

Analysis of Data Mining

Algorithms

Final Project for Advanced Algorithms

by

Karuna Pande Joshi

March 1997

 Data Mining Algorithms

 2

Table of Contents

1. INTRODUCTION .. 3

2. CLASSIFICATION ALGORITHMS ... 4

2.1 DATA CLASSIFICATION METHODS .. 4

2.2 DATA ABSTRACTION ... 4

2.3 CLASSIFICATION-RULE LEARNING. .. 5

2.3.1 ID3 algorithm ... 7

2.3.2 C4.5 algorithm ... 8

2.3.3 SLIQ algorithm .. 8

2.3.4 Other Algorithms ... 8

2.4 PARALLEL ALGORITHMS ... 9

2.4.1 Basic Idea: ... 9

2.4.2 Synchronous Tree Construction Approach .. 9

2.4.3 Partitioned Tree Construction Approach .. 10

3. ASSOCIATION RULE ALGORITHMS ... 11

3.1 APRIORI ALGORITHM .. 11

3.2 DISTRIBUTED/PARALLEL ALGORITHMS .. 12

4. SEQUENTIAL ANALYSIS ... 13

4.1 SEQUENTIAL PATTERNS .. 13

4.2 ALGORITHMS FOR FINDING SEQUENTIAL PATTERNS .. 13

4.2.1 Algorithm ... 13

4.2.2 Algorithm AprioriAll .. 14

4.2.3 Algorithm AprioriSome .. 15

4.2.4 Relative Performance of the two Algorithms ... 18

5. CONCLUSION ... 19

5.1 COMPARING ALGORITHMS .. 19

5.2 DRAWBACKS OF EXISTING ALGORITHMS ... 19

REFERENCES .. 21

APPENDIX A... 22

 Data Mining Algorithms

 3

1. Introduction

With an enormous amount of data stored in databases and data warehouses, it is

increasingly important to develop powerful tools for analysis of such data and mining interesting

knowledge from it. Data mining is a process of inferring knowledge from such huge data. Data

Mining has three major components Clustering or Classification, Association Rules and

Sequence Analysis.

By simple definition, in classification/clustering we analyze a set of data and generate a

set of grouping rules which can be used to classify future data. For example, one may classify

diseases and provide the symptoms which describe each class or subclass. This has much in

common with traditional work in statistics and machine learning. However, there are important

new issues which arise because of the sheer size of the data. One of the important problem in

data mining is the Classification-rule learning which involves finding rules that partition given

data into predefined classes. In the data mining domain where millions of records and a large

number of attributes are involved, the execution time of existing algorithms can become

prohibitive, particularly in interactive applications. This is discussed in detail in Chapter 2.

An association rule is a rule which implies certain association relationships among a set

of objects in a database. In this process we discover a set of association rules (in the form of ``A1

… A i B1 … B j'') at multiple levels of abstraction from the relevant set(s) of data in a

database. For example, one may discover a set of symptoms often occurring together with certain

kinds of diseases and further study the reasons behind them. Since finding interesting association

rules in databases may disclose some useful patterns for decision support, selective marketing,

financial forecast, medical diagnosis, and many other applications, it has attracted a lot of

attention in recent data mining research . Mining association rules may require iterative scanning

of large transaction or relational databases which is quite costly in processing. Therefore,

efficient mining of association rules in transaction and/or relational databases has been studied

substantially. This is discussed in detail in Chapter 3.

In sequential Analysis, we seek to discover patterns that occur in sequence. This deals

with data that appear in separate transactions (as opposed to data that appear in the same

transaction in the case of association).For e.g. : If a shopper buys item A in the first week of the

month, then s/he buys item B in the second week etc. This is discussed in detail in Chapter 4.

There are many algorithms proposed that try to address the above aspects of data mining.

Compiling a list of all algorithms suggested/used for these problems is an arduous task . I have

thus limited the focus of this report to list only some of the algorithms that have had better

success than the others. I have included a list of URLs in Appendix A which can be referred to

for more information on data mining algorithms.

 Data Mining Algorithms

 4

2. Classification Algorithms

In Data classification one develops a description or model for each class in a database,

based on the features present in a set of class-labeled training data. There have been many data

classification methods studied, including decision-tree methods, such as C4.5, statistical

methods, neural networks, rough sets, database-oriented methods etc.

2.1 Data Classification Methods

In this paper, I have discussed in detail some of the machine-learning algorithms that

have been successfully applied in the initial stages of this field. The other methods listed above

are just being applied to data mining and have not been very successful. This section briefly

describes these other methods. Appendix A lists the URLs which can be referred to for more

information on these various methods.

 Statistical Algorithms Statistical analysis systems such as SAS and SPSS have been used

by analysts to detect unusual patterns and explain patterns using statistical models such as

linear models. Such systems have their place and will continue to be used.

 Neural Networks Artificial neural networks mimic the pattern-finding capacity of the

human brain and hence some researchers have suggested applying Neural Network

algorithms to pattern-mapping. Neural networks have been applied successfully in a few

applications that involve classification.

 Genetic algorithms Optimization techniques that use processes such as genetic combination,

mutation, and natural selection in a design based on the concepts of natural evolution.

