a node’s
buffer becomes full because of an inability to forward packets
on a noisy channel. Even if they are both regarded as misbe-
haviors, malicious behaviors are far more dangerous than the
faulty behaviors, because the goal of the malicious attackers is
to disturb the network operations by carrying out the misbe-
haviors, whereas faulty nodes do not aim to intentionally dis-
rupt the network and their effects are generally self limiting.
Hence, it is essential that malicious attackers and faulty nodes
be properly classified.

Significant research has been done on various node misbe-
haviors [4, 5, 6] and the corresponding countermeasures that
can be done against them [7, 8, 9]. However, little research has
been done to distinguish truly malicious behaviors from faulty
behaviors, which is the problem that we address in this paper.
We use context information, such as communication channel
status (busy/idle), buffer status (full/not full), and transmission
power level, to judge whether the misbehavior is the result of
malicious intent or not. In our proposed mechanism, the peers
in a MANET observe and record the abnormal behaviors of
their neighbors in a manner similar to existing methods [4, 7, 8].
In contrast to most existing approaches however, each peer also
simultaneously collects the context information within which
the abnormal behaviors occur. When each peer decides if a
node is malicious based on observing abnormal behaviors, it
factors in the context information in a manner specified by a
policy. In other words, the policy specifies, based on the con-
text, how “abnormal” is defined. Moreover, all the nodes will
exchange their observed abnormal behaviors as well as the
observed context information with their neighbors. Therefore,
each node can then make use of both local context information
and remote context information to better understand the cir-
cumstance under which the misbehavior has occurred.

The remainder of this paper is organized as follows. In Sec-
tion II, we present related work on misbehavior detection in
MANETs. The malicious peer detection mechanism is de-
scribed in Section III. In Section IV, we validate our proposed
mechanism by various simulation scenarios, followed by con-
clusions in Section V.

Wenjia Li, Anupam Joshi, Senior Member, IEEE, and Tim Finin

Policy-based Malicious Peer Detection
in Ad Hoc Networks

A

II. RELATED WORK
Misbehavior detection is a long studied topic in the security

research, and the work on misbehavior detection (may also be
called as intrusion detection in some cases) has produced a very
rich literature in traditional [9, 10], P2P [11] and ad hoc net-
works [4, 7, 8]. In the latter, most contributions assume that
there is no fixed network and security infrastructure that mis-
behavior detection mechanism can rely on.

Intrusion Detection Systems (IDS) provide an important
framework for detecting various node misbehaviors in
MANETs. Several approaches have been proposed to build
IDSs on each individual peer due to the lack of a fixed infra-
structure [7, 13, 14]. In these, each node is equipped with an
IDS sensor, and each IDS sensor is assumed to be always
monitoring the network traffic, which is not energy efficient
given the limited battery power that each node has in MANETs.
On the contrary, Huang et al. [15] propose a cooperative in-
trusion detection framework in which clusters are formed and
the nodes in each cluster will take over the intrusion detection
operations in turn. This cluster-based approach can definitely
reduce the power consumption for each node.

Routing misbehavior is another kind of malicious activity
that is common in ad hoc networks. Marti et al. [4] introduce
two related techniques, namely watchdog and pathrater, to
detect and isolate misbehaving nodes, which are nodes that do
not forward packets. There are also other proposed solutions
that aim to cope with the routing misbehaviors [16, 17, 18].

In previous work [12, 19], we have described a gossip-based
misbehavior detection algorithm in which the outlier detection
method is adopted to identify various node misbehaviors.
Weighted voting and the Dempster-Shafer Theory of evidence
(DST) are used to combine multiple local views of misbehav-
ing nodes from different nodes. However, none of these pre-
vious works endeavored to reveal the difference between the
malicious peers and the faulty peers, both of which may be
treated as misbehaving nodes with no difference.

III. MALICIOUS PEER DETECTION USING CONTEXT
INFORMATION

The goal of the malicious peer detection system is to prop-
erly identify the malicious peers in MANETs by using the
distributed misbehavior detection mechanism as well as the
context information collection scheme. The distributed mis-
behavior detection mechanism is similar to the gossip-based
outlier detection mechanism [12] in which a certain number of
outliers are identified in terms of some abnormal behaviors
observed by neighbors, such as packet drops, misroutes or
modifications. Gossiping in MANETs generally refers to the
repetitive probabilistic exchange of messages between two
peers in MANETs. In the context collection scheme, each node
observes and records the current network and node context
information, such as channel status, buffer status and trans-
mission signal strength. When the distributed misbehavior
detection mechanism attempts to identify the malicious peers,
the collected context information will be utilized to help decide

which nodes are truly malicious nodes and which nodes are
merely faulty nodes that randomly exhibit misbehaviors.

