
A Security Architecture Based on Trust Management for Pervasive Computing
Systems�

Lalana Kagal
Computer Science & Electrical Engineering

University of Maryland Baltimore County

1000 Hilltop Circle, Baltimore, MD 21244

lkagal1@cs.umbc.edu

Jeffrey Undercoffer
Computer Science & Electrical Engineering

University of Maryland Baltimore County

1000 Hilltop Circle, Baltimore, MD 21244

junder2@cs.umbc.edu

Filip Perich
Computer Science & Electrical Engineering

University of Maryland Baltimore County

1000 Hilltop Circle, Baltimore, MD 21244

fperic1@cs.umbc.edu

Anupam Joshi
Computer Science & Electrical Engineering

University of Maryland Baltimore County

1000 Hilltop Circle, Baltimore, MD 21244

joshi@cs.umbc.edu

Tim Finin
Computer Science & Electrical Engineering

University of Maryland Baltimore County

1000 Hilltop Circle, Baltimore, MD 21244

finin@cs.umbc.edu

��������

Traditionally, stand-alone computers and small networks rely on
user authentication and access control to provide security. These
physical methods use system-based controls to verify the identity
of a person or process, explicitly enabling or restricting the abil-
ity to use, change, or view a computer resource. However, these
strategies are inadequate for the increased flexibility that distributed
networks such as the Internet and ubiquitous/pervasive computing
environments require, as these systems lack central control and in
addition, their users are not all predetermined. Users in pervasive
environments expect to access locally hosted resources and services
anytime and anywhere leading to serious security risks and access
control problems. We propose a solution based on distributed trust
management which involves developing a security policy, assign-
ing credentials to entities, verifying that the credentials conform
to the policy, delegating trust to third parties, revoking rights and
reasoning about users’ access rights. This paper presents an in-
frastructure that complements existing security features like Pub-
lic Key Infrastructure (PKI) and Role Based Access Control with
distributed trust management to provide a highly flexible mode of
enforcing security in a pervasive computing environments.

� 	
��������


As computing becomes more pervasive, people expect to access
services and information at anytime and anywhere, leading to the
development of ubiquitous/pervasive computing, of which SmartSpaces
is a specific example. A SmartSpace environment provides services
and resources that users can access using some short range wireless
communications such as Bluetooth, IEEE 802.11, or Infrared, via
any hand-held device, within a confined space. Vigil is generally
applicable to distributed systems, but by making it lightweight and

�This work was supported by NSF Awards IIS 9875433 and CCR 0070802, and
the Defense Advanced Research Projects Agency under contract F30602-00-2-0 591
AO K528.

independent of the communication medium, we have geared it to-
wards ubiquitous environments.

For the SmartSpace framework, we extended the C2 [16] ar-
chitecture, which in turn is based on the Centaurus [10] model. In
Centaurus a Client can access the services provided by the nearest
Centaurus Service Manager (SM) via some short-range communi-
cation. The SM acts as an active proxy by executing services on be-
half of any Client that requests them. This minimizes the resource
consumption on the Client and also avoids having the services in-
stalled on each Client that wishes to use them. Our infrastructure
is designed to reduce the load on portable devices and provide a
media independent infrastructure and communication protocol for
the provision of services.

This paper is organized as follows: Section 2 discusses other
research and technologies and briefly compares Vigil to similar
projects. Section 3 details the system design and architecture and
Section 4 details the working of the simplified Public Key Infras-
tructure used in Vigil. Section 5 discusses our ongoing work and
presents a brief summary of the work presented in this paper.

� ������� ����

Though there are several academic and commercial projects that are
aimed at realizing the SmartSpaces scenario, most of which have a
rather simple security framework and none of which use distributed
trust as a way to resolve the complex security issues.

