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Abstract. It is well understood that Mobile Ad Hoc Networks (MANETs) are extremely 
susceptible to a variety of attacks, and traditional security mechanisms do not work well. Many 
security schemes have been proposed that depend on cooperation amongst the nodes in a 
MANET for identifying nodes that are exhibiting malicious behavior such as packet dropping, 
packet modification, and packet misrouting. We argue that in general, this problem can be 
viewed as an instance of detecting nodes whose behavior is an outlier when compared to others. 
In this paper, we propose a collaborative outlier detection algorithm for MANETs that factors 
in a nodes reputation. The algorithm leads to a common outlier view amongst distributed nodes 
with a limited communication overhead. Simulation results demonstrate that the proposed 
algorithm is efficient and accurate. 
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1 Introduction 

Outliers are generally defined as data points that are very different from the rest of 
the data with respect to some measure [1, 2]. Outlier detection can be used for two 
purposes. The first is to eliminate outliers to potentially reduce the noise in the data. 
The other usage of outlier detection is to expose the outliers for further analysis, for 
example in intrusion detection [3, 4], fraud analysis [5] and habitat monitoring for 
endangered species [6]. 

Several factors make Mobile Ad Hoc Networks (MANETs) extremely susceptible to 
various attacks such as intrusions [7], greyholes [8], and blackholes [9]. First of all, data in 
MANETs are transmitted via RF broadcasts, which can be easily eavesdropped on or even 
modified. Second, nodes in MANETs have limited power supply, and consequently their 
performance is severely degraded when power is exhausted. Third, when they are used for 
security and military purposes, nodes in MANETs are vulnerable to compromise and 
manipulation by adversaries. Hence, it is obvious that misbehavior detection should be an 
indispensable component of any security solution that aims to safeguard the mobile ad hoc 
networks. The misbehavior typically observed includes dropping of packets, misroutes, 
false Requests/Clears in the MAC layer etc. However, many of these events can also 
happen due to environmental and mobility related reasons, not just malicious intent. Most 



of the current misbehavior detection mechanisms rely on a predefined threshold to decide 
if a node’s behavior is malicious or not. However, it is rather difficult to set an appropriate 
threshold because the network is quite dynamic and unpredictable, and environmental 
conditions such as ambient RF noise can vary. In contrast, we do not need to rely on any 
previous knowledge to find anode that is an outlier with respect to a given observable. 
Given the fact that a malicious node will behave differently when compared to other 
nodes, we can detect the node misbehaviors by means of outlier detection.  

In this paper, we propose and evaluate a collaborative, gossip-based outlier detection 
algorithm for mobile ad hoc networks. In our approach, as in many others [22,24,28,33], 
all the nodes in MANETs observe the behavior of their neighbors. Unlike most existing 
approaches however, each node calculates its local views of outliers amongst the 
neighboring nodes. In the next step, the nodes exchange their local views with their 
immediate neighbors. Then they will update their local views if they find that outlier 
lists from other nodes are more accurate than theirs. This process continues, with each 
node updating its neighbors when its current view of the outliers changes, and halts 
when there are no more changes. Some important features of our algorithm are: (1) it is 
compatible with different outlier detection heuristics; (2) it is resilient to attempts by 
misbehaving nodes to defeat it; (3) it is resilient to the motion and failure of nodes in 
MANETs; (4) it is efficient in terms of communication overhead; and (4) all the nodes 
will ultimately have a coincident view of outliers unless the nodes change their 
behaviors very fast. 

2 Related Work 

2.1. Outlier Detection 

Outlier detection is a hot topic in the data mining research, and various definitions of 
outliers have been proposed in the literature. Our proposed algorithm takes two popular 
distance-based definitions into account: (1) distance to the nearest neighbor (NN) [10], 
and (2) average distance to k nearest neighbors (k-NN) [11]. 

One major motivation of outlier detection research is to efficiently identify outliers 
in a large-scale database [10, 12, 13, 14]. Nevertheless, the situation in mobile ad hoc 
networks is significantly different from that in large-scale central databases: in mobile 
ad hoc networks, data are generated and stored in scattered nodes and transmitted via 
wireless channels, which are unreliable and bandwidth and power-constrained. Outlier 
detection methods for the large-scale databases cannot be seamlessly used in mobile 
ad hoc networks because they will cause a large communication overhead. 

