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Abstract. Analyzing Web Logs for usage and access trends can not only provide important information to web
site developers and administrators, but also help in creating adaptive web sites. While there are many existing tools
that generate fixed reports from web logs, they typically do not allow ad-hoc analysis queries. Moreover, such tools
cannot discover hidden patterns of access embedded in the access logs. We describe a relational OLAP (ROLAP)
approach for creating a web-log warehouse. This is populated both from web logs, as well as the results of mining
web logs. We discuss the design criteria that influenced our choice of dimensions, facts and data granularity. A
web based ad-hoc tool for analytic queries on the warehouse was developed. We present some of the performance
specific experiments that we performed on our warehouse.
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1. Introduction

Web mining can be viewed as the extraction of structure from an unlabeled, semi-structured
data set containing the characteristics of users/information respectively [8]. It encompasses
several related areas, including mining the content of web pages, mining the structure of
web pages are linked, and mining the usage/access of web pages. Our focus in this paper
is on web usage/access mining. The logs kept by web servers provide a classic example of
usage/access data that can be mined. Analyzing and exploring regularities in the behavior
of the users accessing a web site can improve system performance, enhance the quality
and delivery of Internet information services to the end user, and identify population of
potential customers for electronic commerce [19]. Many approaches have been suggested
to mine information from web access log records collected from servers [6, 12, 14, 16].
Typically data has to be scrubbed and preprocessed as a precursor to mining. Such data can
also be stored in a data warehouse and be amenable to OLAP like queries. The objective
of this paper is to outline a design used to create a ROALP warehouse from web logs. We
also describe the web based analysis tool we have created that helps users in querying the
warehouse in an ad-hoc manner.

Of late, new tools promising to apply data warehousing and mining techniques on web logs
have entered the market. However, most of these tools do not really build a warehouse, and
their notion of mining is limited for the most part to simple aggregate statistical analysis. For
the most part, they continue the tradition of utilities such as AccessWatch and http-analyze.
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Such tools use Java, Perl scripts or shell scripts, to generate reports about web site utilization.
A listing of many such utilities can be found at [1]. Most of these tools generate canned
reports about number of Kbytes transferred, access organized by domains etc. Their fixed
reporting format does not help in analyzing log data from every perspective and customizing
these reports requires essentially rewriting the utility. Moreover, these tools typically cannot
discover hidden patterns of access embedded in the access logs. The only exception seems
to be IBM’s SurfAid (http://surfaid.dfw.ibm.com/) that combines an analysis tool with some
data mining capabilities (the web site and white papers for this do not specify in detail their
approach used).

Broadly speaking, ‘Web Mining’ has been defined as applying data mining techniques
on web data to discover knowledge. However, as mentioned earlier, the data that is actually
mined is varied, and different approaches have been followed. The usage mining approach
applies mining techniques on the web logs maintained by the servers so as to discover user
access and traversal patterns [5, 6, 18–20]. In this paper, we have primarily concentrated
on this research direction. Most of the research in this vein interprets web logs to be a
semi-structured source of data that can be analyzed using existing mining techniques. In
this approach, the aim is to discover the in-built relationships between the various attributes
of the log like URLs, IP addresses etc. For instance, Zaine et al. [19] have mined information
from web logs by implementing a MOLAP warehouse containing web log data and mining
information off it. However, their system is built on their own custom multidimensional
database system. Nasraoui et al. [13] have developed new robust fuzzy clustering algorithms
and used them on web logs, where as Zarkesh et al. [20] have developed clustering algorithms
for user navigation patterns. Other researchers have interpreted web logs essentially as text
files and applied phrasal mining techniques to the logs [3, 11]. Chen et al. [5] have used
maximal forward traversal to sessionize logs, and then mine them using the DSS algorithm.
This work is available as the SpeedTracer [17] tool. Bruchner and Mulvenna [4] propose a
hypercube based model, and its equivalent snowflake/star schemata that combines web logs
with e-tailing data for analysis of marketing data from e-commerce. However this work
primarily describes the concept, as opposed to detailing implementation.

In this paper, we present the design of a warehouse for web log analysis. Our system is
different from much of the prior work in as much as it creates a combined data warehouse for
both raw access logs, as well as mined data such as clusters representing user access patterns.
As explained in later sections in this paper, this allows analytic queries not just on the access
log data, but also on mined access patterns. Moreover, our system is built on top of a COTS
relation database system (Oracle), and does not require specialized a Multidimensional
DBMS. The system has a web based front end that allows for preformatted queries, as
well as the possibilities for ad-hoc querying of the warehoused data. We present the design
of the system, the tradeoffs involved via experimental studies, implementation details and
experimental results.

