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ABSTRACT
With ever growing competition in telecommunications mar-
kets, operators have to increasingly rely on business intelli-
gence to offer the right incentives to their customers. Toward
this end, existing approaches have almost solely focussed on
the individual behaviour of customers. Call graphs, that
is, graphs induced by people calling each other, can allow
telecom operators to better understand the interaction be-
haviour of their customers, and potentially provide major
insights for designing effective incentives.

In this paper, we use the Call Detail Records of a mo-
bile operator from four geographically disparate regions to
construct call graphs, and analyse their structural proper-
ties. Our findings provide business insights and help devise
strategies for Mobile Telecom operators. Another goal of
this paper is to identify the shape of such graphs. In order
to do so, we extend the well-known reachability analysis ap-
proach with some of our own techniques to reveal the shape
of such massive graphs. Based on our analysis, we introduce
the Treasure-Hunt model to describe the shape of mobile
call graphs. The proposed techniques are general enough
for analysing any large graph. Finally, how well the pro-
posed model captures the shape of other mobile call graphs
needs to be the subject of future studies.
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1. INTRODUCTION
As Mobile Telecom penetration is increasing, and even

approaching saturation in many cases, the focus is shift-
ing from customer acquisition to customer retention. It has
been estimated that it is much cheaper to retain an existing
customer than to acquire a new one [9, 12]. To maintain
profitability, telecom service providers must control churn,
the loss of subscribers who switch from one carrier to an-
other. However, as the telecommunications markets grow
more and more competitive, it is very easy for a consumer
to churn because of low barriers to switching providers. In
order to retain customers, the operators have to offer the
right incentives, adopt the right marketing strategies, and
place their network assets appropriately. To succeed in this
goal, optimizing marketing expenditure and improved tar-
geting are critical requirements.

Retrieving information from call graphs (where people are
the nodes and calls are the edges) obtained from the Call
Detail Records (CDRs) can provide major business insights
to Mobile Telecom operators for designing effective strate-
gies. A CDR contains various details pertaining to each call:
when was it made, how long it lasted, who called whom, etc.
Graph theoretic information from call graphs can allow ser-
vice providers to better understand the underlying behavior
of users, in a local as well as global context, in order to design
incentives to increase subscriber loyalty and prevent/reduce
churn. For example, if the call graph is disconnected into
many small components then blanket advertising may be
more appropriate as word-of-mouth spreading is impossi-
ble. Similarly, the presence of bipartite cores, which implies
the presence of communities, can be supported with further
analyses in order improve group targeting and retention.

Previously, a few experiments on call graphs of stationary
telephone networks had been undertaken to determine pa-
rameters like cliques [2] and degree distributions [24]. How-
ever, to the best of our knowledge, this is the first study
that attempts to discover and characterize a broad set of
structural properties of mobile call graphs. The data we
use comes from the CDRs of one of the largest Telecom op-
erators in the world. In particular, we report findings on
various topological properties of these massive call graphs,
including degree distributions, strongly connected compo-
nents, and bipartite cores. The presence of power law distri-
butions is ubiquitous in many parameters of the call graph,
a typical signature of its scale-free structure. Further, we
observe interesting similarities and differences with respect
to commonly studied networks like the WWW graph [20].
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One of our primary motivations has been to characterize
the shape of call graphs imposed by cellular phone users (re-
ferred to as mobile call graphs in this paper). For this, we
employ reachability analysis, a technique that has been used
to arrive at the Bow-Tie model for WWW graphs [7]. Hav-
ing established a coarse structure using reachability analysis,
we conduct additional experiments using novel techniques
in order to reveal the finer structure of the graphs. An in-
teresting revelation is that, whereas most existing graphs
(hence their models) are based on the node distributions [7]
in the components of the graph, our call graphs are better
characterised by the edge distributions among the various
components. We introduce the Treasure-Hunt model, an
edge distribution based model, to characterise our mobile
call graphs. The techniques proposed herein are general
enough to be applied to the analysis of any network, and
may be particularly relevant for social networks. In sum-
mary, the contributions of this paper are as follows:

• We study a broad set of parameters that reveal various
structural properties of mobile call graphs.

• We describe novel techniques to determine the shape
of large graphs

• We introduce the Treasure-Hunt model, an edge dis-
tribution based model, possibly the first topological
model for mobile call graphs.

• We make a conscious effort to emphasize the practical
implications of our findings in a way that can provide
business insights and design strategies for mobile Tele-
com operators.

2. BACKGROUND AND RELATED WORK
Massive graphs originating from different sources like WWW

and Biological networks have drawn the attention of plethora
of researchers [20]. These graphs pose interesting challenges
in terms of scalability, choice of parameters used to charac-
terize them, and finally the techniques used for interpreting
the graph structure. Even though many theoretical studies
are available with several parameter sets, practical interpre-
tation and utilization of those parameters (and results) are
still lacking.

In the recent times, there is a lot of interest in study-
ing World-wide Web and Internet graphs. Both [4] and [17]
suggest that the in and out degrees of vertices on the Web
graph exhibit power laws. Moreover, [4] has shown that
most pairs of pages on the Web are separated by a handful
of links, almost always under 20. This is viewed by some as a
“small world” phenomenon. Determining groups of related
pages in the WWW graph is another interesting problem.
For example, [17] showed that bipartite cores in the Web
graph represent implicitly defined communities. Our anal-
ysis reveals evidence of small world phenomenon in mobile
call graphs.