Some of the projects that address the SmartSpaces scenario
are the joint Unisys Corporation/Orange [2] experimental house in
Hertford, England, UC Berkeley’s Ninja project [6] [7], the Univer-
sity of Washington’s Portolano project [4], and Stanford’s Interac-
tive Workspaces Project [3]. As demonstrated by the Unisys/Orange
project, the concept of SmartHomes is transitioning from the purely
academic to industry oriented research. The Unisys/Orange project
is an experimental ”intelligent” house that responds to voice com-
mands to “dim the lights’ or “turn up the volume on the televi-
sion”. In addition to voice, the home owner can interface with the
house through a Wireless Application Protocol (WAP) telephone,
web browser, or a Personal Digital Assistants (PDA). The In the
Centaurus project [10], the main design goal is the development of
a framework for building portals to services using various types of
mobile devices. Centaurus provides a uniform infrastructure for ac-
cess to heterogeneous hardware and software components. It uses a
language based on XML as the sole data exchange format between



the service requester and service provider. This language called
Centaurus Capability Markup Language (CCML), provides an ex-
tensible and simple content description that enables the creation of
a user interface. Vigil uses CCML as its sole form of data exchange.
Another important research project is UC Berkeley’s Project Ninja
[6], [7] which employs Group Controllers, Certificate Authorities,
and a hierarchy of Service Discovery Service Servers. However,
unlike Vigil, it does not delegate state management to the Services
themselves nor does it allow the Service Manager to serve exclu-
sively as a cache. This approach is at a disadvantage because as
the complexity of distributed state management increases the fault
tolerance of the system decreases. For security and information
assurance Ninja utilizes encryption between all entities within the
system. This implies a high computational overhead on the end-
points of the communication regardless of whether the endpoint is
a PDA, cell phone, or a powerful workstation. Vigil does not make
the assumption that the end points are computationally robust and
instead relies on a simplified Public Key Infrastructure.

Matt Blaze’s PolicyMaker [13] is probably one of the first for-
ays into distributed trust management though the concept has its
roots in Pretty Good Privacy (PGP) [18], Simple Public Key In-
frastructure (SPKI) [8], and Role Based Access Control (RBAC)
[12]. PGP [18] is a simple way of sending secure email using a
web of trust, without exchanging a key and without a central au-
thority. In PGP, a keyholder (an individual associated with a pub-
lic/private key pair) learns about the public keys of others through
introductions from trusted friends. The largest problem associated
with PGP is key distribution and management. SPKI was the first
proposed standard for distributed trust management [8]. This so-
lution, though simple and elegant, includes only a rudimentary no-
tion of delegation, which is crucial to the developed of distributed
trust. PolicyMaker [13] is able to interpret policies and answer
questions about access rights. Unfortunately, the development of
policy is slightly complicated and not easy for non-programmers to
use. This poses quite a problem, as it is generally non-programmers
who will define the policies. Role Based Access Control [12] is
probably one of the best known methods for access control, where
entities are assigned roles, and there are rights associated with each
role. Unfortunately, this is difficult for systems where it is not pos-
sible to assign roles to all users and foreign users are common. Also
it is not possible to change access rights associated with a particular
entity without modifying the roles.

We drew on the key points of most of the above-mentioned
schemes and designed an infrastructure that uses PKI for authen-
tication and policies to enforce security [9]. A policy contains
basic/axiomatic rights, rules for assigning roles, rights associated
with roles, rules for delegation, and rules for checking the valid-
ity of requests. An entity (service or client) can have many roles
in the system and is assigned all rights associated with those roles.
Rights can also be delegated to entities or revoked from entities
without modifying the roles in any way. Our system will allow an
entity in the system to delegate any right that it may have. Whether
these delegations are honored depends on the policy. Constraints
can be added to both the actual delegation and to the delegatee,
tightening control on the rights and permissions. In our model, we
use also constraints on redelegation that controls whether the per-
mission can be further delegated and to whom it can be delegated.
Rights can also be revoked; making rights extremely dynamic. We
have found that these features address the required issues of per-
vasive systems; authentication, delegation and access control, suc-
cessfully.

� �����������

Our system is designed to provide security and access control in
distributed systems, and has been optimized to work in SmartSpaces,

where most of the clients are hand-held devices. Vigil can also
be used in wired systems, but the focal point of our research is
the security in dynamic, mobile systems. Vigil is designed so that
clients can move, attach, detach, and re-attach at any point within
the framework.

We have developed Vigil by complementing PKI [5] and Role
Based Access Control [12] with trust management. Our work is
similar to role-based access control-an approach in which access
decisions are based on the roles that individual users have as part of
an organization, such as doctor, nurse, manager, or student-in that
a user’s access rights are computed from its properties. However,
our approach uses ontologies that include not just role hierarchies
but any properties and constraints expressed in an XML based lan-
guage including elements of both description logics and declarative
rules. For example, there could a rule specifying that if a user in
a meeting room is using the projector, he/she is probably the pre-
senter and should be allowed to use the computer too. In this way,
rights can be assigned dynamically to users without creating a new
role.