A. System Architecture

Figure 1 illustrates the system architecture with three com-
ponents: the Misbehavior Detector, a Trust Manager, and a
Policy Manager. As this figure shows, both the Misbehavior
Detector and Policy Manager actively sense the network.
However, the Misbehavior Detector aims to observe and record
the abnormal behaviors of neighbors, whereas the Policy
Manager attempts to detect changes in network context. Once
the Misbehavior Detector identifies misbehaving nodes, it
notifies the Trust Manager of its findings. Then, the Trust
Manager will update the trustworthiness value based on the
information about misbehaviors. The Misbehavior Detector
will get feedback from both the Trust Manager and Route
Manager once they finish updating the relevant information.
On the other hand, the other information stream collected from
the network, which is the network context, will be processed
and reasoned by the Policy Manager. If it finds out that the
policies should be updated, the Policy Manager will propagate
the updated policies to all other components.

B. Formulation
A node in MANETs is defined as a system entity that can

observe the behaviors of other entities within its radio trans-
mission range. A neighbor of a node N is defined as a node that
is located within N’s radio transmission range. We assume that
each node transmits at full power. If the underlying MAC
protocol uses variable power settings, then a neighbor is a node
that can listen to the transmission.

A node not only observes the abnormal behaviors that its
neighbors exhibit, it will also keep track of the total number of

Figure 1. The system architecture comprises three main compoenents: a
misbehavior detector, a policy manager and a trust manager.

packets that each node has received. The rate of abnormal
traffic over the total traffic is an appropriate criterion for a node
to decide if its neighbor is potentially a malicious peer or not.
For example, if all the nodes agree to observe the behaviors of
packet drop, misroute and modification, then the packet drop
rate (PDR), packet modification rate (PMOR) and packet
misroute rate (PMIR) can be defined as follows, respectively.

PacketsgminIncoofNumberTotal
MisroutedPacketsofNumber

PMIR

PacketsgminIncoofNumerTotal
ModifiedPacketsofNumber

PMOR

PacketsgminIncoofNumberTotal
DroppedPacketsofNumber

PDR

"

"

"

We define the trustworthiness of a node Nk as a real value !k
that reflects the probability with which the node will perform
the exact actions that it is supposed to take. !k can be assigned
any real value in the range [0, 1], and the higher the value of !k,
the node Nk is more reliable and has a higher probability to take
the correct actions. The trustworthiness !k of a node Nk can be
defined as a function of all misbehaviors that other nodes have
observed for the node Nk. In other words, the trustworthiness !k
can initially be derived as follows.

#$"
i

kik M1%

We note that different misbehaviors may be caused by dif-
ferent reasons. For instance, packet dropping and packet
modification are both viewed as misbehaviors. However,
packet dropping may be caused either by intentional malicious
behavior or by power failure. On the other hand, when we find
that a node is modifying the incoming packets, we can safely
conclude that it is malicious. Hence, we should vary the pun-
ishment for different misbehaviors according to the context of
their occurrence. Namely, the calculation of trustworthiness !k
is adjusted as follow.

&$"
i

kiik MP1%

Here Pi denotes the punishment factor for the i-th misbe-
havior, which indicates the severity degree of its outcome. The
punishment factor is the function of the context in which the
misbehavior occurs. In other words, the same misbehavior may
be punished differently when it occurs in different circum-
stances. The punishment factor is determined by the Policy
Manager, which will be discussed later in more details. Mki
represents the rate of this misbehavior over the total observed
behaviors. For example, if packet drop, packet modification,
and packet misroute are the three exact misbehaviors we are
observing, then !k can be derived as follow. The punishment
factors for different misbehaviors will need to be selected so
that !k always falls in the range of [0, 1]. This does not however
necessitate that Pis sum to 1.