A related area of research is the determination of the im-
portance of pages (nodes) in the Web graph. The most
well-known technique is Page Rank [6] which has been used
very effectively to rank the results in Google search engine.

Another technique of finding the important pages in a
WWW collection has been developed by Kleinberg [15] who
defined two types of scores for Web pages which pertain
to a certain topic: authority and hub scores. Documents

with high Authority scores are authorities on a topic and
therefore have many links pointing to them. On the other
hand, documents with high hub scores are resource lists -
they do not directly contain information about the topic,
but rather point to many authoritative sites.

Yet another body of work has been undertaken in the
determination topological model of the WWW hyperlink
graph. Broder et al [7] showed that the Web has a Bow-
Tie structure. This work outlines a general model but does
not expose further details of the component structures. Ex-
amples of components are strongly connected component
(SCC), incoming component (IN), outgoing links (OUT),
and smaller components (TENDRILS). We mine finer struc-
tural properties of such components and identify parameters
of interest to the telecom operator.

The Daisy model [11] is an attempt to further refine the
WWW bow-tie model. Later, researchers have also tried to
find out topological models for the Internet topology. The
Jellyfish model [22] was one of the first in this direction.
The Medusa model [8] is yet another model for the Internet
topology, using a technique called k-core decomposition.

One of the first studies on call graph was performed on
a graph of landline phones made on 1-day consisting of ap-
proximately 53 million nodes and 170 million edges [2]. The
graph was found to be disconnected with 3.7 million sepa-
rate components, most of them being pairs of telephones
that called only each other. A giant component consisting
of 80% of the total nodes was found. The diameter of this
giant component was 20.

Aiello et. al. [24] experimented with the call graph of long-
distance telephone traffic. The actual call graph showed that
the degree sequence was not quite a perfect power law, and
the authors introduced a unique class of random graphs with
a power law degree sequence, called α-β graphs to capture
the distribution. If y(γ) is the number of vertices of degree
γ, then the α-β graph is defined by the equation y(γ) =
eα/γβ . When the degree sequence of a power law graph is
plotted on logarithmic scales, it forms a straight line. The
parameters α and β specify this line; α is the point where
the line intercepts the y axis, and β is the line’s slope (rather
the negative of the slope). Thus, α is the logarithm of the
number of vertices of minimal degree, and β is the rate at
which the logarithm of the number of vertices decreases as
the degree increases. The best approximation has parameter
values of roughly α = 17 and β = 2.1. Values of β have
implications on the structure of the graph.

Finally, in terms of business strategy design for telecom-
munication industry, many existing techniques exist based
on mining of user profiles [12] as well as application of ma-
chine learning methods [9]. Most of these rely on the indi-
vidual calling patterns of behaviors. We believe that struc-
tural findings from call graphs can augment and strengthen
business intelligence directed towards the critical problems
of customer targeting, campaign management and churn re-
tention.

3. DATA SOURCES AND PREPROCESSING
A Call Detail Record (CDR) contains all the details per-

taining to a call such as the time, duration, origin, desti-
nation, etc. of the call. The CDRs are collected at Base
stations. Not surprisingly, a billion calls are made every
month, and the data storage runs into terabytes. For our
study, we analysed the intra-region calling patterns of four
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Table 1: Details of data set used.

Region Nodes Edges Period Avg. Deg. Type

A-Region 224418 1816285 1 month 8.09 Dir.
B-Region 1250656 4514528 1 week 3.6 Dir.
C-Region 989573 4313797 1 week 4.35 Dir.
D-Region 407332 1456645 1 month 3.57 Dir.

geographically and culturally disparate regions, for a single
mobile operator.

A call graph G is a pair 〈V (G), E(G))〉, where V (G) is a
non-empty finite set of vertices (mobile users), and E(G) is
a finite set of vertex-pairs from V (G) (mobile calls). If u
and v are vertices of G, then an edge 〈u, v〉 is said to exist
if u calls v. Hence v is adjacent to u in G.

To get the actual graph, we had to apply set of suitable
filters and extract the best sample that would reflect the
global calling pattern. The data set has the following char-
acteristics:

• This study was done for a single mobile operator.

• The study was done for intra-region calls, and does not
include long distance or international calls.

• For two of the regions, we collected all the calls made
in a week, and for the other two, we collected all the
calls made in a month. Interestingly, despite these
durational and geographical differences, many param-
eters for these four regions are consistent with each
other.

• Further, very short duration calls (less than 10 sec-
onds) have been ignored as missed calls and wrong
calls since they may yield incorrect results.

• Multiple calls between any two user or nodes is treated
as a single edge. The resulting graph is directed simple
graph with no self-loops or multiple edges.

For a given snapshot of the customer data records, G can
be computed as follows. In a linear scan through all records,
for each call, we write the corresponding ordered pair to a
log file. At the end of the pass, the log is sorted and in a
linear scan contiguous occurrences of each distinct ordered
pair. Each ordered pair corresponds to an edge in G.

Table 1 shows the details of the data set used in this paper.
While two call graphs have been generated for the span of
1 month (A and D), the two are generated from call details
records of 1 week (B and C). Some basic graph properties
such as the number of nodes n (also referred to as graph size)
and the number of links m are reported. The Average node
degree is defined as k̄ = 2m/n.

