

An Efficient Method for Probabilistic Knowledge Integration*

Shenyong Zhang1,2, Yun Peng2, and Xiaopu Wang1

1Department of Astronomy and Applied Physics
University of Science and Technology of China, Hefei, Anhui 230026

2Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County, Baltimore, MD 21250

{syzhang, ypeng}@umbc.edu, wxp@ustc.edu.cn

Abstract1

This paper presents an efficient method,

SMOOTH, for modifying a joint probability distri-
bution to satisfy a set of inconsistent constraints. It
extends the well-known “iterative proportional
fitting procedure” (IPFP), which only works with
consistent constraints. Comparing with existing
methods, SMOOTH is computationally more effi-
cient and insensitive to data. Moreover, SMOOTH
can be easily integrated with Bayesian networks
for Bayes reasoning with inconsistent constraints.

1. Introduction

In this paper we consider the problem of modi-
fying a joint probability distribution (JPD) to sat-
isfy a set of low-dimensional distributions called
constraints. We discuss this problem in the context
of probabilistic knowledge integration [7, 8] where
the JPD is considered as a probabilistic knowledge
base (PKB) and the constraints represent knowl-
edge from other sources. Similar problems also
exist in probabilistic reasoning where constraints
are taken as evidences to alter our beliefs (or poste-
riors) of other variables [5].

Let {1, 2, , },V n V= K X a set of discrete ran-
dom variables for a chosen domain, and the
initial JPD over

(0)Q
.VX Also let

2 k
P be

a set of constraints where each
1
, , ,{ }P P P= K

jP is a low-
dimensional PD over variables .,jE

jX E V⊆ The
goal is to integrate Ρ into .

(0)
Q

The property set,
j

{ | }jE

jS Q , is the set of
all JPDs over

Q P= =
VX that satisfy constraint

j
P ∈P, and

the solution set, 1 ,
j

kS S= I

j= is the set of all JPDs
that satisfy all constraints in P. Then Ρ is consis-
tent if and inconsistent otherwise. ,S ≠ ∅

* This work was supported in part by NIST award
60NANB6D6206 and the China Scholarship Council (CSC).

Integrating consistent constraints into (0)Q can
be accomplished by the well-known algorithm it-
erative proportional fitting procedure (IPFP) [4, 7].
The procedure converges to a JPD in S that mini-
mizes the distance to (0)Q (measured by Kullback-
Leibler distance, also known as I-divergence).
However, when Ρ is inconsistent, we cannot use
IPFP to compute the integrated JPD because in this
situation IPFP does not converge but rather goes
into cycles over points in jS [2, 3, 8].

Vomlel has proposed two methods that extend
IPFP to deal with inconsistent constraints. The first
one, GEMA [8], generalizes the concept of expec-
tation maximization, and the second one, CC-IPFP
[3], is based on convex mixing of distributions
generated by the standard IPFP. The time perform-
ance of GEMA is extremely sensitive to both the
initial JPD and the constraints, and CC-IPFP is
often very slow to converge. Also, these two algo-
rithms directly manipulate full joint distributions,
and thus can not take advantages of other probabil-
istic models such as the Bayesian networks (BNs).

To address these limitations, we propose a new
algorithm called SMOOTH which works with both
consistent and inconsistent constraints. Before pre-
senting this new method in Section 3, we provide a
brief background in Section 2. Section 4 reports the
experiment results and compares SMOOTH with
other methods. Section 5 concludes with directions
for future research.

2. IPFP and Methods for Knowledge
Integration with Inconsistent Input

Iterative fitting proportional procedure (IPFP)
was first published in [4] in 1937. Its convergence
proof was given in [1] based on I-divergence ge-
ometry. The main idea of IPFP is as follows.

Given a JPD and a set of consistent con-
straints after iteratively modi-

(0)Q
1 2{ , , , },kP P P= KΡ

fying the JPD using Eq. (1), IPFP converges to the
limit JPD which is an I-projection of (0)Q on
the solution set S, i.e. among all has the
smallest I-divergence (or KL distance) to

*Q
,Q S∈ *Q

(0) .Q

1

1

()
() ()

()

j

j j

E

j

i k j E E

i k j

i k j

P x
Q x Q x

Q x
⋅ + −

⋅ + −

⋅ + = (1)

where is the iteration index. 1, 2,i = K
For clarity, in the rest of this paper we use

j
 (borrowed from [7]) to denote the I-

projection of Q on
(,)Q Sπ

jS . It can be shown that
1 ji k j i k j⋅ + ⋅ + − in Eq. (1). In other words,

IPFP iteratively projects the current JPD on the
property set of the next constraint. We call each of
these projections a fitting step since it modifies the
current JPD to fit the next constraint.

