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Abstract—A feature common to many pervasive computing
scenarios is that devices acquire information about their environ-
ment from peers through short-range ad-hoc wireless connections
and use it to maintain a model of their current context. A
fundamental issue in such situations, is that knowledge obtained
from peer devices may vary in reliability with devices providing
incorrect data either inadvertently out of ignorance or other
limitations or intentionally in pursuit of malicious or sel f-serving
goals. We describe a heuristic based on a Bayesian approach to
infer which of the received answers is most likely to be correct.
The suggested answers and the reputation values of the sources
themselves are used to determine the most likely answer. We have
implemented the techniques and evaluated them in a prototype
system using the Glomosim network simulator, and show that
our scheme improves data accuracy in low trust environments.

I. I NTRODUCTION

In pervasive computing environments, devices can be both
producers and consumers of data. A device cannot always rely
on a central, trusted source for information and knowledge,but
must rely on information available from peers connected over
mobile ad-hoc networks (MANETs). Scenarios such as first
responders reacting to an event, vehicular ad-hoc networks,
and battlefield information management are classic examples.
Several researchers have proposed techniques for managing
data and information in such environments based on the idea
that peer devices cache information and cooperate (see for
instance [1], [2], [3])

In such situations, the information provided by peer devices
may not be reliable. This could be due to the presence of
malicious devices in the network or simply due to their
ignorance. Peer-provided data cannot benefit from the security
mechanisms available in a client-server environment. We note
that in our scenarios, devices are moving, and the underlying
network topology (and hence the peers of any given node)
are changing over time. This makes the problem different
from many of the agreement protocols commonly studied in
distributed systems.

We propose a new technique to infer the most accurate data
from the different versions of the same data provided by peers.
Our approach is a heuristic based on probability theory. There
is a growing body of work in reputation management schemes
that seek to use the past behavior of a peer to establish its
reputation, for instance [4], [5], [6]. The reputation value is
an indicator of both the trustworthiness and capability of the

device. We choose the data which is most likely to be correct
using the provided data along with the reputations of their
sources. This technique aims to reduce the risk of propagating
incorrect data in the network.

We illustrate the applicability of our technique in a real-life
scenario. Soldiers on the battlefront carrying mobile hand-
held devices with wireless capabilities is a scenario where
it is useful to cache the latest information obtained from
peer devices. This includes information about supplies, enemy
strength, strategic planning etc. In such tactical environments a
central trusted authority is lacking and connectivity is volatile.
Using a validation technique to verify data ensures credibility
of data.

II. RELATED WORK

Jonker et al. [7] propose a formal framework for trust
evolution. They propose a mathematical model for trust man-
agement in multi-agent systems. The trust function is based
on intial trust, experiences and trust dynamics. Perichet al.
[8] propose a distributed, mathematical model for trust and
belief management in mobile ad hoc networks. The model
categorizes devices as reliable and unreliable. Several trust
learning functions are described based on experience and rec-
ommendations from peers. The devices perform information
source discovery and combine the suggested answer accuracy
degree and reputation of sources to decide on the final answer.
The devices accept the answer whose accuracy level is above
a threshold value and is the highest among the received
answers. Simple ways of combining accuracies of different
versions of an answer are used like taking the maximum,
minimum and average accuracy. Our focus is not on how
trust relations evolve, rather our approach works on top of
a trust evolving mechanism. Moreover the model proposed by
Perichet al. often concluded on the incorrect answer in highly
dishonest environments. Our approach works reliably in such
environments.

An approach is described by Patwardhanet al. [9] in which
a few nodes are trusted a priori and data is validated either
using agreement among peers or direct communication with a
trusted node. Collaborative propagation of reliable data helps
in improving the timeliness of data. Bad nodes are detected
when the data they provide is invalidated by the validation
algorithm. Consensus is achieved when the number of copies



agreeing is greater than a threshold value. The reputationsof
the devices are not considered when determining the consensus
answer. We use this approach as a base line to compare the
performance of our validation algorithm.