4. STRUCTURAL PROPERTIES OF CALL
GRAPHS

In this section we analyse the structural properties of call
graphs. Our analysis is based on a set of graph metrics that
have been traditionally used to characterise large networks.
In many cases, we use existing tools [21, 1, 10] for computing
these parameters.

The basic properties of a network topology that character-
ize connectivity are degree related. The coarsest such prop-
erty is the average node degree ( k̄ = 2m/n), where n = |V |

and m = |E| are the numbers of nodes and links respectively.
Table 1 shows the average degrees of the call graphs.

4.1 Degree distributions
Distributions of degree gives information which aver-

age degree cannot, i.e. the number of nodes n(d) of each
degree d in the graph. We define this property as node
degree distribution ( P (d) = n(d)/n). The degree dis-
tribution P (d) for directed networks splits in two separate
functions, the in-degree distribution P (din) and the out-
degree distribution P (dout), which are measured separately
as the probabilities of having din incoming links and dout

outgoing links, respectively. In Figure 1 and Figure 2, we
report the behavior of the in-degree and out-degree distri-
butions in log-log scale. We provided degree distribution
results for regions B and C only because they are the largest
ones and other two regions A and D were showing similar
results.

Observing both in-degree and out-degree distributions,
the call graph topology is found to be characterized by pres-
ence of a highly heterogeneous topology, with degree dis-
tributions characterized by wide variability and heavy tails.
Observing log-log plots, we can see that degree distributions
fit well to power law distributions. The power law exponent
for all the regions are reported as the table representation
in Figure 3. The results for other networks like Email and
WWW are collected from [3]. While the power law expo-
nent reported in many literature are for undirected graphs,
our data set only consists directed graphs, which allows us
to consider both γin and γout separately. In most real-world
graphs, γ ranges between 1 and 4 (see [3] for a comprehen-
sive list).

The in-degree distribution exhibits a heavy-tailed form
approximated by a power-law behavior P (din) ∼ d−γin

in , and
the value of the exponent of γ is between 2 and 3, very much
like the WWW graph [7]. However, in the case of the out-
degree distribution, the exponent is less than 2, very much
unlike both the WWW as well as the Email graph. The
parameters of the four regions are rather close despite their
geographic, cultural, and duration (1 week for two regions
vs. 1 month for the other two) differences. The degree dis-
tributions imply that there are very few nodes that have very
high in-degree or out-degree and therefore may be suitable
for individual targeting by a telecom service provider.

Another question of considerable interest in the study of
networked systems is that of network resilience to the dele-
tion of nodes. Suppose nodes are removed one by one from
a network. How many must be removed before the giant
component of the network is destroyed and network com-
munication between distant nodes can no longer take place?
Some networks, with highly skewed degree distributions, are
found to be resilient to the random deletion of nodes but sus-
ceptible to the targeted deletion specifically of those nodes
that have the highest degrees [5].

4.2 Degree correlation
The degree distribution is only one of the many statistics

characterizing the structural and hierarchical ordering of a
network; finding the degree correlations is another impor-
tant parameter. Are the people who call a lot of different
people also get called by a lot of different people (Is the in-
degree of a node correlated with its out-degree) ? Are people
with high in-degree talking to people with high in-degree ?
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Figure 1: In-degree distribu-
tion (γin is 2.89961 and 2.89961)
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Figure 2: Out-degree distribu-
tion (γout is 1.70808 and 1.70808)

Results from our dataset (directed graphs)
Region A-Reg. B-Reg. C-Reg. D-Reg.
In 2.76591 2.85924 2.89961 2.844
Out 1.50292 1.71374 1.70808 1.97345

Results from other datasets (directed graphs)
Metric Email WWW Software packages
In 1.5 2.1 1.6
Out 2.0 2.72 1.4

Figure 3: Power law exponent values

In this section, we explore per node degree correlation as
well as neighbour degree correlations in an attempt to an-
swer such questions.

4.2.1 Single node IN-OUT degree correlations
First, we examine local one-point degree correlations for

individual nodes, in order to understand if there is a relation
between the number of incoming and outgoing neighbours
for a single user. Since most of the analyzed degree distri-
butions are heavy-tailed, fluctuations are extremely large so
that the linear correlation coefficient is not well defined for
such cases. We plot the average out-degree of nodes having
the same in-degree.

Figure 4 shows the plots for the regions B and C (regions
A and D, not shown in the figure, have a similar corre-
lation). A significant positive correlation between the in-
degree and the out-degree of single nodes is found for both
the sets. This means that more popular nodes (whom a lot
of people call) tend to point to more nodes (call a lot of peo-
ple). More than 99% of total nodes have indegree less than
or equal to 100; beyond which correlation disappears. The
plots suggest that there is a correlation between the num-
ber of people calling a person and the number of people the
person calls, up-to a point. Beyond a point, the correla-
tion is absent. This suggests that up-to that point, people’s
popularity (incoming degree) is related with their “outgoing-
ness” (outgoing degree). Beyond that point, the correlation
falls, perhaps because, people with very high outgoing degree
and low in-degree might be salesmen (who are seldom called
back), and people with very high incoming and low outgo-
ing might be (very) small businesses with advertised phone
numbers, customer service numbers, or experts, for example.