PMIRP

PMORPPDRP

misroute

ificationmoddropk

&$

&$&$"1%

C. Misbehavior Detection
As we have discussed in the previous section, the gossip-

based outlier detection algorithm is used in the Misbehavior
Detector to identify misbehaving nodes. The outlier detection
algorithm has the following four steps, viz. local view formation,
local view exchange, view combination, and global view forma-
tion. The basic functionality of the Misbehavior Detector is
similar to the outlier detection algorithm that we have proposed
earlier [12]. However, the context information offered by the
Policy Manager is added to the outlier detection algorithm, and the
context information is used to decide the circumstance under
which the misbehaviors occur. In this way, a node may distinguish
a malicious node from other faulty nodes because they carry out
the misbehaviors under different circumstances.

D. Trust Management
A variety of trust and reputation management approaches

have been studied during the past decades, for instance [20, 21,
22]. All of these trust management approaches can fit our sys-
tem. For the experiments presented in this paper, we adopt a
simple but well-defined trust management scheme, in which
each nodes trustworthiness !k is initially set to a default value.
A peers !k is modified whenever we obtain any novel infor-
mation regarding its trustworthiness in terms of both direct
observation results from the node itself and indirect observa-
tion results from other nodes. Direct observation results and
indirect observation results are generally called first-hand
information and second-hand information, respectively [23].

The trust management scheme is shown in Figure 2. In the
trust management scheme, we adopt DST to combine first-hand
information and second-hand information. Furthermore, Policy
Manager collects the network and node contexts, and then the
context information will feed to the view combination in terms
of secure policy. In this way, trustworthiness !k is reduced for
various misbehaviors according to various contexts.

Figure 2. Trust Management

We should also note that there is no "global" information on
trustworthiness, and the algorithm converges with a global
picture of outliers, not with a global picture of trustworthi-
ness. Each node has its own trust measures which evolve, and
could be different from that of the others.

E. Policy Management
The Policy Manager is responsible to collect and record

network/node context information, and then enforce the cor-
responding security policies so that the Misbehavior Detector
and Trust Manager can make use of the context information
when they identify the malicious nodes.

For example, we can make use of the context information
when we need to punish a node because it has dropped a certain
number of packets. Packet dropping is generally carried out by
two types of nodes: malicious nodes and selfish nodes. Mali-
cious nodes aim to destroy network operations by dropping
some portion or all of the packets that flow through them;
whereas selfish nodes simply want to preserve their resource,
and consequently they occasionally refuse to forward packets
for others. However, packet dropping may also be caused by
external factors, such as (1) overflowing buffers caused by
overwhelming incoming traffic, or (2) channel collision caused
by too many simultaneous Request-To-Send (RTS) packets by
different nodes. Because nodes themselves are unable to con-
trol these external factors, packet dropping resulting from these
should be punished less than packet dropping induced by ma-
licious or selfish intents.

Figure 3 demonstrates an example of how context informa-
tion can be utilized when punishing node misbehaviors. In
Figure 3a), a node A senses that the communication channel is
busy, because node 2 is sending out RTS packets and at-
tempting to occupy the channel. At the same time, node A also
finds that node 1 drops some incoming packets. In this case,
node A may find that the channel is busy when node 1 drops
packets. As a result, node A decides to decrease the punishment
for node 1 because it may be forced to drop packets. A rule
demonstrating this policy is shown below, which is written
using SWRL [24].

In contrast, as is shown in Figure 3b), node A finds that the
channel is idle when node 1 still drops some more packets. In
this case, node A decides to increase the punishment factor for
node 1 because there is no external factor for its packet drop-
ping at this time. A SWRL [24] rule below illustrates this pol-
icy.

IV. PERFORMANCE EVALUATION
In this section, we examine the performance of the pol-

icy-based malicious peer detection method. We compare the
performance of our mechanism with the baseline algorithm,
which is the outlier detection algorithm studied in [12].

A. Simulation Setup
We use GloMoSim 2.03 [25] as the simulation platform.

Table I lists the parameters used in the simulation scenarios.

 Here we also assume that transmission range equals to radio

<ruleml:imp>
 <ruleml:_rlab ruleml:href="#rule2"/>
 <ruleml:_body>
 <swrlx:individualPropertyAtom swrlx:property="isDropPacket">
 <ruleml:var>x2</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom swrlx:property="senseChannelIdle">
 <ruleml:var>x1</ruleml:var>
 <ruleml:var>x2</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_body>
 <ruleml:_head>
 <swrlx:individualPropertyAtom swrlx:property="addPunishment">
 <ruleml:var>x1</ruleml:var>
 <ruleml:var>x2</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_head>
</ruleml:imp>