III. B ACKGROUND

We wish to infer the most accurate data from the different
versions provided by our peers. A simple approach would be
to accept the answer from the highest reputation node and
reject the other answers that were received from lower repu-
tation nodes. However, this has the disadvantage of excessive
reliance on the reputation values. For example if we received
answer0 from a node with reputation0.9 and the answer1
from three other neighbors with reputations only slightly less,
0.83, 0.85 and0.87. In this case, it is intuitive to believe the
answer provided by three highly reputed nodes.

Another approach is to find the answer based on majority
agreement as studied in [9]. An answer is accepted after the
number of nodes that agree on an answer becomes greater
than some threshold value. However, this approach completely
ignores the reputations, leading to compromising on data
reliability in low trust scenarios.

We propose an approach that takes into account the reputa-
tions as well as consensus to decide the most accurate answer.
Simulation results show that the approach for data validation
presented here performs very well in terms of accuracy in
low trust scenarios. However the bayesian approach we use
requires some assumptions.

A. Assumptions

Our approach makes a number of assumptions which we
sketch and motivate here.

Finite answer sets.A node choose an answer from a finite
set of possible answers. This assumption is reasonable when
the answer is boolean, or from a small set (“Addresses of all
Chinese restaurant within five miles”). It is not true for some
class of queries, such as those where the answer is a real
number (“What is the current temperature”).

One right answer. Each query has only one correct re-
sponse. It is also easy to imagine queries or applications
where more than one distinct answer might be correct (e.g.,
“Addresses of three nearby restaurants”) or there may be more
than one way to encode an answer with the same meaning. We
simplify the model by leaving this problem for future work.

Uniform probability of correctness. Each potential answer
is equally likely to be the correct one. In real life scenarios,
typically the initial probabilities are not known and this is a
reasonable assumption to make. If the priors are known, they
can be incorporated in the formula.

Reputation. A node’s reputation value is used as a measure
of the probability that it gives the right answer. This is a rea-
sonable assumption, since the reputation evolution mechanism
assigns reputation values based on how correct the node has
been in the past. A higher value indicates a node having a
positive history. Such a node is more likely to provide the
correct answer in future.

No collusion.The nodes do not collude with each other, i.e.,
they respond to queries independently. Having a collusion with
multiple participants is difficult to achieve in practise and is
thus a rare occurrence. Also, the nodes validate data before
propagating it further. Hence they will not propagate incorrect
data obtained from malicious peers, which can be mistaken as
collusion. Collusion is handled by our validation algorithm if
the participating nodes have negative histories and thus low
reputations.

IV. PROPOSED APPROACH

Let the reputation value of nodeni be denoted byri. Let the
actual answer beAA andAi be the answer returned by node
ni. Then we assume the source node reputation indicates the
probability that the received answerAi is equal to the actual
answer, which has value equal to the constantc.

Pr[Ai = c|AA = c] = ri

The probability with which nodei gives the incorrect answer
is equal to1 − ri. There are two cases in calculating the
probability that nodeni gives the particular incorrect answer
Ai.

If the answer can take only binary values viz. either0 or 1,
then the probability that a node lies is given by1 − ri. Thus,

Pr[Ai 6= c|AA = c] = (1 − ri)

The second case makes a closed world assumption for input,
so that the node can choose the answer from a set ofk distinct
answers. The answer range is given by{c1, c2, c3, . . . , ck}.
Then,

Pr[Ai 6= cx|AA = cx] = (1 − ri)/(k − 1)

However for most queries in practise, it is not possible to get a
reasonable estimate fork. Moreover, for some class of queries,
a node can give the incorrect answer in infinite number of
ways. The answer range size,k → ∞. Thus,

Pr[Ai 6= c|AA = c] → 0

We explored the first two cases of binary and finite answer
range size and present the results in the simulation section. We
assume that the possible answer space is discrete. They also
belong to the same domain space since they are answers to
the same question. LetA1, A2, A3 be the answers returned
by nodesn1, n2, n3 and their reputations ber1, r2 and r3

respectively.
Using Bayes theorem, probability that the actual answer is

equal toA1 given the received answers from our neighbors is,

Pr[AA = A1|(A1, A2, A3)]

