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Abstract—A feature common to many pervasive computing device. We choose the data which is most likely to be correct
scenarios is that devices acquire information about their eviron- using the provided data along with the reputations of their

ment from peers through short-range ad-hoc wireless connéions — 4rces. This technique aims to reduce the risk of propagati
and use it to maintain a model of their current context. A . .
incorrect data in the network.

fundamental issue in such situations, is that knowledge ohined - A b ) ) )
from peer devices may vary in reliability with devices providing We illustrate the applicability of our technique in a reif-|
incorrect data either inadvertently out of ignorance or other scenario. Soldiers on the battlefront carrying mobile hand

limitations or intentionally in pursuit of malicious or self-serving held devices with wireless capabilities is a scenario where
goals. We describe a heuristic based on a Bayesian approadh t j; js yseful to cache the latest information obtained from

infer which of the received answers is most likely to be corret. devi This includes inf fi bout I
The suggested answers and the reputation values of the soesc PEEM dEVICES. ThiS INnCludes information about suppliesign

themselves are used to determine the most likely answer. Wape ~ Strength, strategic planning etc. In such tactical envirents a
implemented the techniques and evaluated them in a prototyp central trusted authority is lacking and connectivity isatite.

system using the Glomosim network simulator, and show that Using a validation technique to verify data ensures crétjibi
our scheme improves data accuracy in low trust environments of data

I. INTRODUCTION II. RELATED WORK

In pervasive computing environments, devices can be bothJonker et al. [7] propose a formal framework for trust
producers and consumers of data. A device cannot always relplution. They propose a mathematical model for trust man-
on a central, trusted source for information and knowletige, agement in multi-agent systems. The trust function is based
must rely on information available from peers connected oven intial trust, experiences and trust dynamics. Pedchl.
mobile ad-hoc networks (MANETS). Scenarios such as firf8] propose a distributed, mathematical model for trust and
responders reacting to an event, vehicular ad-hoc networkelief management in mobile ad hoc networks. The model
and battlefield information management are classic exanpleategorizes devices as reliable and unreliable. Seveuat tr
Several researchers have proposed techniques for managgagning functions are described based on experience &nad re
data and information in such environments based on the id@amendations from peers. The devices perform information
that peer devices cache information and cooperate (see $ource discovery and combine the suggested answer accuracy
instance [1], [2], [3]) degree and reputation of sources to decide on the final answer

In such situations, the information provided by peer devic&he devices accept the answer whose accuracy level is above
may not be reliable. This could be due to the presence afthreshold value and is the highest among the received
malicious devices in the network or simply due to theianswers. Simple ways of combining accuracies of different
ignorance. Peer-provided data cannot benefit from the igcurersions of an answer are used like taking the maximum,
mechanisms available in a client-server environment. We naninimum and average accuracy. Our focus is not on how
that in our scenarios, devices are moving, and the underlyitiust relations evolve, rather our approach works on top of
network topology (and hence the peers of any given node}rust evolving mechanism. Moreover the model proposed by
are changing over time. This makes the problem differeRerichet al. often concluded on the incorrect answer in highly
from many of the agreement protocols commonly studied @tishonest environments. Our approach works reliably irhsuc
distributed systems. environments.

We propose a new technique to infer the most accurate daté\n approach is described by Patwardeaal. [9] in which
from the different versions of the same data provided bygeea few nodes are trusted a priori and data is validated either
Our approach is a heuristic based on probability theoryr@ hausing agreement among peers or direct communication with a
is a growing body of work in reputation management schemessted node. Collaborative propagation of reliable daip$
that seek to use the past behavior of a peer to establishiitamproving the timeliness of data. Bad nodes are detected
reputation, for instance [4], [5], [6]. The reputation valis when the data they provide is invalidated by the validation
an indicator of both the trustworthiness and capabilitytaf t algorithm. Consensus is achieved when the number of copies



agreeing is greater than a threshold value. The reputatibns No collusion. The nodes do not collude with each other, i.e.,

the devices are not considered when determining the conserthey respond to queries independently. Having a collusiitim w

answer. We use this approach as a base line to comparerthdtiple participants is difficult to achieve in practisedais

performance of our validation algorithm. thus a rare occurrence. Also, the nodes validate data before

propagating it further. Hence they will not propagate imeot

data obtained from malicious peers, which can be mistaken as
We wish to infer the most accurate data from the differebllusion. Collusion is handled by our validation algonitlif

versions provided by our peers. A simple approach would liee participating nodes have negative histories and thws lo

to accept the answer from the highest reputation node amgbutations.