Figure 3. Punishing Misbehaving Nodes in Different Contexts

TABLE I
SIMULATION PARAMETERS

Parameter Value

Simulation area 600m × 600m
Number of nodes 50, 100, 200

Transmission range 60m, 90m, 120m
Mobility pattern Random waypoint

Node motion speed 10m/s
Number of malicious nodes 5, 10, 20

Simulation time 900 s

<ruleml:imp>
 <ruleml:_rlab ruleml:href="#rule1"/>
 <ruleml:_body>
 <swrlx:individualPropertyAtom swrlx:property="isDropPacket">
 <ruleml:var>x2</ruleml:var>
 </swrlx:individualPropertyAtom>
 <swrlx:individualPropertyAtom swrlx:property="senseChannelBusy">
 <ruleml:var>x1</ruleml:var>
 <ruleml:var>x2</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_body>
 <ruleml:_head>
 <swrlx:individualPropertyAtom swrlx:property="reducePunishment">
 <ruleml:var>x1</ruleml:var>
 <ruleml:var>x2</ruleml:var>
 </swrlx:individualPropertyAtom>
 </ruleml:_head>
</ruleml:imp>

range. In other words, the definition of neighbor in our simu-
lation is someone who is always within the transmission range
of the node.

Three parameters are employed to evaluate the correctness
and efficiency of our algorithm: Correctness Rate (CR),
Communication Overhead (CO), and Convergence Time (CT).
They are defined as follows.

viewglobalconsistentaformtotakenTimeCT
networkinPacketsofNumberTotal
DetectionOutlierforPacketsofNumberCO

OutliersofNumberTotal
FoundOutliersTrueofNumberCR

"

"

"

Each simulation scenario has 30 runs with distinct random
seed, which ensures a unique initial node placement for each
run. In the simulation, each node observes and records the
channel status (busy/idle), and exchanges this context infor-
mation with other nodes.

B. Adversary Model
In our simulation, nodes either abide by various MANET

protocols, such as AODV routing protocol, or their behaviors
deviate from the protocol definition either intentionally (i.e.
attackers) or unintentionally (i.e. faulty nodes). Both attackers
and faulty nodes can do harm to the network functionalities,

and consequently we regard them both as adversaries. In gen-
eral, adversaries can partially or completely drop, modify or
misroute any packet that is sent to them. We also assume that
they can deploy the Denial-of-Service (DoS) attack by con-
tinuously sending out Request-To-Send (RTS) packets so as to
improperly occupy the communication channel all the time,
which is also regarded as the RTS flood attack.

The adversaries may mix all these misbehaviors so that it
will be more difficult to identify their misbehaviors if observed
only from one or two perspectives. More importantly, the ad-
versaries are capable of deliberately injecting faulty data and
spreading these fake data to other benign nodes. In this way, the
benign nodes may be induced to generate faulty reports in
which benign nodes can be misclassified as misbehaving
nodes.

C. Simulation Results
The goal of the simulations is to observe the performance of

our algorithm under different parameter configurations. We
have compared the performance of our algorithm under the
following five conditions: different number of nodes, different
radio ranges, and different percentage of malicious nodes. The
simulation results are showed in Figures 4 through 6.

Figure 4. CR, CO, CT with Different Number of Nodes (number of malicious nodes: 5, area: 600m ×600m, radio range: 120m, motion speed: 5m/s)

Figure 5. CR, CO, CT with Different Radio Ranges (number of malicious nodes: 5, area: 600m ×600m, number of nodes: 100, motion speed: 5m/s)

Figure 6. CR, CO, CT with Different Number of Malicious Nodes (radio range: 120m, area: 600m ×600m, number of nodes: 100, motion speed: 5m/s)

Figure 4 exhibits the performance of our PbMPD algorithm

with different number of nodes. From Figure 4 we find that
when the number of nodes is increased, the algorithm yields a
higher correctness rate, but it also introduces more communi-
cation overhead. This is consistent with our analysis because
the information gathered to identify the outliers is generally
more accurate if there are more observers. At the same time,
more messages need to be exchanged amongst all the nodes to
reach a consistent view when there are more nodes. We also
note that PbMPD demonstrates better correctness rate than the
baseline algorithm. However, PbMPD also introduces slightly
higher communication overhead, and PbMPD may take a
longer time to converge. Because the context information needs
to be exchanged amongst the nodes besides the local views,
PbMPD is supposed to introduce more communication over-
head. Similarly, it takes slightly more time for PbMPD to
converge since it will take extra time for each node to exchange
context information with other nodes.