 Nearest neighbor method A technique that classifies each record in a dataset based on a

combination of the classes of the k record(s) most similar to it in a historical dataset.

Sometimes called the k-nearest neighbor technique.

 Rule induction The extraction of useful if-then rules from data based on statistical

significance.

 Data visualization The visual interpretation of complex relationships in multidimensional

data.

2.2 Data Abstraction

 Many existing algorithms suggest abstracting the test data before classifying it into

various classes. There are several alternatives for doing abstraction before classification: A data

set can be generalized to either a minimally generalized abstraction level, an intermediate

abstraction level, or a rather high abstraction level. Too low an abstraction level may result in

scattered classes, bushy classification trees, and difficulty at concise semantic interpretation;

whereas too high a level may result in the loss of classification accuracy. The generalization-

based multi-level classification process has been implemented in the DB- Miner system.[4]

 Data Mining Algorithms

 5

2.3 Classification-rule learning.

Classification-rule learning involves finding rules or decision trees that partition given

data into predefined classes. For any realistic problem domain of the classification-rule learning,

the set of possible decision trees is too large to be searched exhaustively. In fact, the

computational complexity of finding an optimal classification decision tree is NP hard.

Most of the existing induction-based algorithms use Hunt's method as the basic

algorithm.[2] Here is a recursive description of Hunt's method for constructing a decision tree

from a set T of training cases with classes denoted {C1, C2, … ,Ck }.

Case 1 T contains one or more cases, all belonging to a single class Cj : The decision tree for T

is a leaf identifying class Cj .

Case 2 T contains no cases: The decision tree for T is a leaf, but the class to be associated with

the leaf must be determined from information other than T.

Case 3 T contains cases that belong to a mixture of classes: A test is chosen, based on a single

attribute, that has one or more mutually exclusive outcomes {O1, O2 , .. ,On }. T is partitioned

into subsets T1, T2, … ,Tn , where Ti contains all the cases in T that have outcome Oi of the

chosen test. The decision tree for T consists of a decision node identifying the test, and one

branch for each possible outcome. The same tree building machinery is applied recursively to

each subset of training cases.

Outlook Temp(F) Humidity(%) Windy? Class

sunny 75 70 true Play

sunny 80 90 true Don't Play

sunny 85 85 false Don't Play

sunny 72 95 false Don't Play

sunny 69 70 false Play

overcast 72 90 true Play

overcast 83 78 false Play

overcast 64 65 true Play

overcast 81 75 false Play

rain 71 80 true Don't Play

rain 65 70 true Don't Play

rain 75 80 false Play

rain 68 80 false Play

rain 70 96 false Play

Table 2.1: A small training data set [2]

 Data Mining Algorithms

 6

(a)Initial Classification

Tree

(b)Intermediate Classification

Tree

(c) Final Classification Tree

Figure 2.1: Demonstration of Hunt's Method

Attribute Value Class

 Play Don't Play

sunny 2 3

overcast 4 0

rain 3 2

Table 2.2: Class Distribution Information of Attribute Outlook

non-leaf node

Expandable leaf

node

 non-expandable leaf

node

Play

Play
Don’t

Play

Outlook

Play

sunny
rain

overcast

Windy Humidity

Outlook

Play Don’t Play Don’t Play Play

Play

True False
>75 <=75

sunny
rain

overcast

 Data Mining Algorithms

 7

Attribute

Value

Binary

Test

Class

 Play Don't Play

65 1 0

 > 8 5

70 3 1

 > 6 4

75 4 1

 > 5 4

78 5 1

 > 4 4

80 7 2

 > 2 3

85 7 3

 > 2 2

90 8 4

 > 1 1

95 8 5

 > 1 0

96 9 5

 > 0 0

Table 2.3: Class Distribution Information of Attribute Humidity

Table 2.1 shows a training data set with four data attributes and two classes. Figure 2.1 shows

how the Hunt's method works with the training data set. In the case 3 of the Hunt's method, a test

based on a single attribute is chosen for expanding the current node. The choice of an attribute is

normally based on the entropy gains of the attributes. The entropy of an attribute is calculated

from class distribution information. For a discrete attribute, class distribution information of each

value of the attribute is required. Table 2.2 shows the class distribution information of data

attribute Outlook. For a continuous attribute, binary test involving all the distinct values of the

attribute is considered. Table 2.3 shows the class distribution information of data attribute

Humidity. Once the class distribution information of all the attributes are gathered, the entropy is

calculated based on either information theory or Gini Index. One attribute with the most entropy

gain is selected as a test for the node expansion.

2.3.1 ID3 algorithm

The ID3 algorithm (Quinlan86) is a decision tree building algorithm which determines

the classification of objects by testing the values of the their properties. It builds the tree in a top

down fashion, starting from a set of objects and a specification of properties. At each node of the

tree, a property is tested and the results used to partition the object set. This process is

recursively done till the set in a given subtree is homogeneous with respect to the classification

criteria – in other words it contains objects belonging to the same category. This then becomes a

leaf node. At each node, the property to test is chosen based on information theoretic criteria that

 Data Mining Algorithms

 8

seek to maximize information gain and minimize entropy. In simpler terms, that property is tested

which divides the candidate set in the most homogeneous subsets.