reject the other answers that were received from lower repu-

tation nodes. However, this has the disadvantage of exeessi IV. PROPOSED APPROACH

reliance on the reputation values. For example if we reckive

answer(0 from a node with reputation.9 and the answet

from three other neighbors with reputations only slighdgd,

I1l. BACKGROUND

Let the reputation value of nodg be denoted by;. Let the
actual answer bel 4 and A; be the answer returned by node
n;. Then we assume the source node reputation indicates the

0.83, 0.85 an_((djo.ééz. I?hth|s ﬁf”‘shel’ Itis 'Ptg'tw%to believe theprobability that the received answdr; is equal to the actual
answer provided Dy three highly reputed nodes. . answer, which has value equal to the constant
Another approach is to find the answer based on majority

agreement as studied in [9]. An answer is accepted after the PrlA; =clAa=¢ =

number of nodes that agree on an answer becomes greater

than some threshold value. However, this approach coniplet&he probability with which node gives the incorrect answer

ignores the reputations, leading to compromising on ddgequal tol — r;. There are two cases in calculating the

reliability in low trust scenarios. probability that node:; gives the particular incorrect answer
We propose an approach that takes into account the reputa-

tions as well as consensus to decide the most accurate answéf the answer can take only binary values viz. eitheor 1,

Simulation results show that the approach for data vabadatithen the probability that a node lies is given by- ;. Thus,

presented here performs very well in terms of accuracy in

low trust scenarios. However the bayesian approach we use

requires some assumptions.

Pr[A; #clAa=c = (1-r)

The second case makes a closed world assumption for input,
A. Assumptions so that the node can choose the answer from a settinct

. ., answers. The answer range is given €2,C3y .y Ck}e
Our approach makes a number of assumptions which WRan 9 9 B2 05 o

sketch and motivate here.

Finite answer setsA node_choose an answer from a finite PrlA; # colAa=c.] = (1—ri)/(k—1)
set of possible answers. This assumption is reasonable when
the answer is boolean, or from a small set (“Addresses of &dlbwever for most queries in practise, it is not possible tbege
Chinese restaurant within five miles”). It is not true for somreasonable estimate fér Moreover, for some class of queries,
class of queries, such as those where the answer is a medlode can give the incorrect answer in infinite number of
number (“What is the current temperature”). ways. The answer range size— oo. Thus,

One right answer. Each query has only one correct re-
sponse. It is also easy to imagine queries or applications
where more than one distinct answer might be correct (e.g.
“Addresses of three nearby restaurants”) or there may be m
than one way to encode an answer with the same meaning.
simplify the model by leaving this problem for future work.

Uniform probability of correctness. Each potential answer

is equally likely to be the correct one. In real life scen&rioby nodesni, na, ns and their reputations bey,r, and rs
typically the initial probabilities are not known and this a respectively’ ’ ’

reasonable assumption to make. If the priors are known, theyUsing Bayes theorem, probability that the actual answer is

can be mc_orporated |,n the formula. : equal toA; given the received answers from our neighbors is,
Reputation. A node’s reputation value is used as a measure

of the probability that it gives the right answer. This is a-re PrlAy = A1|(A1, Ay, A3)]

sonable assumption, since the reputation evolution mesiman Pr((Ay, As, A3)|Aa = Ar] % PriAs = Aj
assigns reputation values based on how correct the node has Pr(Ay, Ay, 43)]

been in the past. A higher value indicates a node having a A, A2, 43
positive history. Such a node is more likely to provide th&hen the ratio of the probabilities of the actual answer to be
correct answer in future. equal to A, to it being equal toA;, given the replies from

Pr[A; # c|Aa=¢] — 0

We explored the first two cases of binary and finite answer
ge size and present the results in the simulation sedtien
Sume that the possible answer space is discrete. They also
belong to the same domain space since they are answers to
the same question. Led;, A5, A3 be the answers returned




our neighbors is, Case2: Ay = Ay andA; = A; # A5.0Ofthe returned answers

both A; and A, agree on the actual answer.
P’I’[AA = A2|(A1, AQ, Ag)]

PT‘[AA = A1|(A1, AQ, A3)]
_ Pr{(Ar, Ag, A3)|Aa = As] | Pr{Aa = Ay R[Aa = A1|(Ay, Ay, A3)]