=
Pr[(A1, A2, A3)|AA = A1] ∗ Pr[AA = A1]

Pr[(A1, A2, A3)]

Then the ratio of the probabilities of the actual answer to be
equal toA2 to it being equal toA1, given the replies from



our neighbors is,

Pr[AA = A2|(A1, A2, A3)]

Pr[AA = A1|(A1, A2, A3)]

=
Pr[(A1, A2, A3)|AA = A2]

Pr[(A1, A2, A3)|AA = A1]
∗

Pr[AA = A2]

Pr[AA = A1]

∗
Pr[(A1, A2, A3)]

Pr[(A1, A2, A3)]

=
Pr[(A1, A2, A3)|AA = A2]

Pr[(A1, A2, A3)|AA = A1]
∗

Pr[AA = A2]

Pr[AA = A1]

=
Pr[(A1, A2, A3)|AA = A2]

Pr[(A1, A2, A3)|AA = A1]

(assuming equal initial probabilities)

We define relative likelihood that the actual answer is equal
to A1 as,

R[AA = A1|(A1, A2, A3)] = Pr[(A1, A2, A3)|AA = A1]

A heuristic to determine which of the received answers is most
likely to be the true answer is to compute the relative proba-
bilities R[AA = A1|(A1, A2, A3)], R[AA = A2|(A1, A2, A3)]
and R[AA = A3|(A1, A2, A3)] and choose the answer with
the maximum relative correctness probability. Generalizing for
AA = Ai,

R[AA = Ai|(A1, A2, A3)] = Pr[(A1, A2, A3)|AA = Ai]

Assumption: Replies from the neighbors are conditionally
independent i.e. they do not collude while replying. Then,

R[AA = Ai|(A1, A2, A3)]

= Pr[A1|AA = Ai] ∗ Pr[A2|AA = Ai] ∗ Pr[A3|AA = Ai]

Case 1: AA = A1 and A1 6= A2 6= A3. Of the returned
answers onlyA1 equals the actual answer.

R[AA = A1|(A1, A2, A3)]

= Pr[A1 = AA|AA = A1] ∗ Pr[A2 6= AA|AA = A1]

∗ Pr[A3 6= AA|AA = A1]

= r1 ∗ (1 − r2) ∗ (1 − r3)

Using the approach where the probability with which a node
gives the incorrect answer as(1 − ri)/(k − 1), we get

R[AA = A1|(A1, A2, A3)]

= Pr[A1 = AA|AA = A1] ∗ Pr[A2 6= AA|AA = A1]

∗ Pr[A3 6= AA|AA = A1]

= r1 ∗
(1 − r2)

(k − 1)
∗

(1 − r3)

(k − 1)

Case 2: AA = A1 andA1 = A2 6= A3.Of the returned answers
both A1 andA2 agree on the actual answer.

R[AA = A1|(A1, A2, A3)]

= Pr[A1 = AA|AA = A1] ∗ Pr[A2 = AA|AA = A1]

∗ Pr[A3 6= AA|AA = A1]

= r1 ∗ r2 ∗ (1 − r3)

Using the second approach,

R[AA = A1|(A1, A2, A3)]

= Pr[A1 = AA|AA = A1] ∗ Pr[A2 = AA|AA = A1]

∗ Pr[A3 6= AA|AA = A1]

= r1 ∗ r2 ∗
(1 − r3)

(k − 1)

Case 3: AA = A4 andA1 6= A2 6= A3 6= A4 This represents
the case where none of the answers returned by the current
neighbors is the actual answer.

R[AA = A4|(A1, A2, A3)]

= Pr[A1 6= AA|AA = A4] ∗ Pr[A2 6= AA|AA = A4]

∗ Pr[A3 6= AA|AA = A4]

= (1 − r1) ∗ (1 − r2) ∗ (1 − r3)

Using the second approach,

R[AA = A4|(A1, A2, A3)]

= Pr[A1 6= AA|AA = A4] ∗ Pr[A2 6= AA|AA = A4]

∗ Pr[A3 6= AA|AA = A4]

=
(1 − r1)

(k − 1)
∗

(1 − r2)

(k − 1)
∗

(1 − r3)

(k − 1)

We compare the probabilities thus computed and choose the
answer having the maximum probability value. If the proba-
bility that none of the returned answers is the actual answer,
is the greatest, we wait till we get the actual answer from our
future neighbors. We obtain the answer to a question from at
least three neighbors before running the above calculation.