2.3.2 C4.5 algorithm

 This algorithm was proposed by Quinlan (1993). The C4.5 algorithm generates a

classification-decision tree for the given data-set by recursive partitioning of data. The decision

is grown using Depth-first strategy. The algorithm considers all the possible tests that can split

the data set and selects a test that gives the best information gain. For each discrete attribute, one

test with outcomes as many as the number of distinct values of the attribute is considered. For

each continuous attribute, binary tests involving every distinct values of the attribute are

considered. In order to gather the entropy gain of all these binary tests efficiently, the training

data set belonging to the node in consideration is sorted for the values of the continuous attribute

and the entropy gains of the binary cut based on each distinct values are calculated in one scan of

the sorted data. This process is repeated for each continuous attributes.

2.3.3 SLIQ algorithm

SLIQ (Supervised Learning In Quest) developed by IBM’s Quest project team, is a

decision tree classifier designed to classify large training data [1]. It uses a pre-sorting technique

in the tree-growth phase. This helps avoid costly sorting at each node. SLIQ keeps a separate

sorted list for each continuous attribute and a separate list called class list. An entry in the class

list corresponds to a data item, and has a class label and name of the node it belongs in the

decision tree. An entry in the sorted attribute list has an attribute value and the index of data item

in the class list. SLIQ grows the decision tree in breadth-first manner. For each attribute, it

scans the corresponding sorted list and calculate entropy values of each distinct values of all the

nodes in the frontier of the decision tree simultaneously. After the entropy values have been

calculated for each attribute, one attribute is chosen for a split for each nodes in the current

frontier, and they are expanded to have a new frontier. Then one more scan of the sorted attribute

list is performed to update the class list for the new nodes.

While SLIQ handles disk-resident data that are too large to fit in memory, it still requires

some information to stay memory-resident which grows in direct proportion to the number of

input records, putting a hard-limit on the size of training data. The Quest team has recently

designed a new decision-tree-based classification algorithm, called SPRINT (Scalable

PaRallelizable INduction of decision Trees) that for the removes all of the memory restrictions.

2.3.4 Other Algorithms

 There are many other machine learning algorithms , discussing all of them is outside the

scope of this paper. Some of these algorithms are listed below [8].

Nearest-neighbor The classical nearest-neighbor with options for weight setting,

normalizations, and editing (Dasarathy 1990, Aha 1992, Wettschereck 1994).

 Data Mining Algorithms

 9

Naive-Bayes A simple induction algorithm that assumes a conditional independence model of

attributes given the label (Domingos & Pazzani 1996, Langley, Iba & Thompson 1992, Duda &

Hart 1973, Good 1965).

OODG Oblivous read-Once Decision Graph induction algorithm described in Kohavi (1995c).

Lazy decision trees An algorithm for building the ``best'' decision tree for every test instance

described in Friedman, Kohavi & Yun (1996).

Decision Table A simple lookup table. A simple algorithm that is useful with feature subset

selection

2.4 Parallel Algorithms

Most of the existing algorithms, use local heuristics to handle the computational

complexity. The computational complexity of these algorithms ranges from O(AN logN) to

O(AN(logN)
2
) with N training data items and A attributes. These algorithms are fast enough for

application domains where N is relatively small. However, in the data mining domain where

millions of records and a large number of attributes are involved, the execution time of these

algorithms can become prohibitive, particularly in interactive applications. Parallel algorithms

have been suggested by many groups developing data mining algorithms. We discuss below two

approaches that have been used.[2]

2.4.1 Basic Idea:

Initially N training data items are randomly distributed to P processors such that each

processors has N=P data items. At this point, all the processors cooperate to expand the root node

of a decision tree. For this, processors need to decide on an attribute to use to generate child

nodes of the root. This can be done in three steps. In the first step, every processor collects the

class distribution information of the local data. In the second step, the processors exchange the

local class distribution information using global reduction. Finally, each processor can

simultaneously compute entropy gains of the attributes and find the best attribute for splitting the

root node.

There are two approaches for further progress. In Synchronous Tree Construction Approach, the

entire set of processors synchronously expand one node of the decision tree at a time. In

partitioned Tree Construction Approach, each new generated node is expanded by a subset of

processors that helped the expansion of the parent node. These are discussed below .

2.4.2 Synchronous Tree Construction Approach

In this approach, all processors construct a decision tree synchronously by sending and

receiving class distribution information of local data.

Major steps for the approach are shown below:

1. Select a node to expand according to a decision tree expansion strategy (eg. Depth-First,

Breadth-First or Best-First), and call that node as the current node.

2. For each data attribute, collect class distribution information of the local data at the current

node.

3. Exchange the class distribution information with all other processors and add up the class

distribution information to get a complete distribution of all the attributes.

 Data Mining Algorithms

 10

4. Calculate the entropy gains of each attribute and select the best attribute for child node

expansion.

5. Based on the attribute values, create child nodes and partition the data according to the

values of the attribute chosen.