P;[([f&a Ajf Az)lﬁu =] Prida= A = PrlA; = Ag|As = Ay # Pr(Ay = Ap|As = A)]

r 1,42, A3 _

* Pr((Ay, Az, As)] _ iiriAié/ﬁAlf)lA 4l
_ Pr[(Ay, Ao, A3)[Aa = Ay e 3
o PT[(Al, AQ, A3)|AA = Al]
- PT[(Al,AQ,A3)|AA = AQ]
o PT[(Al,AQ,A3)|AA = Al]

(assuming equal initial probabilities) R[A4 = A1|(Ay, Ag, A3)]

. . N . = Pr[A; = Aa|Aas = A1 x Pr[As = Ax|Aa = A
We define relative likelihood that the actual answer is equal rlAr = AalAa = Ai] « Prids = Aslds = A]
tOAl as, *PT[A3#AA|AA:A1]

(1 — 7‘3)
(k=1

]
*
Using the second approach,

=171 %79 %

R[AA = A1|(Ala A27A3)] = PT[(Ala A27A3)|AA = Al]

A heuristic to determine which of the received answers istmds@Se 3: 44 = As and A, # Ay # Az # A4 This represents
likely to be the true answer is to compute the relative probH!€ case where none of the answers returned by the current

bilities R[A4 = A1|(Ay, Az, A3)], R[A4 = Ao|(Ay, Az, A3)] neighbors is the actual answer.
and R[A4 = As|(A1, A2, A3)] and choose the answer with
the maximum relative correctness probability. GenenadjZor
Ap = A;, R[AA = A4[(A1, Az, A3)]
= PT[Al 75 AA|AA = A4] * PT‘[AQ 75 AA|AA = A4]

R[Ax = Ail (A1, Az, A3)] = Pr{(Ar, Az, Ag)|Aa = Aj] « PrlAy # Aa|Ay = Ay

Assumption: Replies from the neighbors are conditionally —~ (I —r) (1 =m)* (1 —73)

independent i.e. they do not collude while replying. Then, Using the second approach,

R[A4 = A;j|(A1, As, A3)]

= P’I’[A1|AA = Az] * P’I’[A2|AA = Al] *PT[A3|AA = Al] R[AA _ A4|(A1,A2,A3)]
Case 1. Ay = Ay and A; # A, # As. Of the returned = Pr(Ay # AalAa = Aa] x Pr{Ay # AalAa = A4
answers only4; equals the actual answer. * Pr{As # Aa|Aa = A4

(1 —7‘1) (1 —7‘2) (1 —T3)

BCEN R CED R CED)

Blda = 4i[(4r, 40, 45) We compare the probabilities thus computed and choose the
= Pridy = Aalda = A+ Pridy # Aalda = Ai] answer having the maximum probability value. If the proba-
* PrAs # Aa|Aa = A4 bility that none of the returned answers is the actual answer
=ry*x(1—7r2)x(1—r3) is the greatest, we wait till we get the actual answer from our
future neighbors. We obtain the answer to a question from at
Using the approach where the probability with which a nodeast three neighbors before running the above calculation
gives the incorrect answer &% — r;)/(k — 1), we get

V. ILLUSTRATIVE EXAMPLES

R[A4 = A1|(Aq, As, A3)] We observed that witl{k — 1) = 1, the algorithm gives
— Pr[A; = Au|As = A] * Pr{As # Aa|Aa = A more importance to the answer given by high reputation nodes
(r > 0.5). With (k — 1) > 1, the algorithm believes more in
* Prids # AalAsq = Ai] majority agreement.
=k (1 —72) % (1—r3) Example 1. The answers returned by our neighbors are
(k=1) (k=1) Ay =1, A, = 0 andd; = 0. And their reputations are




ry = 0.25, ro = 0.75 andrz = 0.75. Then we have,
R[A4 =0[(1,0,0)] = (1 —71) xro*13
=0.75%0.75 % 0.75 = 0.421875
R[AA =1|(1,0,0)] =71 (1 — 7o) * (1 — r3)
=0.25%0.25 % 0.25 = 0.015625

wait for it further. So getting the correct answer from a low
reputation node can delay converging on the correct answer.
But will eventually lead to increasing its reputation, aftiee
answer is proved correct.

On the other hand, witlik — 1) = 2, we still converge on
the correct answer in this case.