4.2.2 Neighbouring nodes IN-OUT degree correla-
tions

A network is said to show assortative mixing if the nodes
in the network that have many connections tend to be con-
nected to other nodes with many connections [18]. Social
networks (physics co-authorship, film actor collaborations,
company directors) are often assortatively mixed, while tech-
nological (Internet, world wide web) and biological (food
web, protein interactions) networks tend to be disassorta-
tive. In the case of the Internet, for example, it appears
that the high degree nodes mostly represent connectivity
providers, telephone companies and other communications
carriers who typically have a large number of connections to
clients who themselves have only a single connection.
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Figure 4: Correlation between in-degree and out-
degree for regions B and C

Table 2: Pearson’s coefficient for the 4 regions
A-Region B-Region C-Region D-Region

In–In 0.293915 0.091079 0.175268 0.121410
In–Out 0.269043 0.311826 0.273044 0.036144
Out–In -0.102487 -0.033359 -0.069215 -0.108047
Out–Out -0.091477 -0.081860 -0.088832 -0.040468

The Pearson correlation coefficient (r) [18] denotes a sin-
gle number that captures the assortativity of a network, and
lies in the range −1 � r � 1. A negative value denotes disas-
sortativity (−1 is perfect disassortativity), a positive value
denotes assortativity (1 is perfect assortativity), and zero
denotes no correlation.

For all the graphs (regions A through D), we computed
Pearson correlation coefficient to find out assortativity of the
network. Table 2 provides the Pearson correlation coefficient
for all the regions. The network is assortative for in-degrees
and (relatively weakly) disassortative for out-degrees. The
assortativity differs considerably with the zone.

As observed in [18], an assortative network helps in spread-
ing and sustenance of an epidemic. Whereas an epidemic is
expected to be restricted to a smaller segment of a popula-
tion on a disassortative network. In telecom networks, this
property can be exploited for effective campaign management
and spreading new services. For example, areas that exhibits
high assortativity can rely on the word-of-mouth mechanism
for spreading a new service. Whereas more advertising spend
needs to be incurred for disassortative regions.
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Figure 5: Neighbourhood function distributions (be-
cause the graphs have different effective diameters)

Further, assortativity has implications on the resilience of
the network. It has been shown [19] that, for the most as-
sortative network, with r = 0.2, it requires the removal of
about ten times as many high-degree nodes to destroy the
giant component when compared to the most disassortative
one. This once again implies that Telecom operators need to
incur more expenses for retaining customers in disassorta-
tive regions.

4.3 Neighbourhood distribution
Next, we compute neighbourhood function [21] for call

graphs. It provides us ways to compare call graphs in terms
of hop-exponent, distance distribution, and effective diame-
ter.

The neighbourhood function, N(h) for a graph also called
hop-plot [13], is the number of pairs of nodes within a spec-
ified distance, for all distances h. The individual neighbour-
hood function for u at h is the number of nodes at distance
h or less from u. It can be computed as follows:

IN(u, h) = |{v : v ∈ V, dist(u, v) � h}|.
The neighbourhood function N(h) is the number of pairs of
nodes within distance h, and is defined: N(h) =

P
u∈V IN(u, h).

The plot of the neighbourhood function for all hop for all
the regions are shown in the Figure 5. Also, N(h) ∝ hH,
where H is the hop exponent.

There are three interesting observations about the hop
exponent that make it an appealing metric. First, if the
power-law holds, the neighbourhood function will have a
linear section with slope H when viewed in log-log scale.
Second, the hop exponent is, informally, the intrinsic di-
mensionality of the graph. For example, a cycle has a hop
exponent of 1 while a grid has a hop exponent of 2. Third,
if two graphs have different hop exponents, there is no way
that they could be structurally similar [21].

We compute the hop-exponent using linear fit on the neigh-
bourhood function distribution reported in Figure 5. The
slope of the linear fit called hop exponent are reported in the
Table 3. For different circles of the telecom network graph;
we consistently found hop exponent close to 4 and 5. The
only other real-world graphs whose hop exponents we know
are Int-11-97, Int-04-98, Int-12-98 and Rout-95 with hop ex-
ponents 4.62, 4.71, 4.86, 2.83 respectively [13]. This suggests
that our mobile telecom graphs are structurally as dense as
those of the Internet graphs. Interestingly, even though the
graph of regions A and B differ considerably in parameters

Table 3: Hop exponent and effective diameter values
(C is the constant for the linear equation fit in log-
log scale for the equation N(h) ∝ hH)

Region H C δeff
A 4.53 14 8.10177
B 4.53 14 13.9314
C 5.52 14 8.07642
D 4.94 13 8.93613

such as average degree, number of nodes and edges (Table 1),
their hop exponents are similar ( 5).