V. I LLUSTRATIVE EXAMPLES

We observed that with(k − 1) = 1, the algorithm gives
more importance to the answer given by high reputation nodes
(r > 0.5). With (k − 1) > 1, the algorithm believes more in
majority agreement.

Example 1: The answers returned by our neighbors are
A1 = 1, A2 = 0 andA3 = 0. And their reputations are



r1 = 0.25, r2 = 0.75 andr3 = 0.75. Then we have,

R[AA = 0|(1, 0, 0)] = (1 − r1) ∗ r2 ∗ r3

= 0.75 ∗ 0.75 ∗ 0.75 = 0.421875

R[AA = 1|(1, 0, 0)] = r1 ∗ (1 − r2) ∗ (1 − r3)

= 0.25 ∗ 0.25 ∗ 0.25 = 0.015625

R[AA = x|(1, 0, 0)] = (1 − r1) ∗ (1 − r2) ∗ (1 − r3)

= 0.75 ∗ 0.25 ∗ 0.25 = 0.046875

Here x is a value other than 0 and 1. ThusAA = 0 with
a higher probability. Intuitively the answer that is agreed
upon by greater number of trusted nodes is chosen above the
answer given by fewer distrustful nodes. We reach the same
conclusion using(k − 1) = 2.

Example 2: To illustrate how the validation algorithm be-
haves in general, we note that the difference in the reputations
of the good device and the other devices needed for the good
guy to win is a function of how high the reputations of the
other devices in consideration are. If we are in a high trust
neighborhood, viz. all answers are from devices having repu-
tations> 0.5, then the higher the other devices’ reputation, the
greater must be difference in reputations between the correct
guy and the other guys.

For example withr1 = 0.7, r2 = 0.6 and r3 = 0.6, and
A1 = 1, A2 = 0 andA3 = 0, node 1 wins.

However for reputationsr2 = 0.7 , r3 = 0.7 and values
A1 = 1, A2 = 0 and A3 = 0, r1 must be as high as 0.845
for node 1 to win. Thus the difference in reputations required
increases in a high trust neighborhood.

By using(k−1) = 2, with r2 = 0.6 andr3 = 0.6, andA1 =
1, A2 = 0 andA3 = 0, r1 is required to be even higher, viz.
r1 = 0.82, for the answerA1 = 1 to win. Intuitively having a
k factor increases the importance of majority agreement.

Example 3: Values areA1 = 1, A2 = 0 andA3 = 0. And
their reputations arer1 = 0.75, r2 = 0.25 andr3 = 0.25, then

R[AA = 0|(1, 0, 0)] = 0.015625

R[AA = 1|(1, 0, 0)] = 0.421875

R[AA = x|(1, 0, 0)] = 0.140625

Thus when we have one highly trusted neighbor and several
low reputation neighbors, the answer given by the highly
trusted node is chosen i.e.AA = 1.

We observed that getting an answer from a distrustful node,
that contradicts the answer given by a highly trusted node,
actually makes it easier to converge on the correct answer
given by the highly trusted node. To illustrate, if in the above
example another node with a low reputation ofr5 = 0.25 gave
the answerA5 = 1 matching that from the highly reputed node
1. Then, the probabilities would be,

R[AA = 0|(1, 1, 0)] = 0.046875

R[AA = 1|(1, 1, 0)] = 0.140625

R[AA = x|(1, 1, 0)] = 0.140625

This makes the probability ofAA = 1 become equal to the
probability that the actual answer is not received yet. Thuswe

wait for it further. So getting the correct answer from a low
reputation node can delay converging on the correct answer.
But will eventually lead to increasing its reputation, after the
answer is proved correct.

On the other hand, with(k − 1) = 2, we still converge on
the correct answer in this case.