R[A4 =2|(1,0,0)] = (1 —7r1) % (1 —r2) x (1 —r3) R[A4 =0|(1,1,0)] = (1—2T1) N (1—2T2) 7y
=0.75*0.25 x 0.25 = 0.046875 — (0.25/2) # (0.75/2)  0.25
Here z is a value other than 0 and 1. Thusy = 0 with — 0.01171875
a higher probability. Intuitively the answer that is agreed (1—13)
upon by greater number of trusted nodes is chosen above th€lAa = (1L, L,O)] = rixrax 2
answer given by fewer distrustful nodes. We reach the same = 0.75%0.25 % (0.75/2)
conclusion usingk — 1) = 2. —  0.0703125
Example 2: To illustrate how the validation algorithm be- (1—r) (1—ry) (1—r3)

haves in general, we note that the difference in the repusti  R[A4 = [(1,1,0)] =
of the good device and the other devices needed for the good
guy to win is a function of how high the reputations of the
other devices in consideration are. If we are in a high trust

neighborhood, viz. all answers are from devices having+epphus the answer chosen i$4 = 1. Here in contrast to the

tations> 0.5, then the higher the other devices’ reputation, therevious case wherék — 1) = 1, the probability that we

greater must be difference in reputations between the @orrgo not know the answer yet, is less than that for = 1.

guy and the other guys. Intuitively an agreeing answer even from a low reputation
For example withr; = 0.7, ro = 0.6 andrs = 0.6, and node, contributes in choosing that answer.

A1 =1, A, =0 and A3 = 0, node 1 wins. Example 4: In a low trust neighborhood, even a single
However for reputations, = 0.7 , r3 = 0.7 and values answer from a good guy, viz. with reputation 0.5 is

A =1, A, = 0 and A3 = 0, 1 must be as high as 0.845gyfficient for the good guy to win. For the border case of
for node 1 to win. Thus the difference in reputations reqlirg., — .51, r, = 0.49 andrs = 0.49, and A; = 1, Ay = 0

increases in a high trust neighborhood. and A; = 0, we have,
By using(k—1) = 2, withr, = 0.6 andrs = 0.6, andA; =

2 T2 T3
—  (0.25/2) % (0.75/2) % (0.75/2)
—  0.017578125

1, A, = 0 and A3 = 0, r; is required to be even higher, viz. R[A4 =1[(1,0,0)] = 0.132651
r1 = 0.82, for the answerd; = 1 to win. Intuitively having a R[A4 =0](1,0,0)] = 0.117649
k factor increases the importance of majority agreement. R[Ax = z[(1,0,0)] = 0.127449

Example 3: Values ared; =1, A, = 0 and A3 = 0. And
their reputations are; = 0.75, 7, = 0.25 andr3 = 0.25, then Thus even in this border case of reputations, the good guy win
i.,e. A4 = 1, without having a huge difference in reputations

R[4 =0/(1,0,0)] = 0.015625 above the bad guys.
R[A4 =1](1,0,0)] = 0.421875 In the approach using: —1) = 2, the answerd 4 = 0 wins
R[A4 = 2[(1,0,0)] 0.140625 because it was returned by two nodes having reputations only

. . slightly less than the third node. Thus the emphasis onrggtti
Thus when we have one highly trusted neighbor and seve %Panswer from a node havimg> 0.5 in order to believe it, is

low reputation neighbors, the answer given by the high ot true anymore. This can be good strategy to tolerate grror

truﬁg%gggﬁ; fﬁ;{segtt'i'r;ﬂ“‘ai ;ﬁswer from a distrustiul no O[eputations. On the other hand the same answer from two low
that contradicts the %mswger ven bv a hiahlv trusted n()J%putation nodes, wins over an answer from a high reputation

. . 9 y gnly ode. This might lead to compromising on the credibility of
actually makes it easier to converge on the correct answer,

given by the highly trusted node. To illustrate, if in the abo The answer validation scheme presented above relies on

example another node with a low reputation-gf= 0.25 gave . . ; : :
the answerd; = 1 matching that from the highly reputed nod@él leiguﬁﬂgnr?ﬂg ggnsﬂ:zrlciento Ecrﬁ:rii tfr:qeu;r:puit\/ree|a fatilrl
1. Then, the probabilities would be, ' P 9 9 y

accurate estimate of peer reputations. As we saw in example

R[A4 =0|(1,1,0)] = 0.046875 4, the proposed validation algorithm wittk — 1) = 1, is
R[As =1|(1,1,0)] = 0.140625 sensitive to accuracy of reputation values around 0.5. Thus

T a correct distinction between devices as ggod> 05.) or
R[AA = x/(1,1,0)] 0.140625

bad (r < 0.5) is sufficient to yield the correct answer. In
This makes the probability ofi4 = 1 become equal to the a high reputation environment, if the reputation values are
probability that the actual answer is not received yet. Thias incorrect and the peers provide different versions of answe
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VI. SIMULATIONS Fig. 1. Number of correct and incorrect answers obtainedhapércentage
of malicious nodes in the network is increased.

