
Uncertainty Reasoning for the Semantic Web
Workshop 12

Fernando Bobillo, Paulo Costa, Claudia d'Amato, Nicola Fanizzi, 
Francis Fung, Thomas Lukasiewicz, Trevor Martin, Matthias Nickles, 
Yun Peng, Michael Pool, Pavel Smrz, Peter Vojtas

Workshop Organizers:



ISWC 2007 Sponsor 

 

 

Emerald Sponsor 

 

 

Gold Sponsor 

       

 

   

 

Silver Sponsor 

     

 

           

 

We would like to express our special thanks to all sponsors 



ISWC 2007 Organizing Committee  

General Chairs 

Riichiro Mizoguchi (Osaka University, Japan) 

Guus Schreiber (Free University Amsterdam, Netherlands) 

Local Chair 

Sung-Kook Han (Wonkwang University, Korea) 

Program Chairs 

Karl Aberer (EPFL, Switzerland) 

Key-Sun Choi (Korea Advanced Institute of Science and Technology) 

Natasha Noy (Stanford University, USA) 

Workshop Chairs 

Harith Alani (University of Southampton, United Kingdom) 

Geert-Jan Houben (Vrije Universiteit Brussel, Belgium) 

Tutorial Chairs 

John Domingue (Knowledge Media Institute, The Open University) 

David Martin (SRI, USA) 

Semantic Web in Use Chairs 

Dean Allemang (TopQuadrant, USA) 

Kyung-Il Lee (Saltlux Inc., Korea) 

Lyndon Nixon (Free University Berlin, Germany) 

Semantic Web Challenge Chairs 

Jennifer Golbeck (University of Maryland, USA) 

Peter Mika (Yahoo! Research Barcelona, Spain) 

Poster & Demos Chairs 

Young-Tack, Park (Sonngsil University, Korea) 

Mike Dean (BBN, USA) 

Doctoral Consortium Chair 

Diana Maynard (University of Sheffield, United Kingdom) 

Sponsor Chairs 

Young-Sik Jeong (Wonkwang University, Korea) 

York Sure (University of Karlsruhe, German) 

Exhibition Chairs 

Myung-Hwan Koo (Korea Telecom, Korea) 

Noboru Shimizu (Keio Research Institute, Japan) 

Publicity Chair: Masahiro Hori (Kansai University, Japan) 

Proceedings Chair: Philippe Cudré-Mauroux (EPFL, Switzerland 

Metadata Chairs 

Tom Heath ( KMi, OpenUniversity, UK) 

Knud Möller (DERI, National University of Ireland, Galway) 

 



The 3rd Workshop on Uncertainty Reasoning for the Semantic Web 

 
The Uncertainty Reasoning Workshop is an exciting opportunity for collaboration and 

cross-fertilization between the uncertainty reasoning community and the Semantic Web 

community. 

Effective methods for reasoning under uncertainty are vital for realizing many 

aspects of the Semantic Web vision, but the ability of current-generation web technology to 

handle uncertainty is extremely limited. Recently, there has been a groundswell of demand 

for uncertainty reasoning technology among Semantic Web researchers and developers. 

This surge of interest creates a unique opening to bring together two communities 

with a clear commonality of interest but little history of interaction. By capitalizing on this 

opportunity, URSW could spark dramatic progress toward realizing the Semantic Web vision 

The intended audience for this workshop includes the following: 

• Researchers in uncertainty reasoning technologies with interest in the Semantic 

Web. 

• Semantic web developers and researchers. 

• People in the knowledge representation community with interest in the Semantic 

Web. 

• Ontology researchers and ontological engineers. 

• Web services researchers and developers with interest in the Semantic Web. 

• Developers of tools designed to support Semantic Web implementation, e.g., Jena 

developers, Protege and Protege-OWL developers. 

We intend to have an open discussion on any topic relevant to the general subject of 

uncertainty in the Semantic Web (including fuzzy theory, probability theory, and other 

approaches). Therefore, the following list should be just an initial guide: 

• Syntax and semantics for extending Semantic Web languages to include principled 

treatment of uncertain, incomplete information. 

