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Abstract1

 
This paper presents an efficient method, 

SMOOTH, for modifying a joint probability distri-
bution to satisfy a set of inconsistent constraints. It 
extends the well-known “iterative proportional 
fitting procedure” (IPFP), which only works with 
consistent constraints. Comparing with existing 
methods, SMOOTH is computationally more effi-
cient and insensitive to data. Moreover, SMOOTH 
can be easily integrated with Bayesian networks 
for Bayes reasoning with inconsistent constraints. 
 
1. Introduction 
 

In this paper we consider the problem of modi-
fying a joint probability distribution (JPD) to sat-
isfy a set of low-dimensional distributions called 
constraints. We discuss this problem in the context 
of probabilistic knowledge integration [7, 8] where 
the JPD is considered as a probabilistic knowledge 
base (PKB) and the constraints represent knowl-
edge from other sources. Similar problems also 
exist in probabilistic reasoning where constraints 
are taken as evidences to alter our beliefs (or poste-
riors) of other variables [5]. 

Let {1, 2, , },V n V= K X a set of discrete ran-
dom variables for a chosen domain, and  the 
initial JPD over 

(0)Q
.VX  Also let 

2 k
P  be 

a set of constraints where each
1
, , ,{ }P P P= K

jP  is a low-
dimensional PD over variables .,jE

jX E V⊆ The 
goal is to integrate Ρ  into . 

( 0 )
Q

The property set, 
j

{ | }jE

jS Q , is the set of 
all JPDs over 

Q P= =
VX  that satisfy constraint

j
P ∈P,  and 

the solution set, 1 ,
j

kS S= I

                                                

j=  is the set of all JPDs 
that satisfy all constraints in P. Then Ρ is consis-
tent if and inconsistent otherwise.  ,S ≠ ∅
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Integrating consistent constraints into (0)Q can 
be accomplished by the well-known algorithm it-
erative proportional fitting procedure (IPFP) [4, 7]. 
The procedure converges to a JPD in S that mini-
mizes the distance to (0)Q (measured by Kullback-
Leibler distance, also known as I-divergence). 
However, when Ρ is inconsistent, we cannot use 
IPFP to compute the integrated JPD because in this 
situation IPFP does not converge but rather goes 
into cycles over points in jS [2, 3, 8].  

Vomlel has proposed two methods that extend 
IPFP to deal with inconsistent constraints. The first 
one, GEMA [8], generalizes the concept of expec-
tation maximization, and the second one, CC-IPFP 
[3], is based on convex mixing of distributions 
generated by the standard IPFP. The time perform-
ance of GEMA is extremely sensitive to both the 
initial JPD and the constraints, and CC-IPFP is 
often very slow to converge. Also, these two algo-
rithms directly manipulate full joint distributions, 
and thus can not take advantages of other probabil-
istic models such as the Bayesian networks (BNs). 

To address these limitations, we propose a new 
algorithm called SMOOTH which works with both 
consistent and inconsistent constraints. Before pre-
senting this new method in Section 3, we provide a 
brief background in Section 2. Section 4 reports the 
experiment results and compares SMOOTH with 
other methods. Section 5 concludes with directions 
for future research. 
 
2. IPFP and Methods for Knowledge 
Integration with Inconsistent Input 
 

Iterative fitting proportional procedure (IPFP) 
was first published in [4] in 1937. Its convergence 
proof was given in [1] based on I-divergence ge-
ometry. The main idea of IPFP is as follows. 

Given a JPD  and a set of consistent con-
straints after iteratively modi-

( 0)Q
1 2{ , , , },kP P P= KΡ



fying the JPD using Eq. (1), IPFP converges to the 
limit JPD  which is an I-projection of ( 0)Q  on 
the solution set S, i.e. among all  has the 
smallest I-divergence (or KL distance) to  
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where  is the iteration index. 1, 2,i = K
For clarity, in the rest of this paper we use 

j
 (borrowed from [7]) to denote the I-

projection of Q  on 
( , )Q Sπ

jS . It can be shown that 
1 ji k j i k j⋅ + ⋅ + −  in Eq. (1). In other words, 

IPFP iteratively projects the current JPD on the 
property set of the next constraint.  We call each of 
these projections a fitting step since it modifies the 
current JPD to fit the next constraint.  