We implemented our validation algorithm using the Glo-
mosim simulator. The information in this section was gen-
erated using the simulation parameters mentioned in Table ) ) )
1. The experiment was run with 50 mobile nodes and Hieries remalned unanswered though they received multiple
"pre-trusted” anchor nodes, for a duration of 30 minute§OPies/versions of answers from the bad nodes.
A mobility pattern of vehicular movement was chosen, with It concluded on the wrong answer more often in high
speeds ranging from 15 m/s to 25 m/s and pause times of O'@putation environments, than the base case algorithns Thi
30 s. Each anchor node has a list of 5 answers that it will selédbecause when a high reputation node gives the incorrect
into the network every 2 minutes. Each mobile node has a g&swer, the proposed algorithm will choose it as the correct
of 5 queries that it wishes to get answered and broadcast@fswer, since it relies on correctness of reputation values
all nodes in range after every 1 minute. The mobile nodes afBe base case algorithm does not consider the reputations
assigned queries and anchor nodes are assigned answersdh &ll, but relies on reaching a threshold agreement. So it
random uniform distribution pattern. results in fewer incorrect answers in high-trust scenarios

The percentage of bad nodes in the network was increadBgsuch environments where most peers are highly trusted,
from 0% to 100% in steps of 10%. Reputation values afgajority agreement is probably better approach. However, o
assigned to the nodes initially and do not change during tAlgorithm performed better in low-trust environments. The
simulation. The good nodes are assigned reputation valipnber of incorrect answers obtained was fewer than the base
> 0.5 and bad nodes are assigned val4es).5. The bad case in such environments and reached a valug aif 100%
nodes also run the validation algorithm to obtain the carreead nodes. At 100% bad nodes, the only way to get an answer
answer. However they push incorrect answers into the n&two§ by direct encounter with the source of data and not through
The good nodes too perform the validation step, but only pulie cache of any peer devices.
validated answers into the network. The effect on the numberWe implemented the second approach where the probability
of correct answers obtained in the network, the answerimgth which a node gives the incorrect answer is equal to
latency and total traffic in the network was observed d3¢ — 7;)/(k — 1). Figure 2 shows the number of incorrect
the fraction of bad nodes is increased in the network. Tlaad correct answers obtained when there were 50% bad
performance of this validation algorithm is compared tat thaodes in the network, for different values fok — 1). We
of the validation algorithm described in [9]. The reputatiof varied (k — 1) from 1 which is the same as in previously
the node represents the probability that it will answerectly. mentioned experiments, up 1®. We also tried to estimate

by counting the number of unique answers we obtain for a

Figure 1 shows the average total number of correct agiven query. We observe from the figure that the number of
incorrect answers obtained in this setup. It shows that alir v correct answers is the maximum(at-1) = 2, and the number
dation algorithm performed consistently better in termtotdl of incorrect answers is also the least in this case. Otherhis
number of correct answers obtained than a threshold viidatperformance for all other values ¢k — 1), is worse than the
approach. The number of correct answers obtained dropgi@se case where we divide bywith more incorrect answers
significantly as the percentage of bad nodes was increag@l fewer correct answers.
beyond 60%. This is because in a low trust neighborhood,Figure 3 shows the number of correct and incorrect answers
most of the received answers come from distrustful sourcedtained using both the approaches as the number of bad nodes
Thus the validation algorithm calculated that probabilify in the network are increased. We observe from figure that the
the answer not being known as the highest. Hence ma&trformance is almost the same up to around 50% bad nodes.
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Fig. 3. Comparison of the number of correct/incorrect amsvebtained at
(k-1)=1 viz. base case and when (k-1)=2.

Greater number of correct answers are obtained uing

binary and finite answer range size. Simulation results sldow
that the algorithm using —1 = 1 performs very well in terms
of reliability and accuracy of data in low trust environment
(> 50% bad nodes). In high trust environmentst0% bad
nodes), majority voting works best in terms of accuracy of
data.

For future work we are investigating how to avoid the
computation involved in validating other answers receibgd
a device i.e. the answers that do not correspond to any of
the queries that the device has. We can do that by assigning
an accuracy level to each answer received without going
through the validation algorithm. When propagating answer
in the network, devices also push their confidence values.
This scheme will help in making the right decisions about
reputation evolution. The reputation evolution mechanigih
not only consider the answer value but also its suggested
accuracy while updating reputation values.
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