• Logical formalisms to support uncertainty in Semantic Web languages 

• New forms to use uncertainty reasoning as a means of assessing whether similar 

terms in different ontologies refer to the same or similar concepts 

• Architectures for applying plausible reasoning to the problem of ontology mapping 

• Using fuzzy approaches to deal with imprecise concepts within ontologies 

• The concept of a probabilistic ontology and its relevance to the Semantic Web 

• Best practices for representing uncertain, incomplete, ambiguous, or controversial 

information in the Semantic Web 

• The role of uncertainty as it relates to Web services 

• Uncertainty-friendly interface protocols as a means to improve interoperability among 

Web services 

• Uncertainty reasoning techniques applied to trust issues in the Semantic Web 

• Existing implementations of uncertainty reasoning tools in the context of the 

Semantic Web 

• Issues and techniques for integrating plausible inference tools 

• The future of uncertainty reasoning for the Semantic Web 
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Abstract. Partial knowledge about geospatial categories is critical for 
knowledge modelling in the geospatial domain but is beyond the scope of 
conventional ontologies. Degree of overlaps between geospatial categories, 
especially those based on geospatial actions concepts and geospatial enitity 
concepts need to be specified in ontologies. We present an approach to encode 
probabilistic information in geospatial ontologies based on the BayesOWL 
approach. This paper presents a case study of using road network ontologies. 
Inferences within the probabilistic ontologies are discussed along with 
inferences across ontologies using common concepts of geospatial actions 
within each ontology. The results of machine-based mappings produced are 
verified with human generated mappings of concepts.   

Keywords: geospatial ontologies, probabilistic, concept mappings, human 
subjects testing.  

1   Introduction 

 Ontologies, which allow the use of probabilistic representation of categories, 
are under increasing focus [1]. Reasoning mechanisms using such probabilistic in-
formation, which not only allow inferring equivalent concepts but also the ‘most 
similar’ or the ‘least similar’ concepts are best suited for practical use of ontologies. 
Support for such mechanisms can also be found in cognitive sciences, which assume 
conceptual spaces to denote a concept [2] and distances between such spaces to 
explain the notion of similarity between two concepts [3]. Cognitive basis for the 
specification of geospatial ontologies have been favoured by many researchers [4]. 
However, current work in geospatial ontologies does not provide sufficient insight 
into the use of probabilistic knowledge in ontologies. Although mechanisms to 
specify such information have already been attempted, for the semantic web [5], such 
probabilistic ontologies have not been explored inside the geospatial domain. 

This paper aims to explore this gap and illustrates the use of probabilistic 
ontologies in the geospatial domain. We employ the approach of BayesOWL [5] to 
specify probabilistic geospatial ontologies primarily related to road network entities. 
While we draw extensively on the ideas of BayesOWL, our work mainly concentrates 
on (1) extracting and using probablistic information in geospatial ontologies, (2) 
Inferences across geospatial ontologies based on the assumption of geospatial action 
concept names, and (3) its applicability to enabling semantic reference. The use of 
probabilistic geospatial ontologies for practical tasks of semantic translations is the 
main contribution of this paper. 



2 Background 

Existing literature in geographical information science points out the significance 
of geospatial ontologies as tools to represent conceptualizations in the geospatial 
domain. Such knowledge representation tools are mostly used to resolve semantic 
differences and promote interoperability between applications across information 
communities [6]. 

 Agarwal [7] has discussed that a unified approach to ontology specification 
in the geospatial domain does not exist. Different approaches including the 
approaches of formal ontologies [8] and algebraic approaches [9], Rüther et al.  [10] 
have evolved in parallel to the conventional approaches of Description Logic (DL) 
based specifications. Geospatial ontology engineering has been also proposed to 
enable a supportive environment for knowledge representation in the geospatial 
domain [11]. However the challenges for geospatial ontologies as tools of knowledge 
representation remain unresolved to a large extent. The primary questions that need to 
be answered include the following: 
• Gomez-Perez and Benjamins [12] have stated that the number of ontologies 

specified is not large enough for their use in practical and industrial scale 
applications. This is true for the geospatial domain and practically verified 
ontologies are still to be produced. In their absence it is impossible to verify their 
utility and hence their contributions to semantic interoperability. 

• With a similar point of view, it has been discussed that the tools and principles of 
ontologies are still viewed with skepticism even after years of research. Agarwal 
[7] has pointed out that geographic concepts and categories have inherent 
indeterminacy and vagueness; especially that emerge from human reasoning and 
conceptualization. It is therefore unlikely that the semantic ambiguities can be 
resolved without accounting for the uncertainty factor. 

• Geospatial ontologies have either looked at geographic space either from the 
point of view of the geospatial entities with it or from that of geospatial actions. 
A unified view, which incorporates knowledge of geospatial actions in ontologies 
of geospatial entities and which treats both these components of knowledge as 
equally important, is necessary. Kuhn [13] advocates the inclusion of actions and 
affordances in geospatial ontologies.   