There are six functional components within the Vigil archi-
tecture: Service Manager, Communication Manager, Certificate
Controller, Security Agent, Role Assignment Manager, and Clients
(users and services).

The Vigil system is divided into SmartSpaces, and each SmartSpace
(from now on known as Space) is controlled by one or more Ser-
vice Managers. The Service Manager finds matching services for
users. It allows users and services to register and then provides
brokering between them. The Communication Manager, provides
a communication gateway between the Service Manager and the
entities in the Space. Its sole purpose is to abstract and translate
communications protocols and may contain several modules, one
for each protocol [10]. The Certificate Controller is responsible for
generating x.509 digital certificates [5] for entities in the system
and for responding to certificate validation queries. There could be
more than one Certificate Controller in an organization, but they all
share common knowledge. The Role Assignment Manager main-
tains a role list for known entities in the system and a set of rules
for role assignment. It responds to initial requests for role assign-
ment in a particular Space. Each Space generally has one Role As-
signment Manager to interpret local rules for appointment of roles
within that Space. The Security Agent, manages the trust in the
Space, receives information about new access rights that are con-
ferred on a user and rights that are revoked, and reasons about the
current rights of a user. Finally there are users and services that are
treated equally as Clients.

All messages between the various entities in the Vigil system
are in Centaurus Capability Markup Language (CCML) [10], which
is an extension of Extensible Markup Language (XML) [17].

��� ������� ��
����

The Service Manager acts as a mediator between the Services and
the users. All clients of the system, whether they are services or
users, have to register with a Service Manager in the SmartSpace.
The Service Manager is responsible for processing Client Registration/De-
Registration requests, responding to registered Client requests for a
listing of available services, for brokering Subscribe/Un-Subscribe
and Command requests from users to services, and for sending ser-
vice updates to all subscribed users whenever the state of a partic-
ular service is modified.

Service Managers are arranged in a tree-like hierarchy and form
the core of the Vigil system. Service Managers are identified by
their location in the tree or handles. This core can be used to route
messages to foreign Service Managers through the hierarchy of
Service Managers using the handle to determine where to forward
each message.



All Clients depend on their Service Manager to enforce security
and to broker requests for services. Consequently, each Client is
only concerned with the trust relationship with its Service Manager.
Service Managers in the tree establish trust relationships with each
other. Consequently, trust between Clients is transitive through the
Service Managers.

When a Service Manager starts up, it reads its handle, its par-
ent’s handle, its Role Assignment Manager’s address, and the Vigil
Certificate Controller’s address, from a configuration file. The con-
figuration file also specifies the handles of those Service Managers
that it can connect to. In our implementation, handles are of the
form “umbc.edu”, “cs.umbc.edu”, or “lait.cs.umbc.edu”, etc. Each
Service Manager has its own digital certificate and corresponding
private key to sign messages.

��� ����
�

All clients must connect to and register with a Service Manager in
a Space. During registration, the client transmits its digital certifi-
cate, a list of roles which can access it, and a flag, ShowAll, indicat-
ing whether or not the Service Manager should publish the client’s
presence to other clients, that do not have permission to access to
it. If the client has no services to offer (is solely a user) the list
of access roles is empty. During registration, a service can inform
the Service Manager the level of security required. This reflects on
how often the Service Manager updates access information about
the service. To get new access information, the Service Manager
queries the Security Agent. The Security Agent will return cur-
rent information about delegations and revocations to the Service
Manager, which updates its knowledge. The knowledge in a Ser-
vice Manager is periodically erased as a way of allowing quicker
propagation of revocations, as after deleting the rights the Service
Manager has to ask the Security Agent for new trust information.

