
Proximity-based Authentication for Mobile Devices

Wayne Jansen
The National Institute of

Standards and Technology
Wjansen@nist.gov

Serban Gavrila
VDG, Inc.

Serban.Gavrila@nist.gov

Vlad Korolev
Booz-Allen Hamilton

Vkorolev@nist.gov

Abstract: While mobile handheld devices provide
productivity benefits, they also pose new risks. User
authentication is the best safeguard against the risk of
unauthorized use and access to a device’s contents. This
paper describes two location-based user authentication
mechanisms designed to take advantage of Bluetooth
functionality built into many current handheld devices.

Keywords: Mobile Devices, Authentication, Proximity
Beacons

1. Introduction
With the trend toward a highly mobile workforce, the use
of handheld devices such as Personal Digital Assistants
(PDAs) is growing at an ever-increasing rate. These
devices are relatively inexpensive productivity tools that
have become a necessity for government and industry.
While such devices have their limitations, they are
nonetheless extremely useful in managing appointments
and contact information, reviewing documents and
spreadsheets, corresponding via electronic mail and instant
messaging, delivering presentations, accessing remote
corporate data, and handling voice calls. Over the course
of use, significant amounts of sensitive corporate
information can accumulate on them and automatic access
to corporate resources via wireless and wired
communications can be enabled, making those resources a
potential target of an attack.

One of the most serious security threats to any computing
device is unauthorized use. User authentication is the first
line of defense against this threat. Authentication using
passwords is perhaps the best-known example of a proof
by knowledge mechanism. Other classes of authentication
mechanisms include proof by possession (e.g., smart
cards) and proof by property (e.g., fingerprints). Two
additional factors that can apply to each class of
authentication mechanism are location and time of day.
They refer respectively to whether the authentication is
being attempted at either an acceptable location or an
acceptable time. The mechanisms described in this report
involve location as a facet of user authentication.

Establishing location benefits user authentication in
several important ways:
• If a user attempts to authenticate from an unauthorized

location, an authentication mechanism can reject the
attempt.

• If a user attempts to authenticate from a location
outside a defined boundary, the authentication
framework can require that additional authentication
mechanisms be satisfied before granting access.

• If a user instantiates a new activity, such as accessing
a specialized application, the authentication
framework can require that access to the functionality
and related data be conducted from within an
appropriate location.

• If a user moves within or outside of a defined
boundary, an authentication mechanism can be
triggered automatically to grant or deny access.

This paper provides an overview of two kinds of location-
based authentication mechanisms involving proximity
beacons designed to support handheld devices. The paper
describes how each kind of beacon is used to authenticate
the user of a handheld device and provides details of the
solutions’ design and implementation.1

2. Background
Physical location sensors come in many shapes and sizes
and use many different techniques for determining
position. Physical sensor systems typically have two kinds
of components: appliances and infrastructure. An
appliance is the equipment associated with an entity (e.g.,
a Global Positioning System (GPS) receiver or mobile
phone), while the infrastructure is the set collection of
sensor equipment, usually fixed, which needs to be in
place for the appliances to function (e.g., GPS satellites or
mobile phone towers) [1]. A communications medium
through which the devices and infrastructure communicate
is also required. Other classes of location systems, where
the user carries no appliance and the solution relies entirely
on infrastructure components (e.g., infrared cameras or
floor sensors), are outside the scope of this discussion.

Physical location sensors can provide either position or
proximity information. Position sensors attempt to provide
the coordinates of an entity (or more usually, an appliance)
relative to some coordinate system. The coordinate system
may be fixed and global (e.g., the latitude, longitude and
altitude reported by a GPS receiver), or mobile and local
(e.g., “3 meters to my right”). Proximity sensors are less

1 Certain commercial products and trade names are identified in this paper
to illustrate technical concepts. However, it does not imply a
recommendation or an endorsement by NIST.

exact (e.g., within close or distant range of a sensor) [1].
While latitude-longitude-altitude coordinates are suitable
for describing points on the globe, they do not work as
well for describing points indoors. Proximity sensors with
overlapping detection regions can form the basis of
position sensors, using the geometry of triangles (i.e.,
triangulation or trilateration) to calculate position.