6. Repeat the above steps (1--5) until no more nodes are available for the expansion.

The advantage of this approach is that it does not require any movement of the training

data items. However, this algorithm suffers from high communication cost and load imbalance.

Load imbalance can be reduced if all the nodes on the frontier are expanded

simultaneously, i.e. one pass of all the data at each processor is used to compute the class

distribution information for all nodes on the frontier. Note that this improvement also reduces the

number of times communications are done and reduces the message start-up overhead, but it does

not reduce the overall volume of communications. Now the only source of load imbalance is

when some leaf nodes become terminal nodes. This load imbalance can be further minimized if

the training data set is distributed randomly.

2.4.3 Partitioned Tree Construction Approach

In this approach, each leaf node n of the frontier of the decision tree is handled by a

distinct subset of processors P(n). Once the node n is expanded into child nodes, n1, n2,…,nk, the

processor group P(n) is also partitioned into k parts, P1, P2,…,Pk , such that Pi handle node ni . All

the data items are shuffled such that the processors in group Pi have data items that belong to the

leaf ni only. Major steps for the approach is shown below:

1. Expand a node based on the method discussed in the beginning of the Section 3 for

expanding the root node.

2. (a) If the number of leaf nodes is less than |P(n)|,

i. Assign a subset of processor to each leaf node such that number of processors

assigned to a leaf node is proportional to the number of the data items contained in

the node.

ii. Shuffle the training data such that each subset of processors has data item that

belongs to the leaf nodes it is responsible for.

iii. Processor subsets assigned to different nodes develop subtrees of the responsible

nodes independently, by following the above steps recursively.

(b) Otherwise,

i. Partition leaf nodes into |P(n)| groups such that each group has about the equal

number of data items. Assign each processor to one node group.

ii. Shuffle the training data such that each processor has data item that belongs to the

leaf nodes it is responsible for.

iii. Now the expansion of the subtrees rooted at a node group proceeds completely

independently at each process.

3. At the end, the whole decision tree is constructed by combining subtrees of each processor.

The advantage of this approach is that once a processor becomes solely responsible for a node, it

can develop a subtree of the decision tree independently without any communication overhead.

There are a number of disadvantages of this approach. First disadvantage is that it requires data

movement after each node expansion until one process becomes responsible for an entire subtree.

The communication cost is particularly expensive in the expansion of the upper part of the

decision tree. Second disadvantage is due to load balancing.

 Data Mining Algorithms

 11

3. Association Rule Algorithms

An association rule is a rule which implies certain association relationships among a set

of objects (such as ``occur together'' or ``one implies the other'') in a database. Given a set of

transactions, where each transaction is a set of literals (called items), an association rule is an

expression of the form X Y , where X and Y are sets of items. The intuitive meaning of such a

rule is that transactions of the database which contain X tend to contain Y . An example of an

association rule is: ``30% of transactions that contain beer also contain diapers; 2% of all

transactions contain both of these items''. Here 30% is called the confidence of the rule, and 2%

the support of the rule. The problem is to find all association rules that satisfy user-specified

minimum support and minimum confidence constraints.

3.1 Apriori Algorithm

An association rule mining algorithm, Apriori has been developed for rule mining in large

transaction databases by IBM’s Quest project team[3] . A itemset is a non-empty set of items.

They have decomposed the problem of mining association rules into two parts

 Find all combinations of items that have transaction support above minimum support. Call

those combinations frequent itemsets.

 Use the frequent itemsets to generate the desired rules. The general idea is that if, say, ABCD

and AB are frequent itemsets, then we can determine if the rule AB CD holds by

computing the ratio r = support(ABCD)/support(AB). The rule holds only if r >= minimum

confidence. Note that the rule will have minimum support because ABCD is frequent. The

Apriori algorithm used in Quest for finding all frequent itemsets is given below

procedure AprioriAlg()

begin
L1 := {frequent 1-itemsets};

for (k := 2; Lk-1 0; k++) do {
Ck= apriori-gen(Lk-1) ; // new candidates

for all transactions t in the dataset do {

 for all candidates c Ck contained in t do
c:count++

}

Lk = { c Ck | c:count >= min-support}
}

Answer := k Lk

end

It makes multiple passes over the database. In the first pass, the algorithm simply counts item

occurrences to determine the frequent 1-itemsets (itemsets with 1 item). A subsequent pass, say

pass k, consists of two phases. First, the frequent itemsets Lk-1 (the set of all frequent (k-1)-

itemsets) found in the (k-1)th pass are used to generate the candidate itemsets Ck, using the

apriori-gen() function. This function first joins Lk-1 with Lk-1, the joining condition being that the

 Data Mining Algorithms

 12

lexicographically ordered first k-2 items are the same. Next, it deletes all those itemsets from the

join result that have some (k-1)-subset that is not in Lk-1 yielding Ck.

The algorithm now scans the database. For each transaction, it determines which of the

candidates in Ck are contained in the transaction using a hash-tree data structure and increments

the count of those candidates. At the end of the pass, Ck is examined to determine which of the

candidates are frequent, yielding Lk . The algorithm terminates when Lk becomes empty.