On receiving the registration information, the Service Manager
verifies the client’s certificate, and sends the client a copy of its
digital certificate, which the client verifies. This handshaking pro-
cedure ensures a trust relationship between the Service Manager
and the client. After the client certificate is verified, its certificate
is sent to the Role Assignment Module, which decides which roles
the client can have, based on rules in the policy. For example, the
policy could state that managers from XYZ are developers in ABC.
Once the set of roles is decided, the client has all the rights associ-
ated with the roles it is assigned. After a client is successfully reg-
istered, it is provided with an interface to all the services registered
with the Service Manager and that it can access. The client is also
shown all the services that it may not be able to access but that have
their ShowAll flag set. The Service Manager sends an interface to
all other Service Managers, that the Service Manager is currently
aware of, the the newly registered client. Using the interface sent
by the Service Manager, the client can request a service or request
a list of services from a remote Service Manager. All requests from
clients are authenticated by the Service Manager, which makes sure
that the client has the right to access the requested services. The
Service Manager queries the Security Agent. The Security Agent
checks for role based access rights, prohibitions, permissions and
delegations. If the request is authorized, the Service Manager for-
warded to the service. A client can also request permission to ac-
cess a service from another client or the service itself. If the client
has the ability to delegate rights on the service, and if it is satisfied
with the requester’s credentials, it delegates this ability to the client
for a certain period. While this delegation is valid the client is al-
lowed to access the service. After the delegation expires the client
needs to make another request for access.

��� ���������� ��
�������

The Vigil Certificate Controller is used to generate x.509 version
3 digital certificates [14] for entities of the system and verify cer-
tificates as well. To get a certificate , an entity sends a certificate
request to the Certificate Controller. The entity is sent back a x.509
certificate, signed by the Certificate Controller and the Certificate
Controller’s self signed certificate, which is used to validate other
entities’ certificates. These certificates are stored and protected on
a client’s smartcard. An entity could enter a Space with a certifi-
cate from another Certificate Authority (different company). This
certificate is verified by the Certificate Controller, based on a set of
verification rules that specify which companies, Certificate Author-
ities and foreign entities can be trusted etc.

We use a simplified PKI (please refer to section 4 for more de-
tails), which precludes the use of an online repository for certifi-
cates, or for a Certificate Revocation List (CRL).

��� ���� �����
��
� ��
����

As the name suggests, the Role Assignment Manager is responsi-
ble for the assignment of roles to entities in a Space. The Role As-
signment Manager maintains a list of roles associating entities with
roles, and a set of rules for role assignment. These rules specify
the credentials required to be in a certain role. When queried with
the certificate of an entity, the Role Assignment Manager checks
the access control list and the rules for assignment to find the roles
of the entity. An entity could have more than one role at a time.
For example, an entity could be both a graduate student and a re-
search assistant. The role of an entity could change over time. Its
access rights could also change without any change in role through
the delegations of rights.

When the Role Assignment Manager is initialized, it reads its
x.509 digital certificate and its PKCS#11 [11] wrapped private key
from a secure file and stores it into local memory. It also reads and
indexes the ACL file, which contains the roles of all entities within
the system, and stores the time stamp of the file.

When the Role Assignment Manager receives a query for an
entity’s role, it compares the current time stamp on the capability
file with the time stamp of the last file read, if they are not equal it
re-reads the ACL file. This feature allows roles of entities to change
continuously and dynamically.

�� ������! ���
�

The Security Agent is responsible for maintaining security and trust
in the Vigil system. It enforces the security policy of the organiza-
tion or Space. It interprets the policy to provide controlled access
to Services and uses distributed trust as a more flexible and eas-
ily extensible policy based mechanism. There is generally a global
policy associated with the organization and a local policy associ-
ated with a SmartSpace. All security agents in the organization
will enforce the global policy and will additionally enforce a local
policy, which is specific to the Space. A policy includes rules for
role assignment, rules for access control, and rules for delegation
and revocation.

The Security Agent uses a knowledge base and sophisticated
reasoning techniques for security. On initialization, it reads the pol-
icy and stores it in a Prolog knowledge base. All requests are trans-
lated into Prolog, and the knowledge base is queried. The policy
contains permissions which are access rights associated with roles,
and prohibitions which are interpreted as negative access rights.
The policy also contains rules for role assignments, access control
and delegation. A user has the ability to access a service if the user
has not been prohibited from accessing the service by an autho-
rized entity and if it either has the role based access right or if some



authorized entity has delegated this right to it. An entity can only
delegate an access right that it has the ability to delegate.