Several outlier detection algorithms have been recently proposed for wireless 
sensor networks (WSNs) [6, 19, 20, 21]. Palpanas et al. propose a model-based outlier 
detection algorithm in sensor networks [20]. In their algorithm, normal behaviors are 
first characterized by predictive models, and then outliers can be detected as the 
deviations. Subramaniam et al. [21] propose an online outlier detection mechanism 
for sensor networks. In this mechanism, every sensor node will keep a sliding window 
of the historic data and approximate the data distribution to detect the outliers. In a 
recent paper by Sheng et al. [6], a histogram-based outlier detection algorithm is 



studied, and sensor data distribution is estimated by the histogram-based method. This 
method can reduce communication cost under two different detection schemes. 
Moreover, a histogram refinement technique for some crucial portion of data 
distribution has been applied to obtain more information about outliers. Branch et al. 
[19] propose an in-network outlier detection scheme to detect the outliers based on 
data exchange among neighbors. In this scheme, all the sensor nodes will first 
calculate the local outlier(s). Then some messages, which contain the local outlier(s) 
as well as some other supportive information, will be exchanged among all the nodes. 
The message exchanging process will not halt until all the nodes have the same global 
view of outlier(s). Our proposed outlier detection algorithm is somewhat similar to the 
method proposed by Branch et al. However, there are two significant differences 
between the two methods. First, the method by Branch et al. does not consider the 
mobility of the nodes, whereas our proposed method takes the mobility issue in 
consideration. Second, there is no malicious behaviors in the discussion of the method 
by Branch et al., i.e., the nodes will not deliberately fabricate fake local views or alter 
incoming local views in their method. On the contrary, we have considered the 
malicious behaviors of the nodes, and applied the knowledge of trust and reputation 
as the countermeasure to the malicious behaviors. 

2.2. Misbehavior Detection in Mobile Ad Hoc Networks 

In mobile ad hoc networks, all network operations such as routing and forwarding 
rely on cooperation of the nodes because there is no centralized infrastructure. Hence, 
if some nodes choose not to participate in the network operations, then these network 
services may be incomplete or even unavailable. These non-cooperative nodes are 
generally called selfish nodes [22]. Besides selfishness, ad hoc network misbehavior 
may also be conducted by malicious nodes, which aim to harm the whole ad hoc 
networks. A malicious node can perform different attacks to either compromise 
individual node(s) or degrade the performance of the overall network [23]. The 
existence of selfishness and malicious behaviors has motivated research in the area of 
misbehavior detection for mobile ad hoc networks. 

Intrusion Detection Systems (IDS) are an important means to detect node 
misbehavior. Several mechanisms have been proposed to build IDS on individual 
nodes due to the lack of a centralized infrastructure [24, 25, 26, 27]. In these 
mechanisms, every node is equipped with an IDS, and each IDS is assumed to be 
always on, which is not energy-efficient given the limited battery power of nodes in 
ad hoc networks. On the other hand, Huang et al. [28] propose a cooperative intrusion 
detection framework in which clusters are formed in ad hoc networks and all the 
nodes in one single cluster will cooperate in intrusion detection operation. 

Routing misbehavior is another kind of malicious activity that is common in ad hoc 
networks. When an adversary aims to degrade the network service of ad hoc network, 
he can try to compromise some nodes in the ad hoc network, and use them to disturb 
the routing service so as to make part of or the entire network unreachable. Marti et 
al. [22] introduce two related techniques to detect and isolate misbehaving nodes, 
which are nodes that do not forward packets. In the “watchdog" approach, a node 
forwarding a packet verifies whether the node in the next hop also forwards it or not. 



If not, a failure tally is incremented and misbehavior will be recognized if the tally 
exceeds a certain threshold. The “pathrater" module then utilizes this knowledge of 
misbehaving nodes to avoid them in path selection. There are also some other 
proposed solutions that aim to handle the routing misbehavior [29, 30, 31]. 

3 Gossip-based Outlier Detection Algorithm 

In this section, we describe our gossip-based distributed outlier detection algorithm. 
The goal of the algorithm is to find the top k outliers in terms of some observed 
behaviors (such as packet drops or misroutes) from all the nodes in mobile ad hoc 
networks (Here k is a user-defined parameter). The algorithm leads to a coincident 
global view of the top k outliers in all the nodes as long as these nodes do not change 
their behavior significantly during the convergence time of the algorithm. By using 
constrained gossiping, the algorithm avoids flooding the network. 