Geospatial ontologies are in need of innovative approaches to ensure their practical 
use. In order that geospatial conceptualizations can be encoded in ontologies, 
emerging techniques in ontological specifications and knowledge representation need 
to be adapted and experimented in the geospatial domain. These include probabilistic 
ontologies and inclusion of knowledge about geospatial actions and their hierarchies 
[14]. 

2.1 Need for probabilistic frameworks 

We have already mentioned that uncertainties are abundant in categories of geospatial 
entities. Zhang and Goodchild [15] state “…and in the face of fuzziness, Boolean 
logic is surely less versatile in dealing with discourse that is full of heuristic 
metaphors, linguistic hedges and other forms of subjectivity”. One of the arguments 
against knowledge engineering based on conventional ontologies has been against the 
use of rigid categories as opposed to partial, incomplete, or probablistic categories of 
the real world. It is also important to note that differences between such real world 



categories are measurable in terms of a similarity (or a dissimilarity) score. As 
opposed to crisp, binary classification of instances into a certain geospatial category, 
it is usual to express the relative suitability of an instance to a category (such as Road) 
in comparison to others (say, Motorway). Note that the definition of the category itself 
is precise but there is only a probability, given the current knowledge about inclusions 
and overlaps between categories that a certain instance fits into a certain category. 
Although there is a tendency to associate probablistic cateogories with natural 
geospatial entities we need to note, that since our categories are precise, using 
examples of man-made entities from the transportation domain is appropriate as well. 

To comprehend the notion of uncertainity or partial information, which we 
attempt to address it, is important to understand that there are overlaps between 
categories modelled within an ontology. For example, while modelling concepts of a 
road network ontology (shown in Fig 1), besides knowing that a class FootPath 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 (a) Representation of five classes of a road network ontology. While Highway and 
Street are subclasses of Road, Footpath is a subclass of Path. Evidently this representation 
shows that Highway and Footpath are small subclasses of Road and Path respectively. Street 
has a major overlap with Path allthough it is not a subclass. (b) Representation of the five 
classes as a subsumption relation in a conventional ontology (note that in this diagram, arrows 
point to the subclass).   
is a subclass of class Path, one may also know and wish to express that “Footpath is a 
small subclass of the class Path”; or in another case where a class Street and Path are 
not logically related, one may still want to say that “Street and Path are largely 
overlapped with each other”. Users of ontologies would therefore like to know how 
close is a Street from a Road or a degree of similarity between Road and Street. Such 
tasks are beyond the scope of conventional ontologies [5], as partial knowledge is 
ignored as shown in the subsumption hierarchy of figure 1(a). Therefore, a 
mechanism to specify probabilistic ontologies and carry out reasoning tasks on them 
is also critical for practical use of geospatial ontologies. 

Probabilistic specifications have a strong relation in the context of using 
affordances and functions of geospatial entities in ontologies. The concept of 
categorization of manmade geospatial entities such as roads and road network 
components is closely associated with the functions or actions that they afford. Often, 
the association of such functions with certain entities is not deterministic and context 
sensitive. However, based on personal experience, humans are able to provide a 
relative value of the association between an entity and a function. Thus a Motorway is 
more strongly associated to the function of driving as compared to a Street or a Path. 
At the same time, we can argue that Driving is not associated to Footpaths. In a 
probabilistic ontology framework, the associations between entities and functions can 
be specified as probabilistic linkages. The overlaps of categories such as Road or 



Footpath and things that afford driving as shown in Figure 2 below are such links and 
we attempt to use such overlaps in probabilistic ontologies. 

 
 

 
 
 
 
 
 
 
 
 

Figure 2 Sample representation of overlaps between some entity concepts and action based 
concepts for road networks in the UK. While ellipses with solid borders represent geospatial 
entities, the ellipses with dashed borders represent abstract concepts based on the entities that 
afford certain geospatial action.  

 
It is important to note that translation of meanings of symbols used to represent 
certain entities between two agents is directly related to the affordances of the entities 
with respect to different geospatial actions. Affordances and functions are always in 
relation to a certain agent and its goals [16]. This requires that the mapping of 
functions and entities be updated on the basis of the context in hand. Our framework 
seeks to provide a mechanism for flexible translations based on reviseable 
probabilistic values of enitity-action linkages in a given context. Such mechanisms to 
specify contexts are critical for enabling pragmatics as discussed by Brodaric (2007). 