(,)=

Q Sπ

Q Q Sπ

To deal with inconsistent constraints, GEMA
takes two steps in each iteration. Take the ith itera-
tion that starts with JPD (1)i kQ − ⋅ as an example. In
Step 1, it first uses Eq. (1) to compute k I-
projections (1) ji k− ⋅ for each of the k con-
straints

(,)
jP in P, and then takes a weighted sum of

these k I-projections to obtain a distribution

(1)1
(,

k

j i k jji kQ w Qπ
− ⋅=⋅ = ∑%)S

kw w∈ Σ =

,

where 1j j j= . In Step 2, GEMA
first computes k marginals

1(0,1),
jP (with domain% jE

X)
from i k , then performs the standard IPFP on

(1)i k using all of these k
Q ⋅
%

Q − ⋅ jP% as constraints to
obtain i k .It has been shown that GEMA con-
verges to a distribution which has a minimum I-
aggregate , the weighted sum of I-divergence to
all of the constraints in P:

Q ⋅

Ψ

11(|| , ,) (||)j
k E

j jjkQ P P w I P Q
=

Ψ = ∑K .

CC-IPFP, another algorithm proposed by Vom-
lel in [10], takes a different approach. At each itera-
tion, it first computes the I-projection on jS , then
mixes it with the current JPD using Eq. (2)

(1)
j

j

Ei i i i i

i

P
Q Q Q

Q
λ λ= − + . (2)

where and i(1) mod 1,j i k= − + λ monotonically
decreases towards 0. It was conjectured that this
method would converge to a distribution that mini-
mizes the sum of total variations to all constraints.

Experiments (see Tables 2 - 4 in Section 4)
show that the performance of GEMA is very sensi-
tive to the data. For some combinations of (0)Q and

 it converges within a few hundreds of iterations,
but for other combinations, millions of iterations
are needed. On the other hand, CC-IPFP converges
uniformly but very slowly.

Ρ

3. SMOOTH

 One thing in common for both GEMA and CC-
IPFP is that they only modify the JPDs while keep-
ing the constraints unchanged through the itera-
tions. Alternatively, one can make the modification
bi-directional: at each iteration, not only the JPDs
are pulled closer to the constraints but also the con-
straints are pulled towards the JPDs. By doing so,
the inconsistency among the constraints is gradu-
ally reduced, which may lead to a faster and more
stable convergence. Based on this idea we devel-
oped our new method SMOOTH.

3.1. The Algorithm SMOOTH

 SMOOTH consists of two phases. Phase 1 per-
forms the standard IPFP using all of the original
constraints in Ρ . It stops when the process con-
verges (for consistent constraints) or starts to cycle
(for inconsistent constraints). Phase 2 follows Eqs.
(3) and (4) below. It differs from Phase 1 in that,
before doing a standard IPFP fitting step,
SMOOTH first modifies constraint to pull
it closer to the current JPD.

(, 1)j iP −

 (,) (, 1) (1) 1(1) jE

j i j i iP P Qα α k j− − ⋅ + −
= − + (3)

where .(0,1)α ∈ Then the current JPD is modified
by the new constraint generated by Eq. (4).

(1) 1

(,)
(1) (1) 1 .

jE

i k j

j i
i k j i k j

P
Q Q

Q
− ⋅ + −

− ⋅ + − ⋅ + −= (4)

From Eq. (3) we can see that the modified con-
straint is a mixture of the previous constraint (,)j iP

(, 1)j iP − and the marginal of the current JPD
(1) 1

jE

i k jQ
− ⋅ + −

.
Note that the distance between (1) 1 and jE

i k jQ
− ⋅ + − jP

is gradually reduced to 0 by IPFP when the con-
straints are consistent. However, for inconsistent
constraints, this distance cannot be further reduced
by IPFP at the end of Phase 1. Since

(1) 1i k j
Q

− ⋅ + −
is the

result of applying all other constraints, we can use
its distance to

j
E

jP as a measure of inconsistency in
the constraints. Since Eq. (3) pulls (, 1)j i closer to

(1) 1i k j

P −
j

EQ
− ⋅ + −

it reduces or smoothes the degree of incon-
sistency among constraints. This is the reason we
call our algorithm SMOOTH.

We call α in Eq. (3) the smooth rate because it
controls the speed of smoothing. Note that Eq. (3)
pulls (,)j i away from (, 1)j iP P − , causing some infor-
mation loss of the original constraints. To mini-
mize the information loss before it gets a chance to
be integrated,α is set to a very small value.
 The algorithm SMOOTH is shown below.