Different sensors have different resolutions and associated
errors, ranging from centimeters (e.g., the Active Bat
system) to tens of meters (e.g., raw GPS) [1, 2, 3].
Different sensors also operate over different scales of
distance, ranging from zero (e.g., contact sensors and card
readers) to global (e.g., GPS). Furthermore, sensors may
be limited to indoor or outdoor use. For example, GPS,
perhaps the best-known technology for establishing
location, requires a clear view of at least three of the two-
dozen satellites orbiting above the Earth to determine
position [2]. Because satellite reception in buildings is
poor to nonexistent, GPS is ineffective indoors [4].

Thus, location can be treated in two ways: by position,
where geographical or other physical coordinates of a unit
are resolved to some degree of accuracy, or by proximity,
where a unit’s presence, relative position, or absence
within an area is determined. Determining positional
coordinates typically requires an extensive sensor
infrastructure able to cooperate with an appliance to
estimate position algorithmically through monitored
signals. Determining proximity, while less precise,
typically requires a less extensive infrastructure.

Two classes of solution prevail for resolving location. The
first is where location information is initially known only
by the appliance, but not the infrastructure. The second is
the opposite by which location information is initially
known only by the infrastructure and then released to the
appliance [5].

The first class of solutions makes the appliance more
independent of infrastructure components and services.
However, it requires the appliance to be not only
compatible with the infrastructure beacons, but also
powerful enough to make the needed computations and
access control decisions. The second class of solutions is
less demanding on the appliance, since it does not have to
be powerful enough to perform such computations and
access control decisions (e.g., RFID or the Active Bat [4]),
relying instead on infrastructure components. For
example, pervasive systems fall into this category, since
they are by their very nature context-aware, one type of
context information being location information gathered
from a variety of location sources and sensors [5].

The authentication mechanisms described in this paper rely
on proximity, determined using a small number of

proximity beacons (i.e., as few as one) for the
infrastructure. The authentication mechanisms are
distinguished as either organizational or personal oriented,
and in both cases require only that participating handheld
devices, which function as the appliances, support a
common standard wireless interface for Personal Area
Network (PAN) communications, such as Bluetooth. The
mechanisms are designed to establish the relative location
of a mobile device with respect to a trusted beacon that,
once discovered, serves as a security token, contacted
periodically to reconfirm presence and to verify
authenticity.

The authentication mechanisms were implemented in C
and C++ on an iPAQ Personal Digital Assistant (PDA),
running the Familiar distribution of the Linux operating
system from handhelds.org and the Open Palmtop
Integrated Environment (OPIE). The Familiar distribution
was modified with MAF, a framework for multimode
authentication [6]. The framework includes a policy
enforcement engine that governs the behavior of code
modules and device users [7], and the facility to add new
authentication mechanisms and have them execute in a
prescribed order. MAF authentication mechanisms consist
of two parts: an authentication handler, which embodies
the procedure that performs the actual authentication, and a
user interface, which performs all necessary interactions
with the user. The authentication mechanisms described in
this paper were implemented specifically for MAF.

3. Personal Beacon Authentication
The personal beacon mechanism relies on a security token
in possession of the user to satisfy authentication. A
mobile device is either in or out of the proximity of the
beacon, as determined by the footprint of the
communications signal. The mechanism periodically
checks on connectivity with the beacon and reports
successful authentication, if present and able to be verified;
otherwise, it reports failure. Conceptually, the mechanism
operates somewhat like a garage door opener that keeps
open the door as long as the opener is on and its signal is
received. Stray away too far from the door with the opener
or turn it off and the door closes automatically.

A personal beacon supports a mobile device to which it is
enrolled. The mobile device and personal beacon
communicate using Personal Area Network (PAN)
communications. Two variants of the personal beacon
were developed: one using near-field magnetic
communications, the other using Bluetooth radio
communications. Because of the similarity between the
two variants, only the Bluetooth variant is described here.
The solution could be readily adapted for other types of
wireless PAN communications technologies. Though the
mechanism was design to meet the needs of mobile
devices, it could be used with desktops or other computers.