( , )=

Q Sπ

Q Q Sπ

To deal with inconsistent constraints, GEMA 
takes two steps in each iteration. Take the ith itera-
tion that starts with JPD ( 1)i kQ − ⋅ as an example. In 
Step 1, it first uses Eq. (1) to compute k I-
projections ( 1) ji k− ⋅  for each of the k con-
straints 

( , )
jP  in P, and then takes a weighted sum of 

these k I-projections to obtain a distribution  

( 1)1
( ,

k

j i k jji kQ w Qπ
− ⋅=⋅ = ∑% )S

kw w∈ Σ =

, 

where 1j j j= . In Step 2, GEMA 
first computes k marginals 

1(0,1),
jP  (with domain% jE

X ) 
from i k , then performs the standard IPFP on 

( 1)i k  using all of these k 
Q ⋅
%

Q − ⋅ jP%  as constraints to 
obtain i k .It has been shown that GEMA con-
verges to a distribution which has a minimum I-
aggregate , the weighted sum of I-divergence to 
all of the constraints in P:  

Q ⋅

Ψ

11( || , , ) ( || )j
k E

j jjkQ P P w I P Q
=

Ψ = ∑K . 

CC-IPFP, another algorithm proposed by Vom-
lel in [10], takes a different approach. At each itera-
tion, it first computes the I-projection on jS , then 
mixes it with the current JPD using Eq. (2)  

(1 )
j

j

Ei i i i i

i

P
Q Q Q

Q
λ λ= − + .                                  (2) 

where  and i( 1) mod 1,j i k= − + λ  monotonically 
decreases towards 0. It was conjectured that this 
method would converge to a distribution that mini-
mizes the sum of total variations to all constraints. 

Experiments (see Tables 2 - 4 in Section 4) 
show that the performance of GEMA is very sensi-
tive to the data. For some combinations of ( 0)Q and 

 it converges within a few hundreds of iterations, 
but for other combinations, millions of iterations 
are needed. On the other hand, CC-IPFP converges 
uniformly but very slowly. 

Ρ

 

3. SMOOTH 
 
 One thing in common for both GEMA and CC-
IPFP is that they only modify the JPDs while keep-
ing the constraints unchanged through the itera-
tions. Alternatively, one can make the modification 
bi-directional: at each iteration, not only the JPDs 
are pulled closer to the constraints but also the con-
straints are pulled towards the JPDs. By doing so, 
the inconsistency among the constraints is gradu-
ally reduced, which may lead to a faster and more 
stable convergence. Based on this idea we devel-
oped our new method SMOOTH.  
 
3.1. The Algorithm SMOOTH  
 
 SMOOTH consists of two phases. Phase 1 per-
forms the standard IPFP using all of the original 
constraints in Ρ . It stops when the process con-
verges (for consistent constraints) or starts to cycle 
(for inconsistent constraints). Phase 2 follows Eqs. 
(3) and (4) below. It differs from Phase 1 in that, 
before doing a standard IPFP fitting step, 
SMOOTH first modifies constraint  to pull 
it closer to the current JPD.  

( , 1)j iP −

 ( , ) ( , 1) ( 1) 1(1 ) jE

j i j i iP P Qα α k j− − ⋅ + −
= − +                 (3) 

where .(0,1)α ∈ Then the current JPD is modified 
by the new constraint generated by Eq. (4). 
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From Eq. (3) we can see that the modified con-
straint  is a mixture of the previous constraint ( , )j iP

( , 1)j iP − and the marginal of the current JPD 
( 1) 1

jE

i k jQ
− ⋅ + −

.  
Note that the distance between ( 1) 1 and jE

i k jQ
− ⋅ + − jP  

is gradually reduced to 0 by IPFP when the con-
straints are consistent. However, for inconsistent 
constraints, this distance cannot be further reduced 
by IPFP at the end of Phase 1. Since 

( 1) 1i k j
Q

− ⋅ + −
is the 

result of applying all other constraints, we can use 
its distance to 

j
E

jP  as a measure of inconsistency in 
the constraints. Since Eq. (3) pulls ( , 1)j i  closer to 

( 1) 1i k j

P −
j

EQ
− ⋅ + −

it reduces or smoothes the degree of incon-
sistency among constraints. This is the reason we 
call our algorithm SMOOTH. 