For example, a janitor may not have the right to delegate ac-
cess to a workstation or a server, but a manager may. So, if Susan,
a consultant from XYZ, wants to access a computer in ABC, she
asks Mary, a manager from ABC, for permission. If Mary has the
ability to delegate, she may or may not decide to delegate this right
based on Susan’s credentials. If Mary does delegate, Susan will be
able to access the computer during the time that the delegation is
valid. If Mary decides to leave her job or something similar, all
her delegations will be invalid. If Susan now tries to access the
computer, she will not be able to because the delegation is invalid.
These rules about delegation of access rights, validity of delega-
tions, etc. are part of the policy. There is more inference using
these rules, than simple access control lists. It is also more than
just using Role Based Access Control, because access rights can be
delegated, and these delegations are not random, they have to be
from an authorized entity to another entity or group of entities, and
should follow the security policy.

When a user needs to access a service that it does not have
the right to access, it requests another user, who has the right, or
the service itself, for the permission to access the Service. If the
entity requested does have the permission to delegate the access to
the Service, the entity sends a delegate message, signed by its own
private key, along with its certificate, to the Security Agent and the
requester. The Security Agent checks the roles of the delegator
and the delegatee and ensures that the delegator has the right to
delegate, and that the delegation follows the security policy. It then
adds the permission for the Client to access the Service, but sets a
very short period of validity for the permission. Once this period
is over, The Security Agent has to reprocess the delegation. This is
very useful incase of revoked certificates, delegations or rights. If
any one entity in the delegation chain loses the permission, then it
is propagated down the chain very quickly, till everyone after the
entity loses the ability. Everytime a Service Manager asks about the
delegated rights of the client, the Security Agent sends back only
valid permissions.

A user can also revoke rights that it has delegated by sending
the appropriate message to the Security Agent. The Security Agent
removes the permission for the delegated entity, and when a Ser-
vice Manager asks about the delegated entity, it is informed of the
revoked right. This causes revocations to progress rapidly through
the system.

Figure 1 illustrates the working of the Vigil system.

� ���"����� #$	

In a PKI system, certificates are made available in an on-line repos-
itory. Consequently, when a user needs an entity’s digital certificate
it can be retrieved from such a repository and is valid as long as the
certificate chain to the top level CA is verifiable. Similarly, in a typ-
ical PKI, the Certificate Authority also provides an on-line Certifi-
cate Revocation List (CRL), where inclusion in the CRL indicates
that a given certificate is, for one of many possible reasons, invalid.
However certificate repositories and Certificate Revocation Lists
have a high administrative overhead. This overhead and the ac-
companying network traffic imposed by certificate acquisition and
the signature verification is mitigated in Vigil by its simplified PKI
framework.

On registration, all entities have to send their certificate to the
Security Agent, which sends back its own certificate. They can
verify the exchanged certificates themselves or send it to the lo-
cal Certificate Controller. The Certificate has a list of CAs that it
trusts and some rules for verification of certificates. If certificate
is from a trusted CA, or satisfies one of the rules and has not been
revoked, it is considered valid. Once verified, all signed messages

Vigil

Vigil

Vigil

Request for 
permission + 
ID cert

Delegation 
to John

Vigil

Request 
+ ID cert

FAX

Printer

Lamp

Coffee machine

John’s PDA

Susan’s laptop

What 
rights does 
John have ?

Service request

Response

Interface to 
accessible 
services

Service request/
Service response

Delegation request
Delegation response

Request for Service Access/
Response

Figure 1: Overview of the Vigil system. There are several
SmartSpaces in an organization. In every SmartSpace, a user uses
the Vigil framework to gain access to services in that Space. A user
can also request permission from another user to access a Service.
Though Vigil has been conceptually shown as a central system, it
is actually made up of distributed components.

between them can thus be verified. In a similar manner, commu-
nication between any two entities in Vigil can be handled securely,
by attaching their certificates to the initial message.

Rather than use a CRL to signal a problem with an entity, the
information is multicast to all Certificate Controllers in the organi-
zation, consequently invalidating the certificate. This precludes the
necessity of maintaining a CRL, which must be signed by the Cer-
tificate Authority each time it is modified. However the revocations
are still globally maintained.

This modified CRL and the fact that the certificates themselves
are very small and can be carried easily in any mobile device,
makes Vigil more adaptable to SmartSpaces.