Bluetooth is a short-range wireless communications
protocol for mobile devices, such as PDAs, cell phones,
and headsets, that uses the globally available 2.4GHz
frequency band. Many models of mobile devices are
manufactured with built-in Bluetooth radios, which
provide for short-range communications and have low
power consumption. Two PDAs with built-in Bluetooth
radios were used for the prototype implementation: one for
the beacon and the other for the mobile device. The PDA
simulating the personal beacon token displays a fully
functional virtual token via its touch screen, as shown in
Figure 1.

Figure 1: Simulated Personal Beacon

The virtual token pictured represents a key fob form factor,
containing two LEDs and an on/off switch. Turning the
switch on causes the beacon to start listening for
connections and the LED at left to change color. The LED
at right blinks when an authentication exchange occurs.
The actual token could have formats other than a key fob
or be incorporated into another device, such as a cell
phone. Its code executes as an OPIE application.

3.1 Operation
The personal beacon mechanism was designed for use with
organizational handheld devices. Therefore, the design
incorporates a public key infrastructure (PKI) and the use
of X.509 certificates. It is also easily amenable to work
solely with public key pairs generated on the token, if a
PKI is unavailable for this application.

In the operation of the personal beacon, three phases are
distinguished:
• The beacon setup phase – During this phase, the

administrator generates a pair of RSA keys, obtains a
user certificate for the beacon, and stores the
certificate and the private key on the beacon. The
administrator also stores the root certificate (chain) of
the CA that issued the beacon certificate onto the
client PDA. For Bluetooth personal beacons, the PDA
and personal beacon are paired to establish a long-
term trusted association between the two. A special

class identifier distinguishes beacons from other
Bluetooth devices and simplifies the pairing operation.

• The beacon enrollment phase – During this phase, the
mechanism on the PDA tries to enroll the beacon for
the first time. It consists of the following steps:
• The PDA tries to identify and connect to a

personal beacon. For the Bluetooth variant, the
beacon’s identity and address is already known
and used to connect to the beacon directly. If no
such device is found or if no connection can be
successfully made, the enrollment phase fails.

• The PDA starts the high-level protocol with the
connected device, by which it requests and
receives the user certificate. If the certificate
transfer fails, or the certificate does not verify, the
enrollment phase fails.

• The PDA tries to authenticate the token through a
challenge-response protocol based on the
certificate information. If the authentication fails,
the enrollment phase fails; if it succeeds,
enrollment is complete. The PDA saves the
certificate to the file system for subsequent use by
the challenge-response algorithm, as a flag
attesting that enrollment completed successfully,
and closes the connection.

• The verification phase – During this phase, the PDA
periodically initiates a challenge-response exchange
with the beacon and checks that its certificate remains
in effect. The authentication succeeds if the response
verification is successful. This phase takes place
repeatedly to ensure that the beacon is present and
properly enabled.

The challenge-response protocol used to authenticate users
via a personal beacon is compliant with FIPS 196. Figure
2 illustrates the scheme. The upper part of the diagram
shows the enrollment information exchange used to
register a token (at right) with the PDA (at left), while the
remainder shows the exchanges used to verify the claimed
identity.

For verification, the device and the token adhere to the
following procedures for composing challenges and
responses, outlined in FIPS 196 [8]:
• The device generates a random challenge "B" and

passes it to the token for signing with the private key
associated with the enrolled identity certificate.

• The token generates a random value "A", signs A||B
with its private key (‘||’ denotes concatenation), and
returns A and the signature to the PDA.

• The device retrieves the enrolled identity certificate,
verifies it, then verifies the token’s signature over A||B
using the public key in the certificate.

• If successfully verified, authentication succeeds;
otherwise, the authentication attempt fails.

Figure 2: Challenge-Response Protocol

3.2 Implementation
The authentication handler operates as a polling
mechanism, periodically checking the status of the
personal beacon token and initiating authentication with it
over an L2CAP connection to the paired Bluetooth
address. If the token is not yet enrolled, the handler
immediately tries to register it.