2. Preprocessing web logs

As a precursor to creating the warehouse, we need to clean our web log data. The textual
format of the log data is not suited for import into the database (Oracle). In our design, we
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have included each log entry as a potential record for our warehouse. We have also included
log entries that resulted in errors or redirects in our analysis. The Web sites whose logs we
used as data for our system do not maintain a user profile database and don’t have cookies.
Hence we have not accounted for these in our system. Some prior work in web log mining
assumes that identd [5, 6] daemons are running and making available identities of the
remote users accessing the site—such an assumption is mostly not true in general web sites.
We use the approach suggested by Nasraoui et al. [12] that defines sessions using temporally
compact accesses from a given IP address. Joshi and Krishnapuram [9] have shown more
recently that certain type of cookies that do not store identifying information can help better
sessionize the logs. Our design can be trivially extended to handle cookies for sites that
store them. More detailed discussion of sessionizing approaches can be found in [10].

Figure 1 is a pictorial representation of our entire system. Our warehouse consists of an
access log part (see figure 2(a) and (b)) that allows users to analyze the web logs; and a
mining part (see figure 3) that allows users to analyze traversal patterns. In the preprocessing
phase, we have created different files for populating the warehouse.

In designing the access log warehouse, we included each log entry as a record in the
warehouse, which was created in an Oracle 8 database using star schema. Before loading
log entries into the warehouse, we reformatted them to confirm with the formats that Oracle
SQL Loader accepts. This was done using a Perl script we created by modifying Follow [7].
Log structure was assumed to be that prescribed by the Common Log Format, {〈domain〉
〈identity〉 〈authorization〉 〈date〉 〈method〉 〈URL〉 〈protocol〉 〈status〉 〈size returned〉} and
any entry not conforming to this structure was discarded. We also disregarded the identity
and authorization attributes in the web log since they were not being logged. We have
included log entries that resulted in errors or redirects in our analysis.

For the mining part, we filtered out other unwanted entries like record accesses to image
files that were embedded in the web pages whose ‘hit’ had already been logged. For the
preprocessing phase, we created a file listing all the sessions (described in the next section)

Figure 1. System architecture.
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(a) (b)

Figure 2. (a) Normalized database for storing web and (b) Web log fact table.

Figure 3. Clustering analysis database structure.

obtained from the logs. The session file consists of Session number and the Domain of that
session. A URL file was created that contained all the URLs in the web log that was analyzed
and a unique number associated with the URL. Once the sessions were clustered as described
in later sections, a cluster file listed each session and the cluster that it belongs to. Using
the three files as our input, we proceeded to populate the warehouse for the mined data.

3. Warehouse architecture

In a data warehouse Facts defined along with certain attributes (called dimensions) are the
core data elements being analyzed. In this system, the web log entries are facts. Given
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the structure of the web logs, the following are obvious dimension candidates: URL of the
page accessed (Document URL), Date of the request (Access Time), method of the request
(Method), Result of the request (Result), and Protocol.

The fact tables in the warehouse are directly created from the web logs. The web log
data is analogous to the transactional data in an OLTP system and the main fact table
was populated from it using Perl scripts we have written. This makes both the creation
and maintenance of the warehouse relatively straightforward. This table contained all the
log entries that were ever made in our web logs (figure 2(b)). Our web analysis does not
build on an existing transactional database, since the web server uses flat files to store its
transactional data (accesses) without any normalization. Figure 2(a) illustrates the table
structure for a corresponding normalized, relational database. It has “Dimension” tables for
data such as Request status codes, request methods, Web protocols etc. The arrows indicate
the relationships between dimensions. The dimension data is typically static and dependent
on the domain. It also helps map “codes” relating to the HTTP protocol to their descriptions
in an efficient manner.