3.2 Distributed/Parallel Algorithms

 Databases or data warehouses may store a huge amount of data to be mined. Mining

association rules in such databases may require substantial processing power . A possible

solution to this problem can be a distributed system.[5] . Moreover, many large databases are

distributed in nature which may make it more feasible to use distributed algorithms.

Major cost of mining association rules is the computation of the set of large itemsets in

the database. Distributed computing of large itemsets encounters some new problems. One may

compute locally large itemsets easily, but a locally large itemset may not be globally large. Since

it is very expensive to broadcast the whole data set to other sites, one option is to broadcast all

the counts of all the itemsets, no matter locally large or small, to other sites. However, a database

may contain enormous combinations of itemsets, and it will involve passing a huge number of

messages.

A distributed data mining algorithm FDM (Fast Distributed Mining of association rules)

has been proposed by [5], which has the following distinct features.

1. The generation of candidate sets is in the same spirit of Apriori. However, some relationships

between locally large sets and globally large ones are explored to generate a smaller set of

candidate sets at each iteration and thus reduce the number of messages to be passed.

2. After the candidate sets have been generated, two pruning techniques, local pruning and

global pruning, are developed to prune away some candidate sets at each individual sites.

3. In order to determine whether a candidate set is large, this algorithm requires only O(n)

messages for support count exchange, where n is the number of sites in the network. This is

much less than a straight adaptation of Apriori, which requires O(n
2
) messages.

 Data Mining Algorithms

 13

4. Sequential Analysis

4.1 Sequential Patterns

The input data is a set of sequences, called data-sequences. Each data sequence is a

ordered list of transactions(or itemsets), where each transaction is a sets of items (literals).

Typically there is a transaction-time associated with each transaction. A sequential pattern also

consists of a list of sets of items. The problem is to find all sequential patterns with a user-

specified minimum support, where the support of a sequential pattern is the percentage of data

sequences that contain the pattern.

An example of such a pattern is that customers typically rent ``Star Wars'', then ``Empire

Strikes Back'', and then ``Return of the Jedi''. Note that these rentals need not be consecutive.

Customers who rent some other videos in between also support this sequential pattern. Elements

of a sequential pattern need not be simple items. ``Fitted Sheet and flat sheet and pillow cases'',

followed by ``comforter'', followed by ``drapes and ruffles'' is an example of a sequential pattern

in which the elements are sets of items. This problem was initially motivated by applications in

the retailing industry, including attached mailing, add-on sales, and customer satisfaction. But the

results apply to many scientific and business domains. For instance, in the medical domain, a

data-sequence may correspond to the symptoms or diseases of a patient, with a transaction

corresponding to the symptoms exhibited or diseases diagnosed during a visit to the doctor. The

patterns discovered using this data could be used in disease research to help identify

symptoms/diseases that precede certain diseases.

4.2 Algorithms for Finding Sequential Patterns

 Various groups working in this field have suggested algorithms for mining sequential

patterns. Listed below are two algorithms proposed by IBM’s Quest data team.[6]

Terminology : The length of a sequence is the number of itemsets in the sequence. A sequence

of length k is called a k-sequence. The sequence formed by the concatenation of two sequences x

and y is denoted as x.y. The support for an itemset i is defined as the fraction of customers who

bought the items in i in a single transaction. Thus the itemset i and the 1-sequence i have the

same support. An itemset with minimum support is called a large itemset or litemset. Note that

each itemset in a large sequence must have minimum support. Hence, any large sequence must be

a list of litemsets. In the algorithms, Lk denotes the set of all large k-sequences, and Ck the set of

candidate k-sequences.

4.2.1 Algorithm

The problem of mining sequential patterns can be split into the following phases:

1. Sort Phase. This step implicitly converts the original transaction database into a database of

sequences.

2. Litemset Phase. In this phase we find the set of all litemsets L. We are also simultaneously

finding the set of all large 1-sequences, since this set is just l | l L.

3. Transformation Phase. We need to repeatedly determine which of a given set of large

sequences are contained in a customer sequence. To make this test fast, we transform each

 Data Mining Algorithms

 14

customer sequence into an alternative representation. In a transformed customer sequence,

each transaction is replaced by the set of all litemsets contained in that transaction. If a

transaction does not contain any litemset, it is not retained in the transformed sequence. If a

customer sequence does not contain any litemset, this sequence is dropped from the

transformed database. However, it still contributes to the count of total number of customers.

A customer sequence is now represented by a list of sets of litemsets.

4. Sequence Phase. Use the set of litemsets to find the desired sequences. Algorithms for this

phase below.

5. Maximal Phase. Find the maximal sequences among the set of large sequences. In some

algorithms this phase is combined with the sequence phase to reduce the time wasted in

counting non maximal sequences.

The general structure of the algorithms for the sequence phase is that they make multiple

passes over the data. In each pass, we start with a seed set of large sequences. We use the seed

set for generating new potentially large sequences, called candidate sequences. We find the

support for these candidate sequences during the pass over the data. At the end of the pass, we

determine which of the candidate sequences are actually large. These large candidates become

the seed for the next pass. In the first pass, all 1-sequences with minimum support, obtained in

the litemset phase, form the seed set.