The handler maintains two state variables: the current
authentication status and the previous authentication status.
Both start out as “unauthenticated.” During a polling
period, the handler first updates the previous
authentication status variable with the value of the current
status, then initiates the authentication exchange with the
token to determine an updated value for the current status
variable. A difference between the two values indicates a
change of state from the previous poll and determines
whether the mechanism should report a change from
“authenticated” to “unauthenticated” or the reverse. One
complication in deciding whether to report a change from
“authenticated” to “unauthenticated” is that the mechanism
must take into account the possibility of intermittent data
loss, and allow a window for additional authentication
attempts to succeed before rendering the decision.

The software on the personal beacon token operates as a
server to the authentication handler client on the PDA.
The Personal Beacon starts up by initializing the OpenSSL
library (www.openssl.org) and reading the user PKI
credentials from files in PEM format. Next, the Personal
Beacon builds and displays its interface according to the
beacon’s initial state (“off,” with both LEDs unlit and the
on/off switch displaying “On”). When the user clicks on
the switch, the personal beacon creates an L2CAP server
socket, enters the “on” state (unconnected), and starts

listening for a connection from the paired device. When it
detects a connection request, the beacon accepts the
connection and creates a client socket.

The beacon then repeatedly polls the client socket for input
requests from the device, and the server socket for new
connections. The beacon processes the input received on
the client socket with priority. If a new connection request
arrives on the server socket, the old connection is closed
and a new one is established.

Input on the client socket is interpreted as a request from
the client PDA. The server processes the request and
returns the answer on the client socket. The high level
protocol between the client PDA and the personal beacon
comprises the following commands:
• getCertLength – The command requests the length of

the user’s certificate in bytes. The server returns the
certificate length as a decimal value.

• getCertData|offset|length – The command asks for a
chunk of the certificate, starting at a specific offset
and a size of length bytes. The offset and length are
expressed in decimal. The server returns a string of
length bytes.

• signChallenge|challenge – The command asks the
server to sign a challenge, which is a string (called B)
of 16 bytes randomly generated and translated by the
client into a 32-byte character string. The server
returns the response to the challenge, containing a
random string represented as a 32-byte character
string and the 256-byte representation of the signature.

• bye – The command requests the server to disconnect
from the remote device by closing the client socket,
resulting in the beacon state maintained at the client to
become “on unconnected.” The server returns the
string BYE and closes the connection with the client.

3.3 Safeguards
The fundamental threat to user authentication is an attacker
impersonating a user and gaining control of the device and
its contents. The personal beacon token must be designed
to resist physical tampering and avoid disclosing its base
secret, the private key used to sign challenges it receives.
The private key should be used exclusively for
authentication.

Since the PDA and token devices can be paired, a trusted
connection exists between them during operation. Each
device automatically accepts communication from the
other in encrypted form, bypassing the discovery and
authentication process that normally occurs during
Bluetooth interactions. In addition, the challenge-response
mechanism specified in FIPS 196 is designed with
measures to conceal the base secret used and avoid replay.
In signing the challenge and verifying the signature, the

handler and the token use OpenSSL v0.9.7 APIs that
comply with the PKCS #1 standard.

Other security measures applied to the device rely on
MAF, which depends in turn on the security of the
underlying operating system. The personal beacon handler
is protected from substitution and overwrite through the
multimode authentication and policy enforcement
functionalities of MAF. The personal beacon handler uses
the following security-related files stored on the PDA,
which are also protected through policy enforcement
functionality of MAF:
• The X.509 certificate of the root CA used to validate

the user’s certificate on the token – installed through
security administration.

• The user’s X.509 certificate – written at token
enrollment, and afterwards read only by the handler.

• The token’s Bluetooth address – created during device
pairing for exclusive use by the handler.

• The Bluetooth link keys – created during device
pairing for exclusive use by the handler.

4. Organizational Beacon Authentication
The organizational beacon is a small device placed in an
area to establish a perimeter where a distinct policy is in
effect. To accomplish this, the organizational beacon
offers an area location service for discovery and use by
mobile devices, such as PDAs. One or more
organizational beacons define the area. Location is
determined relative to a beacon. Mobile devices equipped
with an organizational beacon authentication mechanism
sense the locale of the organizational beacons and adjust
their security policies accordingly. A device is either in or
out of the vicinity of the beacons, as determined by the
footprint of their communications signal.