3.1. Performance analysis

While the main fact table can answer any analysis query, aggregation queries where one
of the parameter was constructed would take a time. The guiding principle in our archi-
tecture was to trade storage space for time. Based on some expected queries, smaller fact
tables were created that contain data in a particular range of a dimension. For example,
we created separate fact tables for each month of the log. If a user specified the month in
the ‘date accessed’ field, then the fact table corresponding to the month queried would be
accessed. Similarly tables were created based on particular status codes, like Error codes
(status range 400). Because of their smaller size, these fact tables vastly reduce the time
to query the warehouse. Consider a case (Case 1), where we wanted to find out how many
hits to our web site were from educational institutions (domain ‘edu’) for a given month.
Querying it from the smaller fact table that stores logs for the desired month is almost
6 times faster than querying it from the main fact table, as seen in Table 1. Consider another
case (Case 2) where a web administrator wanted to find out all the links (URLs) in the web

Table 1. Performance measures for the fact tables: Case 1.

Description of the No. of records Time Disk space
Query table queried in the table taken (ms) Speedup (blocks)

select count(*) from Fact table sliced by 36529 14 5.8 2420
AUG LOG FACT where dimension month
HOST LIKE ‘%.edu’;

select count(*) from Main FACT table 242165 82 – 16260
WHOLE LOG FACT1
where HOST LIKE ‘%.edu’
and MONTH=‘Aug’;
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Chart 1. Performance measures for the fact tables: Case 2. Y -axis is time taken in ms.

site that resulted in error state for a given month. S/he could query it either from the main
fact table or from the fact table that stores the desired month’s data or from the fact table
that contains only error code logs. Table 2 and Chart 1 display the performance results that
were obtained when the same generic query was executed on the different Fact tables. We
observe that fact tables that were created by slicing on a particular dimension (like MONTH
or STATUS) did perform better since they contained fewer records. The query executed al-
most six times faster when run on smaller tables. To analyze this further, we populated the
Main FACT table with varying number of records—records taken for each month and also
created corresponding fact tables by slicing on the STATUS dimension. Table 3 and Chart 2
below illustrate this example in detail. We observe that the performance improvement is
similar in all the cases strongly pointing that STATUS dimension is a good candidate for
smaller fact tables. So it is definitely advantageous if similar fact tables are created in the
warehouse to generate reports that have to be run frequently. However on the negative
side, such tables take up additional space in the database and they will have to be recre-
ated/populated every time data is added to the warehouse (main fact table). Additionally,
the main fact table allows more ad-hoc querying capability and better comparative analysis
than the smaller fact tables since it contains all the data. Table 4 tabulates the additional
blocks that were required to store the smaller fact tables. We observe that tables created for
STATUS dimension required almost no extra space, and also improved the response time
drastically.

We also observed that every dimension was not a good candidate for creating smaller
tables. For example, the dimension METHOD had three main entries of GET, POST and
HEAD in our main fact table, where logs with ‘GET’ method accounted for almost 99% of
the records. In such an instance, a smaller FACT table for method ‘GET’ will provide no
appreciable improvement over querying the main FACT table.
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Table 3. Performance measures for the fact tables: Case 3.

No. of records Time taken
No. Description of the table queried in the table (ms)

1 Whole fact table with 2 months data 170900 140

2 Fact table sliced by dimension status—2 M 19 2

3 Whole fact table with 3 months data 207429 187

4 Fact table sliced by dimension status—3 M 21 3

5 Whole fact table with 4 months data 242165 192

6 Fact table sliced by dimension status—4 M 1468 7

Chart 2. Performance measures for the fact tables: Case 3. Y -axis is time taken in ms.

3.2. Warehouse for analyzing data mining results

In addition to the fact tables, a normalized schema was added to the warehouse to popu-
late the mining results so as to facilitate on line analysis. Figure 3 represents the Entity-
Relationship diagram of this database that consists of three tables. The URL table stores the
URL description along with the Unique ID (URL NO) that is generated by the program.
Session Table contains data pertaining to the Domain that identifies the session, the cluster
number to which the session belongs and the frequency of the domain. Session-No is the
unique identifier for each session. We know that many URLs (say N ) can be accessed in a
single session and also one URL can belong in multiple sessions (say N ). To incorporate the
N : N relationship between URLs and Sessions, we split the relationship into a 1 : N rela-
tion by introducing a new table SES URL table. This table contains the primary identifiers
of both the Session and URL tables and is populated from the output from the clustering
experiment.
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Table 4. Extra space requirements for the fact tables.