Algorithm SMOOTH. Consider an initial JPD
(0)

 over domain Q VX and a set of low-
dimensional distributions { }

1 2
, , ,

k
Ρ where

each j has domain . SMOOTH
consists of the following two phases:

P P P= K
E

VP ∈Ρ ,j

jEΧ ⊂

Phase 1: do the standard IPFP using all constraints
in Ρ until process converges or goes into cycles;
if convergence is reached then exit;
Phase 2:
 for j = 1, 2, …, k (,0)j jP P= ;
 for i = 1, 2, …{
 if convergence is reached then exit;
 for j = 1, 2, …, k {

(1) 1

(,) (, 1) (1) 1

(,)
(1) (1) 1

(1) ;

;
j

j

E

i k j

E

j i j i i k j

j i
i k j i k j

P

Q

P P Q

Q Q

α α

− ⋅ + −

− − ⋅ +

− ⋅ + − ⋅ + −

= − +

=

−

}} □

Note that in Eq. (3), the update of the constraint
uses the marginal of the current JPD, which is a
low dimensional distribution. This is in contrast to
the process of generating consistent constraints in
Step 2 of GEMA which involves expensive opera-
tions of summing up full JPDs. In addition, note
that SMOOTH is exactly the same as the standard
IPFP except it uses a different constraint each time,
and that the computation of Eq. (3) for updating
constraints is local and can be done efficiently by
BN procedures. This makes SMOOTH directly
applicable to BNs using the IPFP based algorithms
we developed earlier for BNs [2, 5].

3.2. Accelerating the Convergence with In-
cremental Smooth Rate

Experiments show that the iterative process of
SMOOTH moves towards the convergence point
fairly fast at the beginning, even with a smallα .
However, the process slows down drastically at the
end, forming a long and flat tail. As discussed in
Section 3.1, keeping α small at the beginning en-
sures information in the original constraints not to
be lost too soon. When the process gets closer to
the convergence point, we can use larger α since
information of the original constraint has largely
been absorbed. So we suggest a sigmoid function
for increasing α :

1

1 exp(/)A i B
α =

+ −
 (5)

where i is the iteration steps of Phase 2, A and B
are constants. It can be seen that 0α ≈ at the be-

ginning and 0 when .iα → → ∞ Parameter A con-
trols how long α is to remain small and B controls
how fast α increases in the middle.

4. Experiments and Results

We have conducted computer experiments with
different initial JPDs and constraints. All experi-
ments were run on an Intel® Core™2 CPU of
2.40G Hz and 2.0G maximum memory for the
JVM (Java Virtual Machine).

The following algorithms are compared ex-
perimentally: 1) GEMA, 2) CC-IPFP, 3) SMOOTH,
4) Accelerated SMOOTH (A-SMOOTH for short).
For CC-IPFP, we use 1 /(1)i iλ = + in Eq. (2),
which is suggested by the authors [3]. For
SMOOTH we set 0.01α = in Phase 2, and for A-
SMOOTH, we set A = 4.595 () and B =
150.

0 0.01α ≈

For all experiments, convergence is reached
when the total variation

1
 for all j

are within the given error bound . The num-
ber of fitting steps is used to measure the time per-
formance of an algorithm because it is the core
operation for all algorithms we experimented.

| |i k j i k jQ Q
⋅ + ⋅ + −

−Σ
1210−

Experiment 1 uses the data taken from [3]. The
initial JPD1 is a uniform distribution of three vari-
ables 1 2 3, ,X X X . Three constraints, each a distri-
bution of two variables, are generated according to
the scheme in Table 1. They are consistent with
each other when 4 / 20ε = (called CONS0), incon-
sistent when 3 / 20ε = (called CONS1).

Table 1. Input constraints

, 1,
j

P j = 2
1 1

0 1
j j

X X
+ +
= =

0
1

j

j

X
X

=
=

 1 / 2
1 / 2

ε ε
ε ε

−
−

3
P

3 3
0 1X X= =

1

1

0
1

X
X

=
=

 1 / 2
1 / 2
ε ε

ε ε
−

−

The experiment results for the consistent con-
straints are given in Table 2 below. All three algo-
rithms have converged to the same JPD. SMOOTH
is significantly faster than the other two (84 fitting
steps compared to 1164 for GEMA and 3507 for
CC-IPFP). This is because SMOOTH is reduced to
the standard IPFP (only executed Phase 1) for con-
sistent constraints.

Table 2. Results for CONS0 (4 / 20ε =)
Algorithm GEMA CC-IPFP SMOOTH
Fitting steps 1164 3507 84
I-divergence 0.10453816 0. 10453816 0. 10453816

Experiment 2 compares performance with in-
consistent constraints CONS1. Besides JPD1, an-
other initial joint distribution JPD2 is also used.
The initial I-aggregates for JPD1 and JPD2 are
0.11870910 and 0.34439004, respectively. The
experiment results are given in Table 3. Fitting
steps for SMOOTH and A-SMOOTH are given as
the sum of Phase1 and Phase2.