The organizational beacon authentication mechanism
checks periodically for proximity to a beacon and reports
successful authentication if a beacon is detected and able
to be verified; otherwise, it reports failure. Multiple
organizational beacons can be used to improve service
above that of a single beacon, or arranged to service a
larger area. An organizational beacon provides credential
information for a device to verify using the Transport
Layer Security (TLS) protocol over Bluetooth. Many
mobile devices are manufactured with built-in Bluetooth
radios, which allow short-range communication and have
low power consumption. The solution could also be
adapted for other types of wireless PAN communications
technologies.

Intrinsyc CerfCubes (www.intrinsyc.com) serve as the
platform for the prototype organizational beacons. The
CerfCube 255 includes a PXA255 microprocessor, 32MB
Flash ROM, and 64MB SDRAM, in a 3” x 3” x 3” form

factor. It comes loaded with a Linux kernel and the
Familiar Distribution, including device drivers for all on-
board peripherals. Peripheral support includes Ethernet
and several serial ports. CerfCubes come equipped with a
Compact Flash slot that supports Type I and II cards,
which can be used to add Bluetooth or other wireless
communications, memory, etc.

4.1 Operation
The organizational beacon authentication mechanism
operates in two distinct modes: unauthenticated and
authenticated. In unauthenticated mode, the following
steps occur:
• The mobile device periodically scans for the available

organizational beacons in the area.
• When the mobile device finds a potential beacon, it

establishes a Bluetooth connection to it, and then
attempts to set up a secure TLS connection over that
physical channel, using the X.509 certificate supplied
by the beacon.

• If the beacon is successfully authenticated and the
TLS connection established, the mobile device enters
a readiness exchange with the beacon to verify that it
is indeed a functional organizational beacon.

• Once the mobile device determines that organizational
beacon is functional, the device enables the associated
policy for that location and switches to authenticated
mode.

• Otherwise, the mobile device blacklists the beacon for
a period of time and retries the above steps.

Once in authenticated mode, the following steps occur:
• The mobile device periodically tries to reestablish a

TLS connection over Bluetooth with the last beacon it
previously used.

• If the beacon is again successfully authenticated and
the TLS connection established, the mobile device
verifies that the beacon is still functional.

• Once the mobile device determines that the beacon is
functional, the device maintains the associated policy
for that location and remains in authenticated mode.

• Otherwise, the mobile device retries the above steps,
allowing for a momentary out of range condition.

• If the beacon cannot be authenticated and vetted
within a preset time, the mobile device switches to
unauthenticated mode and changes policy accordingly.

The beacon itself operates as a server to the mobile device
clients, listening to the inquiries and responding as needed.
The Bluetooth device class identifier on the beacon is set
to a specific value defined for beacon class devices. Using
a customized device class improves performance, since the
mobile device can filter out other types of devices that may
be present in an area (e.g., cell phones, printers, etc.) and
avoid interaction.

The beacon proves its identity to mobile devices, but does
not require mobile devices to do the same. The beacon
establishes its identity via TLS using its private key and
associated certificate. The beacon’s server certificate must
be valid and be issued by the organization’s root certificate
authority (or by a certificate authority having a valid
certificate chain from the organization’s root certificate
authority). The mobile device must hold the public key of
the organization’s certificate authority to verify the
authenticity of the beacon server certificate.

Beacons support specific policies, denoted by an identifier
in their credentials. Assorted beacons may be configured
to support distinct policies for different areas. Because a
mobile device running the organizational beacon
authentication mechanism is configured to observe a
specific policy in the presence of an associated beacon, it
disregards beacons that identify other policies.