No. of records Disk space
Description of the table queried in the table (blocks) Extra space

Fact table sliced by dimension month—July 43059 3010 18.5%

Fact table sliced by dimension month—Aug. 36529 2420 14.9%

Fact table sliced by dimension month—Sep. 34736 2255 13.9%

Fact table sliced by dimension status containing 19 1 ∼0
2 months of data

Fact table sliced by dimension status containing 21 2 ∼0
3 months of data

Fact table sliced by dimension status containing 1468 110 0.05% over
4 months of data fact table

Main FACT table containing 2 months of data 170900 11627 –

Main FACT table containing 3 months of data 207429 14055 –

Main FACT table containing 4 months of data 242165 16260 –

We have created three views to help in our analysis. Xi View displays the cardinality (total
number of sessions) of each cluster obtained. Xi j View displays each URL in the log along
with Cluster number and the total number of sessions in the cluster that contain the URL (dis-
played by field Xi j ). The third view, Degree View, displays each URL in the log along with
Cluster number, Xi value, Xi j value and the Degree Measure, Xi j/Xi . The Degree measure
is the equation for Pi j listed in above. The Degree view is the main view that we use for our
analysis. It is also the view queried by the Web Interface. An additional view, ALL VIEW,
displays all the main fields in the tables and is also accessed by the Web Interface.

4. Mining web logs

To mine knowledge from the web logs we used two data mining techniques, namely Clus-
tering and Association Rules generation. For the data mining experiments, we collected a
variety of logs and ran the association rules generator and clustering algorithm on it. Be-
fore mining information from the logs we created sessions from the logs. For discovering
association rules, we used SGI’s Mineset [15] program that implements a variation of the
Apriori algorithm [2]. For Clustering we used the Fuzzy C-medoids algorithm developed
by Krishnapuram et al. [18]. This approach allows us to capture a graded (as opposed to
binary) notion of similarity between sessions.

4.1. Association rules

To generate the association rules for the web logs, we first generated the sessions and URL
files. MineSet requires two input files for generating the association rules—a schema file
and a data file. The schema file describes the structure/fields of the data file. The data file
consisted of the binary session vectors. Each session can be thought of as a transaction and
each URL as an item, in the association rule context. Thus a session [10110] would imply
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that URLs 1, 3 and 4 were visited in this session and URLs 2 and 5 were not. To generate
the association rules for the web logs, we first generated the sessions and URL files. The
schema file was simply the URL numbers and was generated using a Perl program. The
association file generated by MineSet was cleaned before the results could be analyzed.

4.1.1. Experiment results. We ran the association rules generator for various web logs.
Separate schema and data files were generated for each log mined. The output file generated
by MineSet was filtered to remove results that were not germane to our study. E.g. association
rules that did not have the minimum support (80%) and/or confidence (20%), association
rules that stated that if s(i)

j of a URL j was 1, s(i)
k of another URL k was 0 etc. Table 5 below

tabulates the association rules result for one of the experiments.

4.1.1.1. [Experiment I] UMBC web page. Support of 80% (and above) and a confidence
of 20% and above.

4.1.1.2. Experimental observations. Some observations that were made after studying the
generated association rules for UMBC pages are listed below.

1. The Search page is associated with Directory page, Student Link pages, List of Depart-
ments page and Summer 99 schedule (schedule of next semester). This indicates that
the Search utility was mainly used by new students or students who were new browsers
and were not familiar with the web site structure.

2. The URL containing Under Graduate information is associated with Admissions pages,
Graduate Program page, Faculty and Academics pages and Schedule pages.

3. Schedule page is associated with Graduate Program page, Under Graduate Program
page, Faculty and Academics pages. It is also associated with Summer 99 and Spring 99
schedule pages. This reflects the time when these logs were studied—late in Spring
semester, when students were most interested in the current semester and deciding about
the one following it.

4. Student Link is associated with the Search page, Directory page, Library and Computing
page, Calendar, List of Departments and Schedule pages (Spring and Summer schedules).

4.2. Clustering

Before generating clusters for our sessions, we had to define a measure of similarity between
our sessions. The similarity measure that we used for our experiments has been proposed
by Nosraoui et al. [13]. They have defined a dissimilarity measure between all session
pairs (i.e., the relation matrix) prior to the clustering process. Note that since sessions are
not object data, a distance measure in the sense of Minkowski norms is not automatically
available.

4.2.1. Evaluating the results. We interpret the results of applying the clustering algorithm
on the user session data by using the following quantitative measures. The clustering al-
gorithm [18] assigns user sessions to the closest clusters based on the similarity measures.
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Table 5. Association rules for UMBC web page.