Effective diameter gives us another parameter for effec-
tive measurement of the compactness of the network. For a
call graph of N nodes with E edges, we can compute effec-
tive diameter based upon the equation [13]:

δeff =

„
N2

N + 2E

«1/H

The effective diameter of a network is δeff if any two nodes
are within δeff hops from each other with a high probability.
The effective diameter for all the four regions are given in
the Table 3. Our results indicates that most of the pairs of
nodes are within 8 to 12 hops from each other. This in turn
provides evidence of small-world phenomenon in mobile call
graphs. We believe that this phenomenon can be further
exploited to identify (social) communities.
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Figure 6: Distribution of bipartite cores for the B-
region

4.4 Bipartite cores
To study whether there are communities of users within

the call graphs, we find out possible presence of bipartite
cores using the trawling technique [17]. A complete bipar-
tite clique Ki,j is a graph where every one of i nodes has an
edge directed to each of the j nodes. A bipartite core Ci,j

is a graph on i + j nodes that contains at least one Ki,j as
a subgraph. Figure 6 (a) shows the results for the bipartite
cores for the largest region B. Similar distributions were
obtained for the other three regions and have been omitted
due to lack of space. For a bipartite core of i + j nodes,
fan-in (i) represents the number of nodes having edges to
the j nodes. Fan-out (j) represents the number of nodes
having edges from the i nodes. We observed a large number
of small bipartite cores (e.g. C2,2). The largest bipartite
core has i = 11 and j = 6. Figure 6 (b) shows the re-
sults for the bipartite core distribution in log-log scale. We
observe that the distribution of bipartite cores closely fol-
lows the power law. In terms of the presence of bipartite
cores, the call graph exhibits similarity to WWW [17] and
web communities in blogs [16]. These bipartite cores possibly
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represent user communities such as a community of patients
and doctors. Hence, telecom service providers can identify
these communities and target them with better incentives for
retention.

4.5 Cliques
For mobile telecom providers, an (undirected) clique is

useful for defining closed user groups (as they are commonly
called), where discounts are given for all calls made within
the closed user group. The number and sizes of such groups
also gives us an idea of what are the right incentives to offer.
The distribution of the clique sizes are shown in Figure 7.
No clique of size larger than 11 is observed. Relatively, large
number of cliques of size 3 is observed. Intuitively, this might
be because it is rare for any two people who know each other
not to know at least one common person.
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4.6 PageRank
In the context of WWW, the PageRank p(i) of a page i

is a measure of citation importance and is defined through
the following expression:

p(i) =
q

N
+(1−q)

X
j:j→i

p(j)/dout(j) i = 1, 2, . . . , N (1)

where N is the total number of nodes, j → i indicates a hy-
perlink from j to i, dout(j) is the out-degree of page j and
1 − q is the so-called damping factor. The PageRank of a
page grows with the in-degree of the page as well as the in-
degree of the pages that point to it. It is computed using the
algorithm presented in [14]. Similarly, the PageRank value
of an individual in a telecom network might indicate the so-
cial importance of the individual. The social importance of a
customer grows with number of people calling that customer
as well as the social importance of the callers. For our anal-
ysis, we ignore very short calls to remove noise introduced
due to wrong numbers and commercial spam.

Figure 8 (a) shows the correlation of the in-degree with the
PageRank value of nodes. We observe that PageRank and
in-degree are highly correlated. In Figure 8 (b), we observe
that PageRank values follow the power law distribution in
the network. Nodes with high PageRank are possibly the
ones with high social influence. Since there are only a few
of them, the telecom operators can target these influential
people to retain them.
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Figure 9: Distribution of SCCs in log-log scale

4.7 Strongly connected components
Scale free graphs usually exhibit the presence of a giant

Strongly Connected Component (SCC). With this in mind,
we next investigate the distribution of SCCs in the mobile
call graphs. Figure 9 shows the distribution of SCC for dif-
ferent regions (in log-log scale). We found that a giant SCC
exists in all the call graphs. For example, region B has an
SCC of size 0.7 million nodes. Further, Figure 9 shows that
sizes of SCCs closely follow a power law distribution. How-
ever, the largest SCC is significantly larger than any of the
remaining ones. Consequently, the second largest SCC is
very small compared to the largest one. Our results con-
forms with those obtained for WWW graph [7]. In a later
section, we analyze SCC and its association with other com-
ponents to infer the shape of mobile call graphs.

4.8 Clustering coefficient
Finally, we study the clustering coefficients of nodes in

call graphs. Given a triple < u, v, w > of nodes, with mu-
tual relations between v and u as well as between v and w,
the clustering coefficient represents the likeliness that u and
w are also related, i.e. a friend of a friend is likely to be a
friend. Clustering coefficient has important implications in
the context of social network analysis [23]. In terms of net-
work topology, it implies the presence of a large number of
triangles. The clustering coefficient Ci of a node i is defined
as:

Ci =
#number of triangles connected to node i

#number of triples centered on node i

The clustering coefficient of a graph is simply the average
clustering coefficient of its nodes. The clustering coefficient
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Table 4: Clustering coefficient values

Results from our dataset (directed graphs)
Region A-Region B-Region C-Region D-Region
Clus.coeff 0.1461 0.105 0.1667 0.100

Results from other datasets (directed graphs)
Network Film-actors Email WWW nd.edu student
Clus.coeff 0.78 0.16 0.29 0.001

IN OUTSCC

Tendrils

Tubes

Disconnected Components

Figure 10: Shape of Bow-Tie Network

for the four regions have been listed in Table 4. We provide
comparison with values for other networks [20]. Interest-
ingly, we observe that clustering coefficients of email graphs
is similar to those of mobile call graphs. This possibly in-
dicates that the interaction pattern of email as communica-
tion mode is similar to the interaction pattern using mobile
phones. Further investigation with these triangles showed
that there was a large percentage of nodes with Ci = 1,
which corresponds to cliques of size 3.