There are two families of algorithms- count-all and count-some. The count-all algorithms

count all the large sequences, including non-maximal sequences. The non-maximal sequences

must then be pruned out (in the maximal phase). AprioriAll listed below is a count-all algorithm,

based on the Apriori algorithm for finding large itemsets presented in chapter2. Apriori- Some is

a count-some algorithm. The intuition behind these algorithms is that since we are only interested

in maximal sequences, we can avoid counting sequences which are contained in a longer

sequence if we first count longer sequences. However, we have to be careful not to count a lot of

longer sequences that do not have minimum support. Otherwise, the time saved by not counting

sequences contained in a longer sequence may be less than the time wasted counting sequences

without minimum support that would never have been counted because their subsequences were

not large.

4.2.2 Algorithm AprioriAll

L1 = large 1-sequences; // Result of litemset phase

for (k = 2; Lk-1 0; k++) do

begin
 Ck = New Candidates generated from Lk-1 (see below)

 foreach customer-sequence c in the database do
 Increment the count of all candidates in Ck that are contained in c.

Lk = Candidates in Ck with minimum support.

end

Answer = Maximal Sequences in k Lk ;

AprioriAll Algorithm

 Data Mining Algorithms

 15

The algorithm is given above. In each pass, we use the large sequences from the previous pass to

generate the candidate sequences and then measure their support by making a pass over the

database. At the end of the pass, the support of the candidates is used to determine the large

sequences. In the first pass, the output of the litemset phase is used to initialize the set of large 1-

sequences. The candidates are stored in hash-tree to quickly find all candidates contained in a

customer sequence.

Apriori Candidate Generation

The apriori-generate function takes as argument Lk-1, the set of all large (k-1)-sequences. It

works as follows. First join Lk-1 with Lk-1

insert into Ck

select p.litemset1 , ..., p.litemsetk-1 , q.litemsetk-1

from Lk-1 p, Lk-1 q

where p.litemset1 = q.litemset1 , . . .,

p.litemsetk-2 = q.litemsetk-2 ;

Next delete all sequences c Ck such that some (k-1)-subsequence of c is not in Lk-1

Example
Consider a database with the customer-sequences shown below in Fig4.1. We have not shown the

original database in this example. The customer sequences are in transformed form where each

transaction has been replaced by the set of litemsets contained in the transaction and the litemsets

have been replaced by integers. The minimum support has been specified to be 40% (i.e. 2

customer sequences). The first pass over the database is made in the litemset phase, and we

determine the large 1-sequences shown in Fig. 4.2. The large sequences together with their

support at the end of the second, third, and fourth passes are also shown in the same figure. No

candidate is generated for the fifth pass. The maximal large sequences would be the three

sequences 1 2 3 4 , 1 3 5 and 4 5 .

 1 5 2 3 4

 1 3 4 3 5

 1} 2} 3} 4}

 1} 3} 5}

 4} 5}
Fig4.1: Customer Sequences

4.2.3 Algorithm AprioriSome

This algorithm is given below. In the forward pass, we only count sequences of certain

lengths. For example, we might count sequences of length 1, 2, 4 and 6 in the forward phase and

count sequences of length 3 and 5 in the backward phase. The function next takes as parameter

the length of sequences counted in the last pass and returns the length of sequences to be counted

in the next pass. Thus, this function determines exactly which sequences are counted, and

balances the tradeoff between the time wasted in counting non-maximal sequences versus

counting extensions of small candidate sequences. One extreme is next(k) = k + 1 (k is the length

for which candidates were counted last), when all non-maximal sequences are counted, but no

 Data Mining Algorithms

 16

extensions of small candidate sequences are counted. In this case, AprioriSome degenerates into

AprioriAll. The other extreme is a function like next(k) = 100 * k, when almost no non-maximal

large sequence is counted, but lots of ex- tensions of small candidates are counted.

// Forward Phase

L1 = large 1-sequences; // Result of litemset phase

C1 = L1 ; // so that we have a nice loop condition

last = 1; // we last counted Clast

for (k = 2; Ck-1 0 and Llast 0; k++) do

begin

 if (Lk-1 known) then

 Ck= New candidates generated from Lk-1 ;

 else

 Ck= New candidates generated from Ck-1 ;

 if (k == next(last)) then begin

foreach customer-sequence c in the database do

 Increment the count of all candidates in Ck that are contained in c.

 Lk = Candidates in Ck with minimum support.

 last = k;

 end

end

// Backward Phase

for (k-- ; k >=1; k==) do

 if (Lk not found in forward phase) then begin

Delete all sequences in Ck contained in some Li , i>k;

foreach customer-sequence in DT do

 Increment the count of all candidates in Ck that are contained in c.

 Lk = Candidates in Ck with minimum support.

end

 else // Lk already known

Delete all sequences in Lk contained in some Li , i > k.