URLs Associated with

{/Search/} → {/Directory/}, {/StudentLink/}, {/FacAcademics/Depart/},
{/AboutUMBC/Schedule/summer1999/}

{/AboutUMBC/Schedule/spring1999/} → {/StudentLink/}, {/LibComp}, {/UnderGrad},
{/FacAcademics/Depart/}, {/AboutUMBC/Schedule/},
{/AboutUMBC/Schedule/summer1999/}

{/Directory/} → {/Search}, {/StudentLink/}, {/Admissions/}, {/FacAcademics/},
{/FacAcademics/departs.html}, {/FacAcademics/depart/}

{/StudentLink/} → {/Search}, {/AboutUMBC/Schedule/spring1999/}, {/Directory/},
{/LibComp/}, {/Admissions/}, {/calendar},
{/FacAcademics/Depart/}, {/AboutUMBC/Schedule/},
{/AboutUMBC/Schedule/summer1999/}

{/LibComp/} → {/AboutUMBC/Schedule/spring1999/}, {/StudentLink},
{/calendar}, {/AboutUMBC/Schedule/summer1999/}

{/Admissions/} → {/Directory/}, {/StudentLink/}, {/Admissions/undergrad.html},
{/GradProg/}, {/UnderGrad/}, {/FacAcademics/departs.html},
{/FacAcademics/Depart/}, {/AboutUMBC/Schedule/},
{/AboutUMBC/Schedule/summer1999/}

{/calendar} → {/AboutUMBC/Schedule/spring1999/}, {/StudentLink/},
{/AboutUMBC/Schedule/}, {/Admissions/undergrad.html},
{/LibComp}, {/AboutUMBC/Schedule/summer1999/},

{/Admissions/undergrad.html} → {/Admissions/}, {/calendar}, {/GradProg/},
{/UnderGrad},{/AboutUMBC/Schedule/summer1999/}

{/GradProg/} → {/Admissions/}, {/Admissions/undergrad.html}, {/UnderGrad/},
{/FacAcademics/}, {/FacAcademics/departs.html},
{/FacAcademics/Depart/}, {/AboutUMBC/Schedule/}

{/FacAcademics/} → {/Directory/}, {/GradProg/}, {/AboutUMBC/Schedule/},
{/AboutUMBC/Schedule/summer1999/}, {/UnderGrad/},
{/FacAcademics/departs.html}, {/FacAcademics/Depart/}

{/FacAcademics/departs.html} → {/Directory/}, {/Admissions/}, {/GradProg/}, {/UnderGrad/},
{/FacAcademics/}, {/AboutUMBC/Schedule/},
{/FacAcademics/Depart/}

{/UnderGrad/} → {/AboutUMBC/Schedule/spring1999/}, {/Admissions/},
{/Admissions/undergrad.html}, {/GradProg/},
{/FacAcademics/},{/FacAcademics/departs.html},
{/FacAcademics/Depart/}, {/AboutUMBC/Schedule/},
{/AboutUMBC/Schedule/summer1999/}

{/FacAcademics/Depart/} → {/Search}, {/AboutUMBC/Schedule/spring1999/}, {/Directory/},
{/StudentLink/}, {/Admissions/}, {/GradProg/}, {/UnderGrad/},
{/FacAcademics/}, {/FacAcademics/departs.html},
{/AboutUMBC/Schedule/},
{/AboutUMBC/Schedule/summer1999/}

{/AboutUMBC/Schedule/} → {/AboutUMBC/Schedule/spring1999/}, {/StudentLink/},
{/Admissions/}, {/calendar}, {/GradProg/}, {/UnderGrad/},
{/AboutUMBC/Schedule/summer1999/}, {/FacAcademics/},
{/FacAcademics/departs.html}, {/FacAcademics/Depart/},

{/AboutUMBC/Schedule/summer1999/} → {/Search}, {/AboutUMBC/Schedule/spring1999/},
{/StudentLink/}, {/LibComp/}, {/Admissions/}, {/calendar},
{/UnderGrad/}, {/FacAcademics/},{/FacAcademics/Depart/},
{/AboutUMBC/Schedule/}, {/Admissions/undergrad.html},
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This creates C clusters Xi = {s(k) ∈ S | dik < d jk ∀ j �= i}, for 1 ≤ i ≤ C . The sessions in
cluster Xi are summarized in a typical session “profile” vector Pi = (Pi1, . . . , Pi |U |)t . The
components of Pi represent the degree with which each URL belongs to a session. This is
computed as

Di j = p
(
s(k)

j = 1
∣∣ s(k) ∈ Xi

) = |Xi j |/|Xi | where Xi j = {
s(k) ∈ Xi

∣∣ s(k)
j > 0

}
.