3.1. Algorithm Description 

The proposed outlier detection algorithm contains the following four steps, namely 
local view formation, local view exchange, local view update, and global view 
formation. We have adopted two local view update methods in our algorithm: one is 
the simple averaging method, in which all the local views are merged by simply 
averaging them; the other method is the trust-based weighted method, in which the 
local views are merged incorporating the trust in other nodes. 

The first step of our algorithm is the formation of local views. The nodes monitor 
and record the possible malicious behaviors of other nodes within their radio range. 
Each node generates its local view of outliers based on their own observations. 

Once all the nodes form their local views, they will broadcast the local views to all 
of their immediate neighbors, i.e., all the nodes that are one hop away from them. 
Upon reception of a local view from another node, the recipient will update its local 
view based on the received view. The first local view update method we employ is the 
simple averaging method, which is shown in the Subroutine 1 below. Here ni denotes 
the i-th node in the mobile ad hoc networks. Vi denotes the initial view of ni. Vi’ 
denotes the updated view of ni. 
 
Subroutine 1 Update of Local View for node i Using the Simple Averaging Method 
Input of ni: Vi 
Output of ni: Vi’ 
Upon reception of Vj from node nj: 
if Vj≠Vi 
—merge the Vi and Vj according to the following rules: 
——if node m is in BOTH Vi AND Vj, then calculate the average of the corresponding 

columns for node m in BOTH Vi and Vj, and store the average of node m to an 
intermediate list TEMPi as an entry. 



——if node m is in EITHER Vi OR Vj, but NOT BOTH, then add a virtual entry of 
node m to the view that previously does not contain m, and set all the columns of 
this virtual entry as 0. Then calculate the average between the true entry of m and 
virtual entry of m for each column, and then store the average values of node m 
to an intermediate list TEMPi as an entry. 

—calculate the top k outliers from TEMPi, and assign these k top outliers to Vi’. 
—broadcast Vi’ to all of its immediate neighbors (number of hop = 1). 
else keep Vi unchanged, and not send any message out 
 

The averaging is necessary due to the existence of malicious nodes that may 
produce false views to mislead other nodes. Suppose a malicious node randomly 
generates some entries reporting large misbehaviors for a good node, and sends this 
false view to others. If the recipients simply take the false view it will miss the true 
outliers. Averaging the information from all neighbors helps avoid this. Another 
heuristic is that if a recipient receives information about any node that has never been 
seen before, it will use only half of the reported value in computing the average. In 
other words, it will treat this new information conservatively. On the other hand, the 
true outliers will not be influenced by either of the heuristics because several nodes 
will report their observed outlier values. Of course, this scheme will be vulnerable in 
a locality where most of the nodes are malicious, but in such circumstances most 
misbehavior detection algorithms fail anyway.  

Another possibility is to use the trust-based weighted method during the local view 
update process. Unlike the simple averaging method, the trust-based weighted method 
relies on the reputation of a node to determine how to merge the view it sends out 
with the local view of the receiver. The trust-based weighted method is listed in the 
Subroutine 2 below. Again, ni denotes the i-th node in the mobile ad hoc networks. Vi 
denotes the initial view of ni. Vi’ denotes the updated view of ni. wik denotes the 
weight of local view sent from node k to node i. 

 
Subroutine 2 Update of Local View for node i using the Trust-based Weighted Method 
Input of ni: Vi 
Output of ni: Vi’ 
Upon reception of Vk from node nk: 
if Vj≠Vk 
—merge the Vi and Vk according to the following rule: 
——if node m is in BOTH Vi AND Vk, then calculate the weighted average WAi of the 

corresponding columns for node m in BOTH Vi and Vk according to the following 
formula: 

( ) ( )ikiikikiiii wwmwmwWA +∗+∗=  
and then store the weighted average WAi of node m to an intermediate list TEMPi 
as an entry. 

——if node m is in EITHER Vi OR Vk, but NOT BOTH, then we simply set mi or mk 
to be zero, and the calculation of WAi follows the formulae below: 
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and then store the weighted average WAi of node m to an intermediate list TEMPi 
as an entry. 

—calculate the top k outliers from TEMPi, and assign these k top outliers to Vi’. 
—broadcast Vi’ to all of its immediate neighbors (number of hop = 1). 
else keep Vi unchanged, and not send any message out 

 
Note that unlike traditional gossiping, the more the nodes that accept the same view 

of outliers, the less the number of new messages that are sent out. Ultimately, when 
all the nodes hold the same view of outliers, the algorithm will halt, and the view that 
all the nodes hold is regarded as the global view of outliers. 