5. THE SHAPE OF CALL GRAPHS

Table 5: Random Start BFS Experiment
Reach Percentage Reach Reach Probability
< 6 < 0.0005 28.5
1022575 81.7 63
> 1022576 > 81.7 8.5

In this section, we analyze call graphs in order to examine
its macroscopic shape. The shape is crucial for two reasons.
It provides an intuitive description of the network that is
easy to understand and work with, and even more impor-
tantly, provides the basis for the development of a genera-
tive model. A generative model, when found, will provide a
valuable simulation tool for Telecom operators to study and
predict usage growth in a new region.

In this objective, we do not care whether this structure
captures all the characteristic properties, instead it is a way
to represent the spatial distribution of edges in the call-
graph. Works on the Internet (Jellyfish model [22], Medusa
model [8]) and WWW (Bow-tie model [7]) succinctly draw
the spatial distribution of nodes. To our knowledge, this is
first attempt for revealing the call-graph topology.

We first begin by doing reachability experiments, very
similar in spirit to those done for the WWW [7], and supple-
ment those techniques with a few novel ones of our own, in

order to expose further details of our call graphs. A crucial
insight obtained as a result of this study is that the distri-
bution of edges rather than the vertices across the various
components leads to a more accurate characterisation of the
structure of our mobile call graphs.

We also present ideas on how the knowledge of this struc-
ture can be used by Telecom business analysts. While the
applicability of the Treasure-Hunt model beyond our call
graphs is hitherto unknown, all the techniques used in this
section are general enough for analyzing any massive graph.

5.1 Structure based on node distribution
Our first goal is to spot all the connected components

and place them spatially along with their interconnections
to identify the shape. The distribution of strongly connected
components is reported in Table 9 for region B (Figure 9).
The results show the existence of one giant strongly con-
nected component.

To discover different components that link large connected
components, we analyzed our call graph using Random Start
Breadth-First-Search (BFS) [11]. Some important defini-
tions are given below.

• Reach (R) is the number of all possible nodes reached
in BFS, when starting from a given node.

• Percentage Reach (p = R/N) is the percentage of
nodes reached (to total number of nodes in the graph).

• Reach Probability (PR) denotes the percentage prob-
ability that a given node has reach R.

The experiment collected a set of random sample nodes and
computed the reach of all these nodes. The various values of
the reach R is plotted against the number of nodes having
reach R. The reach probability for a given value of reach R
can be obtained from this distribution.

The experiment conducted on one of the regions (B), pro-
duced the results as shown in Table 5. Similar percentages
were obtained for the other regions also.

We found that the unique values of reach were limited.
For instance, for region B, the reach was either between 1
to 6 or between 1022575 to 1022586. (For the other re-
gions the reach was similarly split into two ranges). This
suggests the existence of a massively connected component
CC (nodes having reach exactly equal to 1022575), an entry
component (nodes having reach more than 1022575), an exit
component (nodes have reach less than 6) and some discon-
nected components.

Reachability analysis allows the identification of a strongly
connected component SCC) if it exists, and of the regions
connected to it. To borrow the terminology of [7], IN refers
to the region from which there are paths that leads to the
SCC, and OUT refers to the region that is reachable from
the SCC. The bow-tie model for the web graph was ob-
tained as a result of reachability analysis, and is named so,
because the relative number of vertices in each of the regions
IN , OUT and SCC are nearly of the same order reminiscent
of a bow-tie.

The bow-tie model(Figure 10), introduced for the WWW,
contains a strongly connected component (SCC) region which
contains nodes that are mutually reachable, the IN region
contains the nodes from which the SCC can be reached.
The OUT region contains the nodes that are reachable from
the SCC. The TENDRILS gather nodes reachable from
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Table 6: Sizes inferred for the bow-tie model
Bow-tie Component % of total nodes
IN 8.5
SCC 63
OUT 18.7
TENDRIL, TUBE and DISC 9.8

the IN component and reaching neither SCC nor OUT .
TENDRILS also include those nodes that reach into the
OUT region but do not belong to any of the other defined
regions. The TUBES connect the IN and OUT regions
directly, and some nodes are totally disconnected (DISC).

To find the sizes of SCC, IN and OUT in our call graphs,
these components were analyzed for reachability. Starting
from any vertex in the IN region, the BFS algorithm reaches
all of SCC and OUT region. Hence, all the nodes of IN
region have high reachability. From Table 5, we know 8.5 %
of nodes reach >1022575 nodes, hence size of IN is 8.5 % of
total nodes.

If a starting vertex lies in the SCC region, the BFS can-
not reach IN , but can reach the SCC and OUT . Moreover,
since all the nodes of SCC are mutually reachable, all ver-
tices in SCC have the same reach. From Table 5, we infer
that 63 % of nodes have the same reach of exactly 1022575
(81.7%) nodes. So, the size of SCC is 63% of nodes and the
size of SCC and OUT combined should be 81.7 % of nodes,
it implies that size of OUT as 18.7 % of nodes.

If the starting vertex happens to fall in OUT , DISC,
TENDRIL or TUBE, then its reach should be negligible.
Evidently, our experiment showed that around 28.5 % of
nodes reach 1 to 6 nodes. We summarize our results in
Table 6.

We validated our experiments using Pajek [1] tool for this
data set. The results matched with the percentages for IN ,
OUT and SCC region that we obtained. The relative sizes
of these regions indicate a structural difference from the sizes
of those in the WWW graph. The sizes of IN ,SCC,OUT for
the WWW are nearly of same order (44 million, 56 million,
and 44 million respectively) [7]. For our graphs, the SCC
is often an order of magnitude larger than IN , and OUT is
often nearly twice that of IN (124801, 755592, 266984 re-
spectively). Hence, the bow-tie model does not characterise
our graphs. However, this does not rule out the possibility of
another model which is still based on the node distribution.