4.2 Implementation
The organizational beacon handler is a polling mechanism,
periodically awakening to perform the necessary
operations. In unauthenticated mode, the handler
periodically performs a Bluetooth inquiry to find potential
beacons. If inquiry process results in finding a Bluetooth
device with the beacon class identifier, the handler
attempts to establish L2CAP connection to the
predetermined Protocol Service Multiplex (PSM) (i.e., a
designator similar to a TCP/IP port number). When the
L2CAP connection is established, the handler tries to set
up a TLS session over the connection and verify the
server’s X.509 certificate. If the verification succeeds, the
handler switches to authenticated mode, where it
periodically tries to establish a connection with the last
known beacon and authenticate it using the same steps as
above. If the handler eventually is unable to communicate
and verify the last known beacon during the allotted
interval, it switches back to unauthenticated mode.

The handler maintains a table of potential beacons to carry
out its function. The table contains information about all
Bluetooth devices in the vicinity of the mobile device. The
table has the following fields: MAC Address, Last Seen,
Last Contact and Status, as shown in Table 1.

Table 1: Potential Beacon Table

MAC Address Last
Seen

Last
Contact Status

00:02:92:21:AB:C8 20 20 Beacon
00:22:11:22:33:11 30 30 Not Beacon
00:22:99:11:11:11 20 20 Unknown

The MAC Address field contains the address of the
Bluetooth device, while the fields Last Seen and Last
Contact contain the time value of when the device was last

seen and when the last successful communication with the
device took place. The Status field contains the handler’s
idea of the device’s purpose. The Status field can be one
of the following: ‘Beacon,’ ‘Not Beacon’ and ‘Unknown.’
When the remote Bluetooth device is initially entered into
the table, it is assigned the ‘Unknown’ status. Later, when
a successful exchange with the remote device takes place,
the device is assigned the ‘Beacon’ status. If the handler
can establish a connection to the remote device, but the
device does not follow the readiness protocol, the device is
assigned the ‘Not Beacon’ status.

The handler populates the table by performing a Bluetooth
inquiry process every 50 seconds. The inquiry discovers
Bluetooth devices in the vicinity and returns a list of their
MAC addresses. The handler looks up each MAC address
received during the inquiry process to see if it already
exists in the beacon table. If the address does not exist, it
is entered into the table. For every MAC address received
during the inquiry process, the handler updates the
corresponding Last Seen entry in the handler table.

When the handler is not doing an inquiry, it tries to contact
the devices in the beacon table whose Status entry contains
either ‘Beacon’ or ‘Unknown.’ The devices with ‘Beacon’
status are contacted before the devices with ‘Unknown’
status. During the contact, the handler first tries to
establish the L2CAP connection to the remote device. The
Last Contact value is updated before every attempt to
establish an L2CAP connection is made. If the connection
succeeds, the handler performs a TLS exchange. If a
failure occurs after the L2CAP connection has been
established, the handler sets the Status field of that beacon
to ‘Not Beacon,’ which temporarily blacklists the beacon.
If the TLS exchange results in successful authentication
the handler sets the Status to ‘Beacon,’ sets the
lastAuthentication variable it maintains to the current time,
and does not try to contact the other devices in the table.

The lastAuthentication variable is used to determine
whether the current authentication is still valid. If the time
value stored in this variable is less then 120 seconds before
the current time, the handler considers the state to be
unchanged, remaining valid. When the kernel sends an
authentication request to the handler, the handler checks
the current time and the value of the lastAuthentication
variable and returns a positive response, if the value is
within 120 seconds of the current time, or otherwise
responds with negative authentication.

The handler periodically sweeps the beacon table for stale
entries. If the handler sees an entry with the Last Seen
value older than 60 seconds, the entry is removed from the
table. The handler uses the Last Contact column in
conjunction with the Status column to prevent permanent
blacklisting of beacons that did not correctly follow the

beacon readiness protocol previously. For example, it
could be the case that the beacon was just booting up and
not all the software was fully operational and able to
complete the exchange. When the Status column for a
particular entry contains a ‘Not Beacon’ value and the Last
Contact time value is older than 20 seconds, the handler
changes the Status value to ‘Unknown.’

The beacon itself is less complicated. The beacon
software is a basic server that listens to incoming L2CAP
connections. Once a connection occurs, it establishes a
TLS protocol connection and observes its part of the
readiness protocol, which involves a three-way handshake.
The beacon can accept only one connection at the time.
However, since the TLS exchange takes significantly less
time than the Bluetooth connection time out, at least two
devices can easily connect during that period.