We call α  in Eq. (3) the smooth rate because it 
controls the speed of smoothing. Note that Eq. (3) 
pulls ( , )j i  away from ( , 1)j iP P − , causing some infor-
mation loss of the original constraints. To mini-
mize the information loss before it gets a chance to 
be integrated,α  is set to a very small value.  
 The algorithm SMOOTH is shown below. 



Algorithm SMOOTH. Consider an initial JPD 
( 0 )

 over domain Q VX  and a set of low-
dimensional distributions { }

1 2
, , ,

k
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each j  has domain . SMOOTH 
consists of the following two phases: 
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Phase 1: do the standard IPFP using all constraints 
in Ρ  until process converges or goes into cycles; 
if convergence is reached then exit; 
Phase 2:  
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Note that in Eq. (3), the update of the constraint 
uses the marginal of the current JPD, which is a 
low dimensional distribution. This is in contrast to 
the process of generating consistent constraints in 
Step 2 of GEMA which involves expensive opera-
tions of summing up full JPDs. In addition, note 
that SMOOTH is exactly the same as the standard 
IPFP except it uses a different constraint each time, 
and that the computation of Eq. (3) for updating 
constraints is local and can be done efficiently by 
BN procedures. This makes SMOOTH directly 
applicable to BNs using the IPFP based algorithms 
we developed earlier for BNs [2, 5]. 

 
3.2. Accelerating the Convergence with In-
cremental Smooth Rate  
 

Experiments show that the iterative process of 
SMOOTH moves towards the convergence point 
fairly fast at the beginning, even with a smallα . 
However, the process slows down drastically at the 
end, forming a long and flat tail. As discussed in 
Section 3.1, keeping α  small at the beginning en-
sures information in the original constraints not to 
be lost too soon. When the process gets closer to 
the convergence point, we can use larger α  since 
information of the original constraint has largely 
been absorbed. So we suggest a sigmoid function 
for increasing α : 

1

1 exp( / )A i B
α =

+ −
                                 (5) 

where i is the iteration steps of Phase 2, A and B 
are constants. It can be seen that 0α ≈  at the be-

ginning and 0 when .iα → → ∞  Parameter A con-
trols how long α  is to remain small and B controls 
how fast α increases in the middle.  

 
4. Experiments and Results 
 

We have conducted computer experiments with 
different initial JPDs and constraints. All experi-
ments were run on an Intel® Core™2 CPU of 
2.40G Hz and 2.0G maximum memory for the 
JVM (Java Virtual Machine).  

The following algorithms are compared ex-
perimentally: 1) GEMA, 2) CC-IPFP, 3) SMOOTH, 
4) Accelerated SMOOTH (A-SMOOTH for short). 
For CC-IPFP, we use 1 /(1 )i iλ = +  in Eq. (2), 
which is suggested by the authors [3]. For 
SMOOTH we set 0.01α =  in Phase 2, and for A-
SMOOTH, we set A = 4.595 ( ) and B = 
150. 

0 0.01α ≈

For all experiments, convergence is reached 
when the total variation 

1
 for all j 

are within the given error bound . The num-
ber of fitting steps is used to measure the time per-
formance of an algorithm because it is the core 
operation for all algorithms we experimented.  

| |i k j i k jQ Q
⋅ + ⋅ + −

−Σ
1210−

Experiment 1 uses the data taken from [3]. The 
initial JPD1 is a uniform distribution of three vari-
ables 1 2 3, ,X X X . Three constraints, each a distri-
bution of two variables, are generated according to 
the scheme in Table 1. They are consistent with 
each other when 4 / 20ε = (called CONS0), incon-
sistent when 3 / 20ε = (called CONS1). 
 