5.2 Structure based on edge density
To find the shape (hence a model) of our graphs, we ex-

amined the the number of vertices in the various regions
(IN, OUT ,etc.). Though there was some pattern (roughly
the same order of magnitude) in the vertex distribution, we
found that the corresponding edge distributions among the
regions was more striking. We detail this finding now.

From the BFS experiment, we know that starting from a
particular node, the reachability is either huge (>1022575)
or very low (< 6). We collected the nodes whose reacha-
bility is very high. These are the nodes of SCC and IN
region. We also collected the nodes that are reached, start-
ing from nodes with high reachability. These nodes belong
to the SCC and OUT regions. We intersected these two sets
to isolate the SCC, IN and OUT components. With the
help of these nodes, we extracted the following edge-induced
subgraphs as shown in Table 7.

To understand the structure of call graph, we extracted

Table 7: Definition of subgraphs
Subgraph name Definition
IN-IN Subgraph containing the edges only

between nodes of IN region
IN-SCC Subgraph consisting edges one end

from IN region and another from SCC
IN-OUT Subgraph consisting edges one end

from IN region and another from OUT
SCC-SCC Subgraph containing the edges only

between nodes of SCC region
SCC-OUT Subgraph consisting edges one end

from SCC region and another from OUT
OUT-OUT Subgraph containing the edges only

between nodes of OUT region

Shortcuts

Out-Tunnel
In-Tunnel

Maze

Entry Treasure(10 X) X0.17 X 0.2 XX

(0.2 X)

Figure 11: Treasure-Hunt Model

the edge-induced subgraphs of the four regions and stud-
ied their properties. Table 8 gives us the results of vari-
ous parameters that help in detailing the shape of the sub-
graphs and their boundaries. Most of the columns are self-
explanatory. The Graph type column gives the kind of sub-
graph induced from the global graph. For example, edge
induced subgraph IN-SCC is a bipartite directed graph as
one end is chosen from IN region and another is from SCC
region. Left partition and Right partition capture the num-
ber of nodes from the two sets of bipartite graph. The Hmax

range column gives a hop range at which maximum neigh-
bours are captured. Entries of the form Hi = k∗Hj are pro-
vided to give an indication that neighbours at hop i (where
the maximum occurs) are k times larger than hop j. The
Edge ratio column reports the ratio of edges in a particu-
lar component to the edges of IN-SCC region. The results
for the subgraphs involving disconnected components like
IN-DISC, OUT-DISC, DISC-DISC are ignored as the mag-
nitudes of the parameters were negligible.

The ratio of edges in the subgraphs shown in Table 7 dis-
play the (cross-region) generic pattern in which these sub-
graphs connect with each other. The similarity of the edge
ratios (see column Edge ratio of Table 8) motivated us to
present a generic structure capturing the edge ratio of call-
graph.

5.3 The Treasure-Hunt model
We now introduce and define the Treasure-Hunt model

which is based on the edge distribution among the various
components of a graph and fits our mobile call graphs well.
Figure 11 shows the model. Note that X denotes the number
of edges in the IN-SCC region.

We chose the treasure-hunt metaphor for describing the
model because it captures the shape of the directed graph,
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Table 8: Results of Subgraphs of various regions

Reg. Graph-type Subgraph Left part. Right part. Edges Avg din Avg dout Hmax Range Dia. Edge Ratio
Directed IN-IN 4048 - 4525 1.11 1.11 H1 = 20 ∗ H2 3 0.04X
Bipartite & dir. IN-SCC 11043 (IN) 98726 (SCC) 124991 11.31 1.26 1 1 X

A Bipartite & dir. IN-OUT 1016 (IN) 9943 (OUT) 12154 11.96 1.22 1 1 0.1X
Directed SCC-SCC 189327 - 1617431 8.5 8.5 6 10 12.9X
Bipartite & dir. SCC-OUT 33855 (SCC) 18873 (OUT) 49649 1.46 2.63 1 1 0.4X
Directed OUT-OUT 3396 - 2401 0.71 0.71 H1 = 40 ∗ H2 2 0.02X

Directed IN-IN 53544 - 55128 1.03 1.03 H1 = 10 ∗ H2 4 0.17X
Bipartite & dir. IN-SCC 110340(IN) 242147(SCC) 311595 2.82 1.28 1 1 X

B Bipartite & dir. IN-OUT 25948 (IN) 69328 (OUT) 82182 3.17 1.18 1 1 0.26X
Directed SCC-SCC 757933 - 3417025 4.5 4.5 7-10 14 10.9X
Bipartite & dir. SCC-OUT 291980 (SCC) 239147(OUT) 459724 1.57 1.92 1 1 1.47X
Directed OUT-OUT 94287 - 73702 0.78 0.78 H1 = 12 ∗ H2 4 0.23X
Directed IN-IN 33814 - 36894 1.09 1.09 H1 = 12 ∗ H2 3 0.11X
Bipartite & dir. IN-SCC 77068 (IN) 251170 (SCC) 329651 4.27 1.31 1 1 X