The pseudo-code of the algorithm is given in Table1 and uses the same notation as 
described earlier. In addition, GV denotes the ultimate global view. 

 
Algorithm 1 Gossip-based Outlier Detection 
Input of ni: Vi 
Output of ni: GV 
For each node ni:  
broadcast Vi to all of its immediate neighbors 
Upon reception of Vj from node nj:  
invoke Subroutine1 OR Subroutine 2 
When no more message exchange occurs: 
∀k, GV = Vk 

 

3.2. Trust Establishment and Management 

Several trust and reputation management schemes have been proposed in the past 
decades [34, 35, 36].Any of them can be used in our system. For our experiments, we 
chose a simple approach that starts with a default trust for unknown nodes, and 
modifies it upon each encounter with that node. 

Initially, we define all the trust value to be 1. Whenever the node observes any 
misbehavior of its neighbors, the node reduces the trust value of the entry for the 
misbehaving neighbor according to the punishment factors. We set different reduction 
factors for different misbehaviors when we adjust the trust value. For example, packet 
dropping and packet modification are both misbehaviors. However, packet dropping 
may be caused either by intentional malicious behavior or by power failure.  On the 
other hand, when we find that a node is modifying the incoming packets, we can 
safely conclude that it is malicious. Hence, we set a higher reduction factor for packet 
modification than packet dropping.  

During the local view update process, when a node i gets local view from its 
neighbor k, the node uses the trust value of its neighbor as the weight wik, and its own 
weight wii will always be 1. In this way, we apply the knowledge of trust and 
reputation to the local view update process, and we can ensure that the fake local 
views spread by the malicious nodes will not influence the formation of the global 
view.  



3.3. An Example Scenario 

 
To help better understand the proposed algorithm, an example is presented in Fig. 

1. In Fig. 1a, node A observes all the misbehaviors of it neighbors, and then forms its 
local view based on its own observation. Node A will also construct its initial trust 
table based on its observation to its neighbors. All other nodes are simultaneously 
collecting their neighbors’ misbehavior information, and generate their local views as 
well as trust tables. The outlier candidates in the local views are sorted according to 
the distances between their nearest neighbors and themselves, and the top three 
outliers are picked in this example. We note that as long as all the nodes are observing 



the same set of behaviors, our approach can handle anything defined as a 
misbehavior. 

The next step is the initial exchange of the local views, which is demonstrated in 
Fig. 1b. In this step, all the nodes send their local views to all of their immediate 
neighbors, which are defined as the nodes that are located one hop away from them. 
From Fig. 1b we find that the local views of node A and node B are not consistent. 

Fig. 1c exhibits the view update and optional rebroadcast step. Both node A and 
node B update their local views according to the view they have received. We note 
that node A applies the knowledge of trust to the local view update process. In this 
way, node A ensures that its updated local view contains the least fake information 
from node B, who is likely to be a malicious node since its trust value is quite low. 
Then, they rebroadcast their updated views to all the immediate neighbors. We should 
also be aware that node B may send out any arbitrary view to its immediate neighbors 
regardless of the true updated view it gets, because node B seems to be malicious. 

The view update and optional rebroadcast process will continue until all the nodes 
hold the same view of the top three outliers, and this final state is shown in Fig. 1d. 
We find from Fig. 1d that the composition of the outliers has been significantly altered 
for both node A and B when compared to their initial views.  

4 Evaluation 

In this section, we present the experimental evaluation results to verify the 
performance of the algorithm. There are two goals for the performance evaluation: the 
first is to compare the performance of our algorithm with that of a centralized outlier 
detection algorithm; the other is to observe the performance of our algorithm under 
different parameter configurations.  

4.1. Experimentation Setup 

We use Glomosim 2.03 [32] as our simulation platform, and the simulation setup is 
shown in Table I. We use three parameters to assess the correctness and efficiency of 
our algorithms: Correctness Rate (CR), Total Number of Packet for Outlier Detection 
(TNPOD), Communication Overhead (CO), and Convergence Time (CT). They are 
defined as follows: 

outliers of  viewglobal  a form  taken to
network in the Packets ofNumber  

DetectionOutlier for  Packets of  
Outliers ofNumber  

Found Outliers  ofNumber 

consistentTimeCT
Total

TNPODCO

NumberTotalTNPOD
Total

TrueCR

=

=

=

=

 



 
Here we want to keep track of CO since we want to see the ratio of network traffic 

that outlier detection consumes over the whole network traffic. However, we also 
have interest in exploring the possible relationship between TNPOD and the number 
of nodes in the network.  