Figure 5 shows how the simulation results differ with dif-
ferent transmission ranges. We find that with a smaller radio
range, both PbMPD and the baseline algorithm suffer from
performance degradation. When it is more difficult for nodes to
exchange the local views, the correctness rate of the final global
view will surely be degraded. On the other hand, we may also
conclude from Figure 5 that PbMPD produces a higher cor-
rectness rate than the baseline algorithm with the same radio
transmission range. This is the case because PbMPD has taken
the context information into account, and consequently the
faulty peers are less likely to be misclassified as malicious
peers even if they both exhibit misbehaviors.

Figure 6 shows the simulation results with different per-
centage of malicious nodes. It is obvious that PbMPD can yield
a much better performance than the baseline algorithm with a
higher percentage of malicious nodes. This is true because with
a higher percentage of malicious nodes, it will be more likely
that the benign nodes are forced to drop packets because the
malicious nodes consume a large portion of the channel time to
conduct their malicious behaviors. Hence, when there are a
higher percentage of malicious nodes, the performances of the
baseline algorithm degrade noticeably. On the other hand,
PbMPD can properly handle the malicious peer detection
problem even in a more hostile environment because it relies on
the context information to decide which nodes are truly mali-
cious.

D. Discussion
We also note from the simulation that our PbMPD algorithm

can properly distinct malicious peers from the faulty peers,
whereas the baseline algorithm cannot do so at all times. For
example, in the first simulation scenario in Figure 4, we ob-
serve that when there are 100 nodes in the network, node 24
and node 83 sometimes exhibit packet dropping misbehavior,
and consequently they are misclassified as malicious peers by
the baseline algorithm in some cases. Since neither is set as the
malicious peers in our simulation setup, we further analyze the
simulation output, and we find that some of their neighbors are
malicious peers. Both of them are forced to drop some portion
of the incoming packets because their malicious neighbors
deliberately occupy the communication channel for a long
period of time. Since the baseline algorithm neither collects the
context information, nor does it utilize the policy to properly
adjust the punishment in different context, node 24 and node 83
are sometimes misclassified as malicious peers.

On the other hand, our PbMPD algorithm first collects the
context information, and then makes use of the context infor-
mation as well as the corresponding policy to determine the
punishment factor for each of the misbehaviors. Therefore, the
faulty nodes can be correctly separated from the malicious
nodes, and the correctness rate of PbMPD is surely higher than
that of the baseline algorithm.

V. CONCLUSION
In this paper, a policy-based malicious peer detection algo-

rithm is described discriminates the truly malicious attackers
from the faulty nodes, both of which may exhibit misbehaviors.
Through the use of context information, such as channel status,
buffer status and transmission signal strength, a node can de-
termine the circumstance under which the misbehaviors occur.
As a result, the node can then tell whether a node is forced to act
as a misbehaving node or not, and reveal the truly malicious
attackers. The simulation results show that the approach is
highly resilient to malicious attackers, and it can properly dis-
tinguish the malicious peers from the faulty peers with a limited
communication overhead.

REFERENCES
[1] Y. Hu, A. Perrig and D. Johnson. Ariadne: A Secure On-demand Routing

Protocol for Ad Hoc Networks. In Proc. of MobiCom’02, pages 12-23,
2002.

[2] A. Perrig, Y.-C. Hu, and D. B. Johnson. Packet Leashes: A Defense
against Wormhole Attacks in wireless networks. In Proc. of IEEE
INFOCOM’ 03, pages 1976-1986, 2003.

[3] J. R. Douceur. The Sybil Attack. In Proc. of the 1st International Work-
shop on Peer-to-Peer System, Lecture Notes In Computer Science (vol.
2429), Springer-Verlag, pages 251 – 260, 2002.

[4] S. Marti, T. J. Giuli, K. Lai and M. Baker. Mitigating Routing Misbe-
haviors in Mobile Ad hoc Networks. In Proc. of ACM MobiCom ’00,
pages 255-265, Aug. 2000.

[5] M. Hollick, J. Schmitt, C. Seipl and R. Steinmetz. On the Effect of Node
Misbehaviors in Ad Hoc Networks. In Proc. of IEEE ICC’ 04, volume 6,
pages 3759-3763, Jun. 2004.