In other words, it measures the fraction of the clusters in the session which included this
URL. This helps us recognize those URL which form the “core” of the profile. For some
URLs the degree is greater than 1. This is because we have grouped together all the URLs
that belong to the same directory. Besides summarizing profiles, the components of the
profile vector can be used to recognize an invalid profile, which has no strong or frequent
access pattern.

4.2.2. Experiment results. We generated clusters for various logs. While analyzing our
clusters, we did not consider clusters that had less than 3 user sessions. In all the clusters
{/〈url〉} and {/〈url〉/} were regarded the same and counted only once. Separate tables were
created in the Oracle database for each log studied. The tables and views had similar
structure as described in above. The Degree View for each log was used in analyzing the
results. Table 6 below tabulates the clusters that were found for one of the experiments.

4.2.2.1. User sessions clustering results: AGENTS pages. Experiment Study: For this
study, a small section (2556 log entries) of the web logs pertaining to the Agents home-
page (http://www.csee.umbc.edu/agents/) were used. After running it through the clustering
algorithm, we obtained 5 clusters.

4.2.2.2. Experimental observations

Cluster 1 (Archives) represents those users who are browsing the archive pages.
Clusters 2 and 3 have too small a cardinality to be included in the study.
Cluster 4 (News) represents users who are interested in the latest news (∼33%) about

‘Agents’ technology.
Cluster 5 (General Browser) corresponds to users who usually navigate the main page

(/agents/) and the links on that page. We can consider such users to be general browsers
who are interested in knowing about the ‘Agent’ technology in general. The high prob-
ability of their navigating the introduction pages (∼36%) and pages related to ‘papers’
(∼30%) confirm our assumption.

5. Web query tool and preliminary result

We have created a web based thin client as the user interface to the system. By using a web
browser the user interface becomes platform independent unlike proprietary tools such as
Discoverer. The interface is exported as an HTML forms document from the web server
that interacts with the Warehouse using CGI and SQLPLUS. The web interface was cre-
ated using Perl CGI scripts. The user can enter (or select) a value into the fields, and the
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Table 6. Subset of user session clusters for agents log.

Cluster No. of Degree with which
cardinality URLs in URL belongs to

Cluster no. (no. of sessions) the cluster URLs the cluster

1 19 56 {/agentslist/archive/digests} 0.21
Archives or {/agentslist/archive/digests/}

{/agents/} 0.158
{ /agentslist/archive/} 0.105
Other URLs <0.05

2 2 8 {/agents/commercial} 1.0
{/agentslist/archive/1996..} 0.50
{/agents/papers/migratory.html} 0.50

3 2 6 {/agents/} 1.0
{/agents/groups} 0.5
{/agents/commercial} 1.0
{/agents/interface} 1.0

4 61 151 {/agents/} or {/agents} 0.72
News, FAQs, {/agentslist/} or {/agentslist} 0.361
Technology {/agents/news/} 0.213

{/agents/technology/} 0.18
{/agents/faq/} 0.164
{/agents/agentnews/} 0.115
Other URLs <0.1

5 83 257 {/agents/} 0.783
General browser {/agents/introduction/} 0.265

{/agents/papers/} 0.169
{/agents/web/} 0.132
{/agents/papers/collections.shtml} 0.132
{/agents/theory/} 0.12
{/agents/mobile/} 0.12
{/agents/faq/} 0.11
{/agents/introduction/jennings98.pdf} 0.096
{/agents/ standards/} 0.096
{/agents/news/} 0.096
Other URLs <0.09

system automatically constructs an appropriate SQL query. The generated query is piped to
SQLPLUS, which runs the query saved in the file and sends the result back to the interface.
The result page shows the query that was used by the database along with the retrieved data.
It also shows a count of the records retrieved. The web interface is very simple and user
friendly. The users do not need to be aware of the underlying database architecture or SQL
to use this tool optimally.

5.1. Ad-hoc analysis

The web interface allows users to perform ad-hoc analysis of both the web log warehouse
and the mining results. By integrating both the components on a single tool, we have made
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it easier to analyze the access trends. A large number of analysis queries were given to the
system and it produced correct results. We present some examples next.