We compare the performance of our collaborative outlier detection algorithm with 
that of a centralized algorithm. All nodes send their observations of misbehaviors to a 
designated fusion node, which then calculates the global outliers and floods the results 
out to all nodes in the network. An example of the centralized algorithm is shown in 
Fig 2. 

 

4.2. Experimentation Results 

The first series of the experiments aim to compare the performance of our 
algorithm with that of the centralized algorithm. We use two different definitions to 
the outliers, which are distance to the nearest neighbor (NN) and average distance to k 
nearest neighbors (k-NN) in our experiments. All the experiments are simulated for 
thirty runs. The results are shown in Fig. 3 and Fig. 4. 

TABLE 1 
SIMULATION SETUP 

Parameter Value 

Simulation area 150m × 150m, 300m × 300m, 
450m × 450m, 600 m × 600m 

Number of nodes 15, 25, 50, 100, 200 
Transmission range 45m, 60m, 90m, 120m 
Simulation duration 900 s 

Mobility pattern of nodes random waypoint 
Maximum motion speed 5m/s, 10m/s, 20m/s 

Number of bad nodes 5 



 
Fig. 3.  CR of Various Algorithms in a 50-node MANET 

 

 
Fig. 4.  CO of Various Algorithms in a 50-node MANET 

From Fig. 3 we find that the Correctness Rate of our algorithm is higher than that 
of the centralized algorithm. This is true because of the robustness introduced by local 
gossiping in our algorithm. The centralized algorithm requires reliable 
communication links between the fusion node and other nodes, which cannot be 
guaranteed due to the node mobility and limited radio range. Moreover, the 
misbehavior of some nodes will also prevent some observations from successful 
delivery to the fusion node. Hence, the calculation of the global outliers ends up being 
based on a subset of the observations that the fusion node gets. In contrast, our 
algorithm is more resilient to various misbehaviors. By use of gossiping method, a 
node can receive the observations of its neighbors through different routes. Even if 
some of the observation messages are blocked by malicious nodes, a node may still 
get the blocked observations that are forwarded by some other nodes in its 
neighborhood. We also note that the Correctness Rate of NN is slightly higher than 
that of k-NN. By definition, k-NN finds k distinct supporting points to identify one 
outlier, whereas NN simply looks for the nearest neighbor to get one outlier. Hence, 



k-NN is more prone to the noise brought by multiple supporting points, and 
consequently it will produce a lower Correctness Rate that NN.  

Fig. 4 shows that while our algorithm produces higher communication overhead 
than the centralized algorithm, it is still within 5% of the total messages. Given that 
our algorithm produces higher correctness rate, and is more resilient to misbehaviors, 
the communication overhead of our algorithm is acceptable. 

Fig. 5. CR with Different Amounts of Nodes (Area: 600m ×600m, Radio Range: 
120m, Speed: 5m/s) 

 
Fig. 6. CO with Different Amounts of Nodes (Area: 600m ×600m, Radio Range: 

120m, Speed: 5m/s) 



 
Fig.7. CT with Different Amounts of Nodes (Area: 600m ×600m, Radio Range: 

120m, Speed: 5m/s) 

 
Fig. 8. CR with Different Simulation Areas (Num. of Nodes: 50, Radio Range: 

60m, Speed: 5m/s) 

 
Fig. 9. CO with Different Simulation Areas (Num. of Nodes: 50, Radio Range: 

60m, Speed: 5m/s) 



 
Fig. 10. CT with Different Simulation Areas (Num. of Nodes: 50, Radio Range: 

60m, Speed: 5m/s) 

 
Fig. 11. CR with Different Maximum Motion Speed (Area: 600m ×600m, Num. of 

Nodes: 100, Radio Range: 60m) 

 
Fig. 12. CO with Different Maximum Motion Speed (Area: 600m ×600m, Num. of 

Nodes: 100, Radio Range: 60m) 



 
Fig. 13. CT with Different Maximum Motion Speed (Area: 600m ×600m, Num. of 

Nodes: 100, Radio Range: 60m) 

 
Fig. 14. CR with Different Radio Ranges (Num. of Nodes: 100, Area: 600m 

×600m, Speed: 5m/s) 

 
Fig.15. CO with Different Radio Ranges (Num. of Nodes: 100, Area: 600m 

×600m, Speed: 5m/s) 