The Bluetooth stack on the beacon is configured to
respond to incoming inquires and connections, known
respectively as inquiry scan and page scan modes. Both
the mobile device and organizational beacon manage the
Bluetooth specific aspects of the communication, such as
establishing and tearing down connections, determining
the Message Transmission Unit (MTU) size, etc., as well
as actual data transmission. Both also use the OpenSSL
library to provide the TLS protocol functionality.

4.3 Safeguards
The authentication mechanism requires that beacon is kept
both physically and logically secure and situated at the
correct location it identifies. When the authentication
mechanism receives a message from a beacon, it must
ensure that the message was created recently for the
particular purpose intended and by the beacon claiming to
have sent it. The mechanism must be able to detect when a
message has been modified or forged by an attacker with
access to the wireless network, or when a message issued
previously (or for a different purpose) is being replayed on
the network by an attacker. For these reasons, the
organizational beacon handler uses the TLS protocol to
authenticate potential beacons.

The TLS is a well-established and carefully scrutinized
protocol for secure transactions. The TLS protocol
provides the assurance that the beacon is genuine. The
security of the TLS protocol is based on a challenge
response mechanism and public key cryptography. As
with the personal beacon, the OpenSSL library (version
v0.9.7) is used for cryptographic functions and the TLS
implementation.

Besides the TLS protocol, the authentication mechanism
relies on MAF for its protection. The substitution or
overwrite of the authentication handler program is
prevented by MAF functionality and the underlying

operating system. The policy enforcement functionality of
MAF is used also to protect the following security-related
files and to grant the handler exclusive access:
• The X.509 certificate of the root CA used to validate

the server’s certificate – installed through security
administration.

• The policy identifier observed by the authentication
handler – installed through security administration.

Blocking access to the CA’s public key certificate and the
governing policy identifier prevents an attacker from
substituting them with ones from a different organization
to gain unauthorized access to the mobile device.

5. Conclusions
While mobile devices provide productivity benefits, they
also pose new risks. This paper demonstrates how
proximity-based authentication can be implemented to
reduce them. The approach provides users the flexibility
to perform their tasks within the bounds set by an
organization, and requires only a simple infrastructure.

References
[1] J. Indulska, P. Sutton, “Location management in

Pervasive Systems,” Workshop on Wearable,
Invisible, Context-Aware, Ambient, Pervasive and
Ubiquitous Computing, February 2003, Adelaide,
Australia. In Conferences in Research and Practice in
Information Technology series, Vol. 21, pp.143-152.

[2] J. Hightower, G. Borriello, Location Systems for
Ubiquitous Computing, IEEE Computer, 34, 8,
August 2001.

[3] M. Hazas, H.Scott, J. Krumm, Location-Aware
Computing Comes of Age, IEEE Computer, 37, 2,
February 2004.

[4] A. Ward, A. Jones, A. Hopper, A New Location
Technique for the Active Office, IEEE Personal
Communications, Vol. 4 (5), October 1997, pp 42-47.

[5] M. Gruteser, G. Schelle, A. Jain, R. Han, D.
Grunwald, Privacy-Aware Location Sensor Networks,
USENIX 9th Workshop on Hot Topics in Operating
Systems (HOTOS IX), May 2003, pp. 163-167.

[6] W. Jansen, V. Korolev, S. Gavrila, T. Heute, C.
Séveillac, A Framework for Multimode
Authentication: Overview and Implementation Guide,
NISTIR 7046, August 2003.

[7] W. Jansen, T. Karygiannis, M. Iorga, S. Gavrila, V.
Korolev, Security Policy Management for Handheld
Devices, The 2003 International Conference on
Security and Management (SAM'03), June 2003.

[8] Entity Authentication Using Public Key
Cryptography, Federal Information Processing
Standards Publication (FIPS PUB) 196, U.S.
Department of Commerce, National Institute of
Standards and Technology, February 1997.

	Introduction
	Background
	Personal Beacon Authentication
	Operation
	Implementation
	Safeguards

	Organizational Beacon Authentication
	Operation
	Implementation
	Safeguards

	Conclusions
	References