C Bipartite & dir. IN-OUT 17136 (IN) 52858 (OUT) 64165 3.74 1.21 1 1 0.19X
Directed SCC-SCC 658170 - 3351621 5.1 5.1 7-8 12 10.1X
Bipartite & dir. SCC-OUT 255050 (SCC) 183309 (OUT) 424299 1.66 2.31 1 1 1.28X
Directed OUT-OUT 59013 - 44723 0.76 0.76 H1 = 15 ∗ H2 4 0.14X
Directed IN-IN 19805 - 18656 0.94 0.94 H1 = 10 ∗ H2 4 0.17X
Bipartite & dir. IN-SCC 52919 (IN) 75441 (SCC) 109711 2.07 1.45 1 1 X

D Bipartite & dir. IN-OUT 8796 (IN) 15662 (OUT) 19104 2.17 1.22 1 1 0.17X
Directed SCC-SCC 226375 - 1123814 4.5 4.5 7-9 13 10.2X
Bipartite & dir. SCC-OUT 72858 (SCC) 60763 (OUT) 111626 1.53 1.83 1 1 1.0X
Directed OUT-OUT 24355 - 20860 0.85 0.85 H1 = 10 ∗ H2 4 0.19X
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Figure 12: Distribution of edge fractions in different
components

and emphasizes the importance of the edges (paths) rather
than the nodes. The entry, in-tunnel, maze, out-tunnel,
treasure, shortcuts are the six regions that are prime com-
ponents of our Treasure-Hunt structure (Figure 11). The
region names are also metaphorical and do not imply that
the vertices in the treasure denote important customers, for
example. The smallest of our regions are entry and trea-
sure. Understandably, not many entries exist, nor there is
a lot of treasure. Once, we set a voyage for treasure start-
ing from entry, there are lot of obvious paths via in-tunnel
to the maze. The maze defines a huge number of convo-
luted paths, making it harder to reach the treasure. But the
chances are fair, there are almost equal number of out-tunnel
as in-tunnel paths to reach the treasure. Interestingly, lucky
people may find shortcuts that connects the entry directly
to the treasure. (The number of shortcuts are as likely as
an entry). But getting into entry and then to maze is more
than 90% likely.

5.4 Call graph as a Treasure-Hunt structure
The Treasure-Hunt model is based on the classification of

edges into 6 components. There are some intra-connections
(within a component) and interconnections (across compo-
nents). We fit the Treasure-Hunt model on the call graphs
and tested it with the four regions and found the ratio of
edges distributed in all the components (Figure 12). The
number of hops within IN-IN and OUT-OUT subgraph shows
that there are not many neighbours after 1 hop (see column
HmaxRange in Table 8). So, the IN subgraph can be split
into two layers with one of them connecting SCC, and an-
other which connects to itself. Obviously, the nodes of IN
region splits into two layers as entry and in-tunnel region
in Treasure-Hunt model. Similarly, the OUT region is sep-
arated into the out-tunnel and the treasure.

To fit region B to the Treasure-Hunt model, the edge in-
duced subgraphs IN-IN, IN-SCC,SCC-SCC,SCC-OUT,OUT-
OUT, IN-OUT can be mapped to entry, in-tunnel, maze,
out-tunnel,treasure, and shortcuts respectively. The edge
ratio column of Table 8 gives the relative magnitude of the
edges of each component with respect to the in-tunnel. The
shape is conclusive as entry is 0.16 times in-tunnel and maze
is almost 10 times the in-tunnel. The out-tunnel is similar in
size as in-tunnel, whereas treasure is relatively the smallest
and almost in the same order as entry. The shortcuts are
paths that directly connect entry to treasure; they are also
smaller in magnitude and of the same order as the entry.

We tried to fit the other regions (A, C,D) (see other edge
ratios in Table 8) and found that they fit the Treasure-Hunt
model quite closely. The Treasure-Hunt model brings to
light the fact that often the edges rather than the nodes of
graphs might follow a pattern, as our call graphs indicate.

There are several implications of the results we obtain
through path based model of the call graph. It provides tele-
com operators with insights on how a certain new service
roll-out might be propagated in the network. For example,
the propagation chances would be higher if they target nodes
with greater reach (belonging to the Entry and In-Tunnel re-
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Table 9: Distribution of SCCs
SCC Size Count
755592 1
9 1
8 3
7 2
6 31
5 124
4 454
3 2629
2 20617
1 443274

gions). Similarly, customers can be segmented based on their
placement in the structure.

6. CONCLUSIONS
Over the years, a number of important graph metrics have

been proposed to analyze and compare the structure of ar-
bitrary graphs. This paper uses a series of graph structural
properties that can be employed in a more systematic ap-
proach to dealing with network topologies. We used a care-
fully chosen set of parameter which reveal mostly connec-
tivity directed characteristics and used them on call graphs.
Such metrics can be employed by business strategy planner
involved in the telecom domain. We hope that our methods
will enable a more rigorous and consistent method of ana-
lyzing call graphs and also enable researchers and business
community to gain insight into call graphs. These results
can significantly affect business strategies.

The shape of the call graph of four disparate regions are in
good agreement with the Treasure-Hunt model. Although
this is promising, only further studies with more call graphs
can serve to verify or refute this model.

A problem worthy of consideration is to find a generative
model for the mobile call graphs, if one exists. If found, it
is likely to offer deep insights into how a mobile operator’s
customer base evolves with time.
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