Answer = k Lk ;

AprioriSome Algorithm

 Data Mining Algorithms

 17

Let hitk denote the ratio of the number of large k-sequences to the number of candidate k-

sequences (i.e., |Lk | / |Ck|). The next function we used in the experiments is given below. The

intuition behind the heuristic is that as the percentage of candidates counted in the current pass

which had minimum support increases, the time wasted by counting extensions of small

candidates when we skip a length goes down.

function next(k: integer)

begin

if (hitk < 0.666) return k + 1;

elsif (hitk <0.75) return k + 2;

elsif (hitk < 0.80) return k + 3;

elsif (hitk < 0.85) return k + 4;

else return k + 5;

end

We use the apriori-generate function given above to generate new candidate sequences.

However, in the kth pass, we may not have the large sequence set Lk-1 available as we did not

count the (k-1)-candidate sequences. In that case, we use the candidate set Ck-1 to generate Ck.

Correctness is maintained because Ck-1 Lk-1

In the backward phase, we count sequences for the lengths we skipped over during the

forward phase, after first deleting all sequences contained in some large sequence. These smaller

sequences cannot be in the answer because we are only interested in maximal sequences. We also

delete the large sequences found in the forward phase that are non-maximal.

Example

Using again the database used in the example for the AprioriAll algorithm, we find the

large 1-sequences (L1) shown in Fig. 4.2 below in the litemset phase (during the first pass over

the database). Take for illustration simplicity, f(k) = 2k. In the second pass, we count C2 to get L2

(Fig. 4.2). After the third pass, apriori-generate is called with L2 as argument to get C3 . We do

not count C3 , and hence do not generate L3 . Next, apriori-generate is called with C3 to get C4.

After counting C4 to get L4 (Fig. 4.2), we try generating C5, which turns out to be empty.

We then start the backward phase. Nothing gets deleted from L4 since there are no longer

sequences. We had skipped counting the support for sequences in C3 in the forward phase. After

deleting those sequences in C3 that are subsequences of sequences in L4, i.e., subsequences of 1

2 3 4 , we are left with the sequences 1 3 5 and 3 4 5. These would be counted to get 1 3 5

as a maximal large 3-sequence. Next, all the sequences in L2 except 4 5 are deleted since they

are contained in some longer sequence. For the same reason, all sequences in L1 are also deleted.

 Data Mining Algorithms

 18

L 1

1-Sequences Support

1 4

2 2

3 4

4 4

5 4

L 2

2-Sequences Support

1 2 2

1 3 4

1 4 3

1 5 3

2 3 2

2 4 2

3 4 3

3 5 2

4 5 2

L 3

3-Sequences Support

1 2 3 2

1 2 4 2

1 3 4 3

1 3 5 2

2 3 4 2

L 4

4-Sequences Support

1 2 3 4 2

Fig 4.3 : Large Sequences

4.2.4 Relative Performance of the two Algorithms

As expected, the execution times of all the algorithms increase as the support is decreased

because of a large increase in the number of large sequences in the result. The apriori-generate

does not count any candidate sequence that contains any subsequence which is not large. The

major advantage of AprioriSome over AprioriAll is that it avoids counting many non-maximal

sequences. However, this advantage is reduced because of two reasons. First, candidates Ck in

AprioriAll are generated using Lk-1, whereas AprioriSome sometimes uses Ck-1 for this purpose.

Since Ck-1 Lk-1, the number of candidates generated using AprioriSome can be larger. Second,

although AprioriSome skips over counting candidates of some lengths, they are generated

nonetheless and stay memory resident. If memory gets filled up, AprioriSome is forced to count

the last set of candidates generated even if the heuristic suggests skipping some more candidate

sets. This effect decreases the skipping distance between the two candidate sets that are indeed

counted, and AprioriSome starts behaving more like AprioriAll. For lower supports, there are

longer large sequences, and hence more non-maximal sequences, and AprioriSome does better.

 Data Mining Algorithms

 19

5. Conclusion

After studying through the vast resources of technical papers, white papers written on

data mining, here are some of the conclusions that I have made regarding the Algorithms used for

data mining.

5.1 Comparing Algorithms

There is a theoretical result that no single learning algorithm can outperform any other

when the performance measure is the expected generalization accuracy. This result, sometimes

called the No Free Lunch Theorem or Conservation Law (Wolpert 1994, Schaffer 1994),

assumes that all possible targets are equally likely.

Averaging an algorithm's performance over all target concepts, assuming they are all

equally likely, would be like averaging a car's performance over all possible terrain types,

assuming they are all equally likely. This assumption is clearly wrong in practice; for a given

domain, it is clear that not all concepts are equally probable.

In medical domains, many measurements (attributes) that doctors have developed over

the years tend to be independent: if the attributes are highly correlated, only one attribute will be

chosen. In such domains, a certain class of learning algorithms might outperform others. For

example, Naive-Bayes seems to be a good performer in medical domains (Kononenko 1993).

Quinlan (1994) identifies families of parallel and sequential domains and claims that neural-

networks are likely to perform well in parallel domains, while decision-tree algorithms are likely

to perform well in sequential domains. Therefore, although a single induction algorithm cannot

build the most accurate classifiers in all situations, some algorithms will perform better in

specific domains.