 
Fig. 16. CT with Different Radio Ranges (Num. of Nodes: 100, Area: 600m 

×600m, Speed: 5m/s) 

 
Fig. 17. CR with Different Attack Strategies (Num. of Nodes: 100, Area: 600m 

×600m, Range: 90m, Speed: 5m/s) 

 
Fig. 18. CR with Different Attack Strategies (Num. of Nodes: 100, Area: 600m 

×600m, Range: 90m, Speed: 5m/s) 



 
Fig. 19. CT with Different Attack Strategies (Num. of Nodes: 100, Area: 600m 

×600m, Range: 90m, Speed: 5m/s) 
The second series of experiments are designed to observe the performance of our 

algorithm under different parameter configurations. We have compared the 
performance of our algorithm under the following four conditions: different number 
of nodes, different simulation areas, different radio ranges, and different adversary 
strategies. The experimentation results are displayed in Fig. 5 through Fig. 19.  

There are two adversary strategies that are used in our experiments. The first is 
called the Comprehensive strategy, in which the adversary simultaneously conducts 
several kinds of misbehaviors. This is used as a default in our simulations. In the 
second strategy, which is called the Dedicated strategy, the adversary conducts 
merely one kind of misbehavior at a time. Whereas most of the studies in the security 
area make the assumption that an adversary conducts one malicious behavior at a 
time, a recent study has shown that there may be cross-layer attacks [33] that involve 
misbehaviors at several layers of the protocol stack. In the Dedicated attack strategy, 
the malicious behaviors are less distinctive compared to other normal behaviors. In 
addition, the adversary may switch from various malicious behaviors from time to 
time, which makes it harder to keep track of each malicious behavior the adversary 
has conducted. Therefore, it is more difficult to identify an adversary if it deploys the 
dedicated attack strategy. We run experiments to compare the behavior of our 
approach against both. 

From Fig. 5 through Fig. 7, we find that with an increase in the number of the 
nodes, the correctness rate increases, and the communication overhead also rises for 
both simple averaging method and trust-based weighted method. This is true because 
the information gathered to identify the outliers is generally more accurate if there are 
more observers. At the same time, more messages need to be exchanged amongst all 
the nodes to reach a consistent view when there are a larger amount of nodes. We also 
note that the trust-based weighted method yields better performance than the simple 
averaging method. Through the use of trust in the local view update process, a higher 
correctness rate can be produced in a shorter period of time together with a lower 
communication overhead  

Fig. 8, Fig. 9, and Fig. 10 illustrate the results with different simulation areas. It is 
obvious that the correctness rate decreases as we increase the simulation area for the 
both methods. We also find that the communication overhead is reduced as the 



simulation area becomes larger. Since the nodes have a lower probability to 
communicate with other nodes if the simulation area becomes larger, the correctness 
rate will surely become lower. Moreover, there will also be less communication 
overhead. As we have expected, the trust-based weighted method can also achieve 
better performance than the simple averaging method in different simulation areas. 

The experimental results under different node motion speeds are demonstrated in 
Fig. 11 through Fig. 13. We find that with the increase to the maximum speed of 
nodes, the performance for both methods decreases. This is true because it is harder 
for the nodes to exchange their views when they are moving in a higher speed. 

Fig. 14 through Fig. 16 shows how the experiment results differ with respect to 
different radio ranges. We conclude that the correctness rate significantly decreases as 
the radio range decreases. When it is more difficult for the nodes to exchange their 
local views when the radio range is smaller, the correctness rate of the final global 
view will surely be degraded. However, even if the radio range has been halved, the 
trust-based weighted method still yields a good performance. 

In Fig. 17 through Fig. 19, the experiment results with two different attack 
strategies are discussed. We find that the algorithm will achieve a slightly higher 
correctness rate when the dedicated strategy is deployed. It is also clear that the 
communication overhead for the dedicated strategy will be lower than that for the 
comprehensive strategy. Nevertheless, our algorithm can achieve a satisfactory 
performance with both of the attack strategies. 

5 Conclusion 

In this paper, we propose a collaborative outlier detection algorithm for securing 
mobile ad hoc networks. The gossip-based outlier detection algorithm can help us 
identify the outliers, which are generally the nodes that have exhibited some kind of 
abnormal behaviors. Given the fact that benign nodes rarely behave abnormally, it is 
highly likely that the outliers are malicious nodes.  Simulation results show that our 
algorithm is efficient and accurate with a small communication overhead. 
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