Table 1.  Input constraints 
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The experiment results for the consistent con-
straints are given in Table 2 below. All three algo-
rithms have converged to the same JPD. SMOOTH 
is significantly faster than the other two (84 fitting 
steps compared to 1164 for GEMA and 3507 for 
CC-IPFP). This is because SMOOTH is reduced to 
the standard IPFP (only executed Phase 1) for con-
sistent constraints. 
 
Table 2.  Results for CONS0 ( 4 / 20ε = ) 
Algorithm GEMA CC-IPFP SMOOTH 
Fitting steps 1164 3507 84 
I-divergence 0.10453816 0. 10453816 0. 10453816 

 



Experiment 2 compares performance with in-
consistent constraints CONS1. Besides JPD1, an-
other initial joint distribution JPD2 is also used. 
The initial I-aggregates for JPD1 and JPD2 are 
0.11870910 and 0.34439004, respectively. The 
experiment results are given in Table 3. Fitting 
steps for SMOOTH and A-SMOOTH are given as 
the sum of Phase1 and Phase2. 
 

Table 3.  Results for inconsistent CONS1 ( 3 / 20ε = ) 
 Fitting steps I-divergence I-aggregate
GEMA    

JPD-1 7,744,446 0.41502431 0.00367169
JPD-2 9,064,080 0.71979040 0.05727919

CC- IPFP    
JPD-1 >10,000,000 0.37048603 0.00461839
JPD-2 >10,000,000 0.70127029 0.05742945

SMOOTH    
JPD-1 177+3825 0.41503774 0.00367172
JPD-2 129+4899 0.71306584 0.05729201

A-SMOOTH    
JPD-1 177+375 0.41503891 0.00367227
JPD-2 129+402 0.71439294 0.05729532

 
Both SMOOTH and A-SMOOTH converge at a 

rate several orders of magnitude faster than the 
other two, and the resulted limit JPDs all have I-
aggregates very close to that of GEMA. On the 
other hand, CC-IPFP does not converge within the 
max fitting step limit (10 million). The final JPD 
obtained using CC-IPFP has larger I-aggregates but 
smaller I-divergences than results from the others, 
indicating that CC-IPFP does not integrate the fea-
tures of the initial constraints as much as the others.  

To see that GEMA is data sensitive, we gener-
ated another set of 3 constraints (CONS2) which, 
unlike CONS1, is pair-wise inconsistent. The re-
sults using CONS2 with JPD1 and JPD2 are given 
in Table 4. It can be seen from Tables 3 and 4 that 
GEMA is very slow in all cases except one (JPD1 
+ CONS2). Similar phenomena have also been 
observed in some of our other experiments. On the 
other hand, both versions of SMOOTH have uni-
form performance for all combinations. 

We have also experimented with larger JPD 
with 8 and 15 variables and varying number of 
constraints. The results are consistent with those 
reported above for smaller JPD.  
 

Table 4. Fitting steps with CONS2 
Algorithm GEMA CC-IPFP SMOOTH
JPD1 780 >10,000,000   54+3405 
JPD2 12,400,542 >10,000,000 216+3933 

 
5. Conclusions 
 

We propose a new method SMOOTH for modi-
fying a given JPD with a set of constraints of low 

dimensional distributions. The main innovation of 
SMOOTH lies in the bi-directional updates of both 
JPD and constraints in dealing with inconsistent 
constraints. Experiments with different JPDs and 
constraints have confirmed that our new algorithms 
always converge, and the limit JPDs they reach 
always minimize the I-aggregate.  

Comparing to existing methods such as GEMA 
and CC-IPFP, SMOOTH has the following advan-
tages. 1) It works for both consistent and inconsis-
tent constraint sets. 2) It enjoys a superior time 
performance. 3) It is not data-sensitive. 4) It can be 
directly applied to belief update in BN. 

Several issues require further investigation. The 
first is to formally establish the convergence of 
SMOOTH, which we only verified empirically 
through experiments. The second is to incorporate 
the degree of confidence one has on individual 
constraints (consistent or inconsistent) in knowl-
edge integration. The third is to extend this work to 
BN learning and structure update using low dimen-
sional distributions. 
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