 ��
�����


After developing the initial infrastructure, we are working to im-
prove the security and trust capabilities of Vigil. We are looking
at distributed belief as a way for the Security Agent to garner the
required trust information. The policy could include rules for be-
lief as well. For example, the Security Agent would believe that
Mark had the role of Manager in XYZ, if two registered and trusted
clients say that it is true. Currently the trust information is encoded
in Prolog, we believe using a semantic language like RDF [15] or
DARPA Agent Markup Language (DAML) [1] instead will greatly
benefit the system.

Vigil is aptly suited to pervasive environments because it uses
a simplified PKI, the certificates are small enough to be carried on
a mobile device, the domain is divided into SmartSpaces where
policy is enforced at 2 levels, global and local, and distributed trust
management is used as a way to handle foreign users and decentral-
ized knowledge. Vigil uses existing security methods along with
trust management for more flexibility in authentication and access
control in pervasive computing environments.

��%���
���

[1] DAML specification. http://www.daml.org/.

[2] Orange and Unisys build
the house that listens. http://www.unisys.com/news/releases/
2001/feb/02127058.asp.



[3] George Candea and Armando Fox. Using Dynamic Mediation
to Integrate COTS Entities in a Ubiquitous Computing Envi-
ronment. In Second International Symposium on Handheld
and Ubiquitous Computing 2000, 2000.

[4] Mike Esler, Jeffrey Hightower, Tom Anderson, and Gaetano
Borriello. Next Century Challenges: Data-Centric Network-
ing for Invisible Computing. In Fifth Annual ACM/IEEE In-
ternational Conference on Mobile Computing and Network-
ing (MobiCom-99), 1999.

[5] The Internet Engineering Task Force. Public-Key Infrastruc-
ture (X.509) (pkix). http://www.ietf.org/html.charters/pkix-
charter.html, 2002.

[6] Ian Goldberg, Steven D. Gribble, David Wagner, and Eric A.
Brewer. The Ninja Jukebox. In Proceedings of the 2nd
USENIX Symposium on Internet Technologies and Systems
(USITS-99), 1999.

[7] Steven D. Gribble et al. The Ninja architecture for robust
Internet-scale systems and services. Computer Networks (Am-
sterdam, Netherlands: 1999), 2001.

[8] IETF. Simple Public Key Infrastructure (spki) Charter.
http://www.ietf.org/html.charters/spkicharter.html.

[9] Lalana Kagal, Tim Finin, and Yun Peng. A Framework for
Distributed Trust Management. In Proceedings of IJCAI-01
Workshop on Autonomy, Delegation and Control, 2001.

[10] Lalana Kagal, Vladimir Korolev, Sasikanth Avancha, Anu-
pam Joshi, Timothy Finin, and Yelena Yesha. Highly Adapt-
able Infrastructure for Service Discovery and Management in
Ubiquitous Computing. To appear in ACM Wireless Networks
(WINET) journal, 2002.

[11] RSA Laboratories. PKCS 11-Cryptographic Token Interface
Standard. 1994.

[12] E. Lupu and M. Sloman. A Policy Based Role Object Model.
1st IEEE International Enterprise Distributed Object Com-
puting Workshop (EDOC’97), 1997.

[13] M.Blaze, J.Feigenbaum, and J.Lacy. Decentralized trust man-
agement. IEEE Proceedings of the 17th Symposium, 1996.

[14] W. Polk D. Solo R. Housley, W. Ford. RFC 2459 Internet
X.509 Public Key Infrastructure Certificate and CRL Profile.
1999.

[15] RDF. Resource Description Framework (RDF) Schema Spec-
ification. W3C Proposed Recommendation, March 1999,
1999.

[16] Jefferey Undercoffer, Andrej Cedilnik, Filip Perich, Lalana
Kagal, and Anupam Joshi. A Secure Infrastructure for Service
Discovery and Management in Pervasive Computing. ACM
MONET : The Journal of Special Issues on Mobility of Sys-
tems, Users, Data and Computing, 2002.

[17] W3C. Extensible Markup Language.
http://www.w3c.org/XML/.

[18] Philip R. Zimmermann. The Official PGP User’s Guide. MIT
Press, Cambridge, MA, USA, 1995.