Figures 4 and 5 show the web based query interface of the log analysis part of our system
to the warehouse. The interface provides pull down menus and fill in fields that allow rollup,
drill down and slicing queries. For example, for the Status dimension, users can query for all
status values, or can drill down and query for log entries whose status values fall in HTTP
response ranges such as 100s, 200s etc. The user can also query for individual status codes
like 200 (success) or 404(error). This system can also handle HTTP 1.1 error codes and
Methods. By default, the attributes have ‘%’ in their fields, which is the wildcard character
that aids in ad-hoc queries. E.g. If we want to query on the frequency of users accessing our
web site from educational institutions, then we would enter ‘%.edu’ on the Domain field
of our interface. Or by entering ‘%Jun 1998’ on the date field we can retrieve all records
that were logged in June 1998. Figure 4 illustrates such an example. Thus arbitrary OLAP
queries can be performed interactively by the user.

5.2. Web interface for the warehouse

Figures 4 and 5 show the web interface of our data warehouse. The interface provides pull
down menus and fill in fields that allow rollup, drill down and slicing queries. For example,
for the Status dimension, users can query for all status values, or can drill down and query
for log entries whose status values fall in HTTP response ranges such as 100s, 200s etc.
The user can also query for individual status codes like 200 (success) or 404(error). This
system can detect HTTP 1.1 error codes and Methods. By default, most of the attributes
have ‘%’ in their fields. This is the wildcard character for Oracle database that aids in ad-hoc
queries. E.g. If we want to query on the frequency of users accessing our web site from
educational institutions, then we would enter ‘%.edu’ on the Domain field of our interface.
Or by entering ‘%Jun 1998’ on the date field we can retrieve all records that were logged
in June 1998. Figure 4 illustrates such example. Thus arbitrary OLAP like queries can be
performed interactively by the user. Since the design of our database is hidden from the
users, they can query the data as if they were trying to retrieve information from a transac-
tional database. Currently, we query just one fact table in our database. We are enhancing
our warehouse to query more fact tables that would aid users in generating more ad-hoc
queries.

The Users who are aware of the database structure have additional flexibility of writing
on-the-fly SQL queries to do arbitrary analyses (figure 5). This feature of our tool also allows
dicing queries (e.g. ‘select * from whole log fact1 where (doc size>=200 and doc size <

1000);’).
The web interface is very simple and user friendly. The users do not need to be aware of

the underlying database architecture or SQL to use this tool optimally.
Figures 6–8 show the web interface to our mining data. The interface provides pull down

menus and fill in fields that allow users to query the clusters, sessions and the URLs for
each application log. By default, most of the attributes have ‘%’ in their fields. This is
the wildcard character for Oracle database that aids in ad-hoc queries. E.g. If we want to
query on the clusters of users accessing our web site from educational institutions, then we
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Figure 4. Web interface: User selects the attributes to be displayed.
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Figure 5. Web interface: User enters an SQL query. The tool ignores the entries in the attribute.
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Figure 6. Interface to the data mining component.

Figure 7. Query output for the sessions-URL part.
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Figure 8. Query output for the cluster-URL part.

would enter ‘%.edu’ on the Domain field of our interface. Or by entering ‘0’ on the Cluster
Number field we can retrieve all URLs that belong to the sessions of that cluster. Figure 8
illustrates such example. Thus arbitrary OLAP like queries can be performed interactively
by the user.

6. Future enhancements

Currently, we have populated the fact table directly from the web logs. We can augment
our system by loading the data into the transactional database, and then populate the fact
tables from it. Stored procedures or triggers could be written to populate specific fact tables
with web log as they get added, or in a batch mode. By creating such a transactional
database, the pre-processing step will be automated to a large extent, and more dynamic
“monitoring” can be done by the system automatically. Features like alerts and warnings can
be easily incorporated in this architecture. For example, access patterns that denote security
violations would be identified as they happen by the system (e.g. the abuse of the CGI phf
script, or attempted buffer overflow attacks). If a security violation is taking place, the site
administrator can be alerted or the web site could be made inaccessible. This proactive
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feature of our architecture can aid in more efficient web site administration. However this
requires modifying the logging module in the web server to store access logs directly into
the database.

Finally, our experimentation with the web mining was done with single (most reasonable)
values for many of the tuneable parameters, such as the time delta involved in sessionizing
logs, confidence and support for associations, initializing of the medoids in clustering etc.
Clearly, it would be interesting to experiment with and see the effect of these parameters
on the eventual results.
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