R[AA = 0|(1, 1, 0)] =
(1 − r1)

2
∗

(1 − r2)

2
∗ r3

= (0.25/2) ∗ (0.75/2) ∗ 0.25

= 0.01171875

R[AA = 1|(1, 1, 0)] = r1 ∗ r2 ∗
(1 − r3)

2
= 0.75 ∗ 0.25 ∗ (0.75/2)

= 0.0703125

R[AA = x|(1, 1, 0)] =
(1 − r1)

2
∗

(1 − r2)

2
∗

(1 − r3)

2
= (0.25/2) ∗ (0.75/2) ∗ (0.75/2)

= 0.017578125

Thus the answer chosen isAA = 1. Here in contrast to the
previous case where(k − 1) = 1, the probability that we
do not know the answer yet, is less than that forAA = 1.
Intuitively an agreeing answer even from a low reputation
node, contributes in choosing that answer.

Example 4: In a low trust neighborhood, even a single
answer from a good guy, viz. with reputation> 0.5 is
sufficient for the good guy to win. For the border case of
r1 = 0.51, r2 = 0.49 and r3 = 0.49, andA1 = 1, A2 = 0
andA3 = 0, we have,

R[AA = 1|(1, 0, 0)] = 0.132651

R[AA = 0|(1, 0, 0)] = 0.117649

R[AA = x|(1, 0, 0)] = 0.127449

Thus even in this border case of reputations, the good guy wins
i.e. AA = 1, without having a huge difference in reputations
above the bad guys.

In the approach using(k−1) = 2, the answerAA = 0 wins
because it was returned by two nodes having reputations only
slightly less than the third node. Thus the emphasis on getting
an answer from a node havingr > 0.5 in order to believe it, is
not true anymore. This can be good strategy to tolerate errorin
reputations. On the other hand the same answer from two low
reputation nodes, wins over an answer from a high reputation
node. This might lead to compromising on the credibility of
data.

The answer validation scheme presented above relies on
an reputation evolving scheme to provide the input reputation
values. The reputation evolving scheme must give a fairly
accurate estimate of peer reputations. As we saw in example
4, the proposed validation algorithm with(k − 1) = 1, is
sensitive to accuracy of reputation values around 0.5. Thus
a correct distinction between devices as good(r > 05.) or
bad (r < 0.5) is sufficient to yield the correct answer. In
a high reputation environment, if the reputation values are
incorrect and the peers provide different versions of answers,



TABLE I
SIMULATION PARAMETERS

Spatial Dimensions 700 m x 900 m
Simulation period 30 min
Mobiles devices 50,100,150,200

Stationary devices 38
Transmission range 99.472 m
Routing Protocol AODV
Mobility pattern Vehicular trace

Cache size 10

it might take longer to converge on the correct answer. It
might even lead to concluding on the incorrect answer if a
sufficient number of incorrectly, highly reputed nodes agree
on the wrong answer.

VI. SIMULATIONS

We implemented our validation algorithm using the Glo-
mosim simulator. The information in this section was gen-
erated using the simulation parameters mentioned in Table
1. The experiment was run with 50 mobile nodes and 38
”pre-trusted” anchor nodes, for a duration of 30 minutes.
A mobility pattern of vehicular movement was chosen, with
speeds ranging from 15 m/s to 25 m/s and pause times of 0 to
30 s. Each anchor node has a list of 5 answers that it will seed
into the network every 2 minutes. Each mobile node has a set
of 5 queries that it wishes to get answered and broadcasts to
all nodes in range after every 1 minute. The mobile nodes are
assigned queries and anchor nodes are assigned answers in a
random uniform distribution pattern.

The percentage of bad nodes in the network was increased
from 0% to 100% in steps of 10%. Reputation values are
assigned to the nodes initially and do not change during the
simulation. The good nodes are assigned reputation values
> 0.5 and bad nodes are assigned values< 0.5. The bad
nodes also run the validation algorithm to obtain the correct
answer. However they push incorrect answers into the network.
The good nodes too perform the validation step, but only push
validated answers into the network. The effect on the number
of correct answers obtained in the network, the answering
latency and total traffic in the network was observed as
the fraction of bad nodes is increased in the network. The
performance of this validation algorithm is compared to that
of the validation algorithm described in [9]. The reputation of
the node represents the probability that it will answer correctly.