5.2 Drawbacks of Existing Algorithms

 This field is still in it’s infancy and is constantly evolving. The first people who gave a

serious thought to the problem of data mining were those researching in the Database field , since

they were the first to face this problem. Whereas most of the tools and techniques used for data

mining come from other related fields like pattern recognition, statistics and complexity theory. It

is only recently that the researchers of these various fields have been interacting to solve the

mining issue.

Data Size

 Most of the traditional data mining techniques failed because of the sheer size of the

data. New techniques will have to be developed to store this huge data. Any algorithm that is

proposed for mining data will have to account for out of core data structures. Most of the existing

algorithms haven’t addressed this issue. Some of the newly proposed algorithms like parallel

algorithms (sec. 2.4) are now beginning to look into this.

 Data Mining Algorithms

 20

Data Noise

Most of the algorithms assume the data to be noise-free. As a result, the most time-

consuming part of solving problems becomes data preprocessing. Data formatting and

experiment/result management are frequently just as time-consuming and frustrating.

The concept of noisy data can be understood by the example of mining logs. A real life

scenario can be if one wants to mine information from web logs. A user may have gone to a web

site by mistake - incorrect URL or incorrect button press. In such a case, this information is

useless if we are trying to deduce a sequence in which the user accessed the web pages. The logs

may contain many such data items . These data items constitute data noise. A database may

constitute upto 30-40% such Noisy data and pre-processing this data may take up more time than

the actual algorithm execution time.

 Data Mining Algorithms

 21

References

[1] R. Agrawal, A. Arning, T. Bollinger, M. Mehta, J. Shafer, R. Srikant: "The Quest Data

Mining System", Proc. of the 2nd Int'l Conference on Knowledge Discovery in Databases and

Data Mining, Portland, Oregon, August, 1996.

[2] Eui-Hong (Sam) Han, Anurag Srivastava and Vipin Kumar: “Parallel Formulations of

Inductive Classification Learning Algorithm” (1996).

[3] Agrawal, R. Srikant: ``Fast Algorithms for Mining Association Rules'', Proc. of the 20th Int'l

Conference on Very Large Databases, Santiago, Chile, Sept. 1994.

[4] J. Han, J. Chiang, S. Chee, J. Chen, Q. Chen, S. Cheng, W. Gong, M. Kamber, K. Koperski,

G. Liu, Y. Lu, N. Stefanovic, L. Winstone, B. Xia, O. R. Zaiane, S. Zhang, H. Zhu,

`DBMiner: A System for Data Mining in Relational Databases and Data Warehouses'', Proc.

CASCON'97: Meeting of Minds, Toronto, Canada, November 1997.

[5] Cheung, J. Han, V. T. Ng, A. W. Fu an Y. Fu, `` A Fast Distributed Algorithm for Mining

Association Rules'', Proc. of 1996 Int'l Conf. on Parallel and Distributed Information Systems

(PDIS'96), Miami Beach, Florida, USA, Dec. 1996.

[6] R. Agrawal, R. Srikant, ``Mining Sequential Patterns'', Proc. of the Int'l Conference on Data

Engineering (ICDE), Taipei, Taiwan, March 1995.

[7] R. Srikant, R. Agrawal: ``Mining Sequential Patterns: Generalizations and Performance

Improvements'', Proc. of the Fifth Int'l Conference on Extending Database Technology

(EDBT), Avignon, France, March 1996.

[8] Ron Kohavi, Dan Sommerfield, James Dougherty, “Data Mining using MLC++ : A Machine

Learning Library in C++”, Tools with AI, 1996

 Data Mining Algorithms

 22

Appendix A

URL Listing

Listed below are all the web sites that I referred to for this project report. Some of these sites

containing research papers of the various teams that I referred to for my report (see the

References).

University / Non-profit Research Groups

 Simon Fraser University’s database group : Knowledge Discovery in Databases and Data

Mining (Research papers of Prof. Jiawei Han)

http://fas.sfu.ca/cs/research/groups/DB/sections/publication/kdd/kdd.html

 University of Minnesota : Parallel computing research group , (Research papers of Prof.

Vipin Kumar)

ftp://ftp.cs.umn.edu/users/kumar/WEB/papers.html#bbbb

 The Cooperative Research Centre for Advanced Computational Systems , Australia

 http://www.dit.csiro.au/~gjw/dataminer/dmpapers.html

 UCLA Data Mining Laboratory

http://nugget.cs.ucla.edu:8001/main.html

Corporate Research Groups

 IBM QUEST Data Mining Project

http://www.almaden.ibm.com/cs/quest/index.html

 Data Mining with Silicon Graphics Technology / Machine Learning Library in C++ classes

http://www.sgi.com/Technology/data-mining.html / http://www.sgi.com/Technology/mlc/

 Data Mining at Dun & Bradstreet

http://www.santafe.edu/~kurt/text/wp9501/wp9501.shtml

Other Sites of Interest

 The Corporate KDD Bookmark < Exhaustive Listing >

http://www.cs.su.oz.au/~thierry/ckdd.html

 dbProphet: Data Mining with Neural Networks

http://www.trajecta.com/white.htm

 PRW - Not Just Another Neural Network Tool

http://www.unica-usa.com/nntool.htm