[6] B. Zhu, K. Ren and L. Wang. Anonymous Misbehavior Detection in
Mobile Ad Hoc Networks. In Proc. of ICDCS’08 Workshops, pages
358-262, Jun. 2008.

[7] Y. Zhang and W. Lee. Intrusion Detection in Wireless Ad-hoc Networks.
In Proc. of MOBICOM’00, pages 275-283, 2000.

[8] J. Parker, A. Patwardhan and A. Joshi. Cross-layer Analysis for Detecting
Wireless Misbehavior. In Proc. of CCNC ’06, pages 6-9, Jan. 2006.

[9] D. E. Denning. An Intrusion Detection Model. IEEE Transactions on Software
Engineering, vol. SE-13, issue 2, pages 222-232, Feb. 1987.

[10] W. Lee and S. J. Stoflo. Data Mining Approaches for Intrusion Detection. In
Proc. of 7th USENIX Security Symposium, 1998.

[11] R. Janakiraman, M. Waldvogel and Q, Zhang. Indra: A Peer-to-peer Ap-
proach to Network Intrusion Detection and Prevention. In Proc. of 12th IEEE
International Workshop on Enabling Technologies: Infrastructure for Col-
laborative Enterprises (WETICE 2003), pages 226-231, 2003.

[12] W. Li and A. Joshi. Outlier Detection in Ad Hoc Networks Using Demp-
ster-Shafer Theory. In Proc. of MDM ’09, May 2009.

[13] H. Deng, Q. Zeng, and D. P. Agrawal. SVM-based Intrusion Detection System
for Wireless Ad Hoc Networks. In Proc. of IEEE VTC’03, vol. 3, pages
2147–2151, 2003.

[14] C. Tseng, P. Balasubramanyam, C. Ko, R. Limprasittiporn, J. Rowe, and K.
Levitt. A Specification-based Intrusion Detection System for AODV. In Proc. of
SASN’03, pages 125–134, 2003.

[15] Y. Huang and W. Lee. A Cooperative Intrusion Detection System for Ad Hoc
Networks. In Proc. of SASN’03, pages 135-147, 2003.

[16] M. Kefayati, H. R. Rabiee, S. G. Miremadi, and A. Khonsari. Misbehavior
Resilient Multi-path Data Transmission in Mobile Ad-hoc Networks. In Proc. of
SASN’06, pages 91-100, 2006.

[17] Y. Xue and K. Nahrstedt. Providing Fault-Tolerant Ad hoc Routing Service in
Adversarial Environments. Wireless Personal Communication, vol. 29, issue 3-4,
pages 367-388, 2004.

[18] L. Anderegg and S. Eidenbenz. Ad hoc-VCG: A Truthful and Cost-efficient
Routing Protocol for Mobile Ad Hoc Networks with Selfish Agents. In Proc. of
MOBICOM ’03, pages 245-259, 2003.

[19] W. Li, J. Parker and A. Joshi. Security through Collaboration in MANETs. In
Proc. of the 4th International Conference on Collaborative Computing: Net-
working, Applications and Worksharing (CollaborateCom ‘08), Nov 2008.

[20] S. Buchegger, J. Le Boudec. Performance analysis of the CONFIDANT pro-
tocol. In Proc. of the 3rd ACM international Symposium on Mobile Ad Hoc
Networking & Computing (MOBIHOC ’02), pages 226 - 236, Jun 2002.

[21] A. Patwardhan, F. Perich, A. Joshi, T. Finin, and Y. Yesha. Active Collabora-
tions for Trustworthy Data Management in Ad Hoc Networks. In Proc. of the
2nd IEEE International Conference on Mobile Ad-Hoc and Sensor Systems
(MASS 2005), November 2005.

[22] V. Srinivasan, P. Nuggehalli, C.-F. Chiasserini, and R. R. Rao. An analytical
approach to the study of cooperation in wireless ad hoc networks. IEEE Trans-
actions on Wireless Communications, 4(2):722–733, March 2005.

[23] C. Zouridaki, B. L. Mark, M. Hejmo, and R. K. Thomas. Robust cooperative
trust establishment for MANETs. In Proc. of the Fourth ACM Workshop on
Security of Ad Hoc and Sensor Networks (SASN ’06), pages 23-34, Oct 2006.

[24] SWRL: A Semantic Web Rule Language Combining OWL and RuleML,
http://www.w3.org/Submission/SWRL/.

[25] Glomosim 2.03, http://pcl.cs.ucla.edu/projects/glomosim/.