Figure 1 shows the average total number of correct and
incorrect answers obtained in this setup. It shows that our vali-
dation algorithm performed consistently better in terms oftotal
number of correct answers obtained than a threshold validation
approach. The number of correct answers obtained dropped
significantly as the percentage of bad nodes was increased
beyond 60%. This is because in a low trust neighborhood,
most of the received answers come from distrustful sources.
Thus the validation algorithm calculated that probabilityof
the answer not being known as the highest. Hence most
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Fig. 1. Number of correct and incorrect answers obtained as the percentage
of malicious nodes in the network is increased.

queries remained unanswered though they received multiple
copies/versions of answers from the bad nodes.

It concluded on the wrong answer more often in high
reputation environments, than the base case algorithm. This
is because when a high reputation node gives the incorrect
answer, the proposed algorithm will choose it as the correct
answer, since it relies on correctness of reputation values.
The base case algorithm does not consider the reputations
at all, but relies on reaching a threshold agreement. So it
results in fewer incorrect answers in high-trust scenarios.
In such environments where most peers are highly trusted,
majority agreement is probably better approach. However, our
algorithm performed better in low-trust environments. The
number of incorrect answers obtained was fewer than the base
case in such environments and reached a value of0 at 100%
bad nodes. At 100% bad nodes, the only way to get an answer
is by direct encounter with the source of data and not through
the cache of any peer devices.

We implemented the second approach where the probability
with which a node gives the incorrect answer is equal to
(1 − ri)/(k − 1). Figure 2 shows the number of incorrect
and correct answers obtained when there were 50% bad
nodes in the network, for different values for(k − 1). We
varied (k − 1) from 1 which is the same as in previously
mentioned experiments, up to10. We also tried to estimatek
by counting the number of unique answers we obtain for a
given query. We observe from the figure that the number of
correct answers is the maximum at(k−1) = 2, and the number
of incorrect answers is also the least in this case. Otherwise the
performance for all other values of(k − 1), is worse than the
base case where we divide by1, with more incorrect answers
and fewer correct answers.

Figure 3 shows the number of correct and incorrect answers
obtained using both the approaches as the number of bad nodes
in the network are increased. We observe from figure that the
performance is almost the same up to around 50% bad nodes.
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Fig. 2. Number of correct and incorrect answers obtained using the new
setup.
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(k-1)=1 viz. base case and when (k-1)=2.

Greater number of correct answers are obtained using(k −
1) = 2 in highly distrustful environments. This is because in
low trust environment, the bad nodes return the correct answers
with a small probability. With(k − 1) = 2, the algorithm is
able to conclude on the correct answer returned by bad nodes
if sufficient number of nodes agree on the correct answer.
With k − 1 = 1, the algorithm rejects the right answer if it
comes from a low reputation node. However, the number of
wrong answers also increases for(k − 1) = 2 as compared to
(k − 1) = 1. This is due to the same reason that if enough
number of nodes agree on the wrong answer, the algorithm
takes it to be the correct answer.

VII. C ONCLUSION AND FUTURE WORK

We proposed a data validation scheme based on Bayes
theorem. The nodes consider the data and the data source
reputation to determine the most correct answer. We looked at
how the algorithm works for different cases of data values and
reputations. We observed the performance for the two cases of

binary and finite answer range size. Simulation results showed
that the algorithm usingk−1 = 1 performs very well in terms
of reliability and accuracy of data in low trust environments
(> 50% bad nodes). In high trust environments(< 50% bad
nodes), majority voting works best in terms of accuracy of
data.

For future work we are investigating how to avoid the
computation involved in validating other answers receivedby
a device i.e. the answers that do not correspond to any of
the queries that the device has. We can do that by assigning
an accuracy level to each answer received without going
through the validation algorithm. When propagating answers
in the network, devices also push their confidence values.
This scheme will help in making the right decisions about
reputation evolution. The reputation evolution mechanismwill
not only consider the answer value but also its suggested
accuracy while updating reputation values.
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