Table 3. Results for inconsistent CONS1 (3 / 20ε =)
 Fitting steps I-divergence I-aggregate
GEMA

JPD-1 7,744,446 0.41502431 0.00367169
JPD-2 9,064,080 0.71979040 0.05727919

CC- IPFP
JPD-1 >10,000,000 0.37048603 0.00461839
JPD-2 >10,000,000 0.70127029 0.05742945

SMOOTH
JPD-1 177+3825 0.41503774 0.00367172
JPD-2 129+4899 0.71306584 0.05729201

A-SMOOTH
JPD-1 177+375 0.41503891 0.00367227
JPD-2 129+402 0.71439294 0.05729532

Both SMOOTH and A-SMOOTH converge at a

rate several orders of magnitude faster than the
other two, and the resulted limit JPDs all have I-
aggregates very close to that of GEMA. On the
other hand, CC-IPFP does not converge within the
max fitting step limit (10 million). The final JPD
obtained using CC-IPFP has larger I-aggregates but
smaller I-divergences than results from the others,
indicating that CC-IPFP does not integrate the fea-
tures of the initial constraints as much as the others.

To see that GEMA is data sensitive, we gener-
ated another set of 3 constraints (CONS2) which,
unlike CONS1, is pair-wise inconsistent. The re-
sults using CONS2 with JPD1 and JPD2 are given
in Table 4. It can be seen from Tables 3 and 4 that
GEMA is very slow in all cases except one (JPD1
+ CONS2). Similar phenomena have also been
observed in some of our other experiments. On the
other hand, both versions of SMOOTH have uni-
form performance for all combinations.

We have also experimented with larger JPD
with 8 and 15 variables and varying number of
constraints. The results are consistent with those
reported above for smaller JPD.

Table 4. Fitting steps with CONS2
Algorithm GEMA CC-IPFP SMOOTH
JPD1 780 >10,000,000 54+3405
JPD2 12,400,542 >10,000,000 216+3933

5. Conclusions

We propose a new method SMOOTH for modi-
fying a given JPD with a set of constraints of low

dimensional distributions. The main innovation of
SMOOTH lies in the bi-directional updates of both
JPD and constraints in dealing with inconsistent
constraints. Experiments with different JPDs and
constraints have confirmed that our new algorithms
always converge, and the limit JPDs they reach
always minimize the I-aggregate.

Comparing to existing methods such as GEMA
and CC-IPFP, SMOOTH has the following advan-
tages. 1) It works for both consistent and inconsis-
tent constraint sets. 2) It enjoys a superior time
performance. 3) It is not data-sensitive. 4) It can be
directly applied to belief update in BN.

Several issues require further investigation. The
first is to formally establish the convergence of
SMOOTH, which we only verified empirically
through experiments. The second is to incorporate
the degree of confidence one has on individual
constraints (consistent or inconsistent) in knowl-
edge integration. The third is to extend this work to
BN learning and structure update using low dimen-
sional distributions.

6. References

[1] I. Csiszar, “I-divergence Geometry of Probability
Distributions and Minimization Problems”, The Annuals
of Probability, Feb. 1975, 3(1), pp. 146-158.

[2] Z. Ding, Y. Peng, and R. Pan, “A Bayesian Approach
to Uncertainty Modeling in OWL Ontology”, in Pro-
ceedings of the Int.l Conf. on Advances in Intelligent
Systems – Theory and Applications, Luxembourg, Nov.
15-18, 2004,.

[3] Jirousek R., Vomlel J., “Inconsistent Knowledge
Integration in a Probabilistic Model”, Proc. of workshop
“Mathematical Models for handling partial knowledge in
A.I.”, Plenum Publ. Corp, New York, 1995.

[4] R. Kruithof, Telefoonverkeersrekening, De Ingeni-eur
52, E15-E25, 1937.

[5] R. Pan, Y. Peng, and Z. Ding, “Belief Update in
Bayesian Networks Using Uncertain Evidence”, 18th
IEEE International Conference on Tools with Artificial
Intelligence, Nov. 2006, pp. 441-444.

[6] Y. Peng, Z. Ding, “Modifying Bayesian Networks by
Probability Constraints”, in Proceedings of 21st Confer-
ence on Uncertainty in Artificial Intelligence, Edinburgh,
Scotland, July 26-29, 2005.

[7] Vomlel J., “Methods of Probabilistic Knowledge
Integration”, PhD Thesis, Department of Cybernetics,
Faculty of Electrical Engineering, Czech Technical Uni-
versity, December 1999.

[8] Vomlel J., “Integrating Inconsistent Data in a Prob-
abilistic Model”, Journal of Applied Non-Classical Lo-
gics, 2003, pp. 1 – 20.