2.1 Ontologies as Bayesian Networks  

PR-OWL [1] and BayesOWL [5] are two approaches that use a BN based 
representation of ontologies. Of these, BayesOWL provides an approach for 
specification and reasoning. 

Ding et al [5] developed a mechanism of expressing OWL ontologies as Bayesian 
networks termed as BayesOWL. The important steps to construct such ontologies are 
as below: 
Construction of the Directed Acyclic Graph (DAG): The entity classes to be used are 

listed first and the topmost (most universal) concept is added to the top of the DAG 
as a node. Child concepts of this concept are added below the parent concept as 
individual nodes and the complete DAG is created by constructing the links. Each 
node has only 2 states (True, False) 

Regular Nodes and L Nodes: The nodes created above are called Regular nodes. 
There are another category of nodes called L Nodes, which help in constructing 
Union, Intersection, Disjoint and Equivalent relationships. Since we do not use any 
of these relationships in our ontologies we shall ignore construction of L Nodes. 

Allocating conditional probabilities: Regular nodes (other than the top node) have one 
conditional probability value each for its parent node. It is suggested that such 
conditional probability values are learnt from text classification techniques. We use 
the relatedness values from WordNet similarity modules to derive these values. 

 Applying IPFP iterations to impose P Space: Finally with given CPT values it is 
important for the network to learn the real values given the probability constraints to 
arrive at a condition where all LNodes are true. This is achieved by an Iterative 



Proportional Fitting Procedure (IPFP) [17]. In case there are no L Nodes to be 
considered, this iterative step can be overlooked. 

The principal reasoning tasks in our Bayesian network are based on computation of 
joint probability distributions and utilize the three methods suggested by Ding et 
al[5]. These are: 
• Concept Satisfiablity: if a concept based on certain states of given nodes in the 

network can exist. This is defined by verifying if P (e|t) = 0, where e is the given 
concept. For example already as discussed in § 1.2, given that a concept belongs 
to Motorway (thus P(t)=1) it cannot be a member of “Entities that afford 
walking” P (e|t) = 0 . Hence a concept of a Motorway, which affords walking, is 
not satisfied as per the representation in Figure 2.  

• Concept Overlap: the degree of overlap between a given concept and any other 
concept in the network is determined by P (e|C,t). Thus in Figure 2 we see that 
the overlap between Road and “Entities that afford walking” is significant 
whereas overlap between Motorway and the later is null. 

• Concept similarity: The advocated measure of similarity is based on Jaccard 
coefficient provided by Rijsbergen [18]. This measure is the ratio of the 
probability that an instance of the top level concept is a member of either of the 
two classes, with respect to the probability that the instance is a member of both 
the classes. The value ranges from 0 to 1. To demonstrate this if we assume that 
the overlap between classes as shown in figure 2, we know that the probability 
that an instance is a Motorway given that it is a Road is P(C|e); given that the 
likelihood that any instance of a road network entity (i) is a Road (say P(e))  (ii) 
is a Motorway (say P(C) . The similarity between the two concepts is equal to  

MSC(e,C) = P(e ∩ C) / P(e∪C). 
                                    = P(e,C) / (P(e) + P(C) – P(e,C)) 

(2) 

In case one of the classes is a subclass of the other, as in the case of a Road and a 
Motorway, the value of P(C,e) turns out to be 1 since any instance of Motorway is 
also an instance of Road. Thus in this case M SC (e,C) = 1 and MSC(e,C)=P(e)/P(C) 
which means that most similar concept among subclasses of a given class is its most 
specific subsumer. On the other hand, if P(C,e) = 0 for any case (and hence 
MSC(e,C)=0), it means that the two concepts are most disimilar. We use these 
equations extensively for our case studies and for further clarification of the 
computations the reader may refer to the explaination of BayesOWL [5].    

3 Case Study: Ontologies from traffic code texts 

Traffic code texts such as the Highway Code of UK1 (HWC) and the New York 
Driver’s Manual2 (NYDM) are examples of formal texts, which not only mention the 
entities in a road network but also specify the permissible actions in the respective 
geographic jurisdiction.  Kuhn has advocated the extraction of ontologies from such 
formal texts. Our case study involves the extraction of such ontologies from each of 
these traffic codes. We extract most frequently occurring entities and construct 
hierarchies of such entities. We also extract most frequently occurring actions in 
relation to these entities and construct hierarchies of actions as well. A further text 
analysis provides co-occurrence values of entity-action pairs, which are used to 
establish linkages between entities and their actions. 

                                                           
1 www.highwaycode.gov.uk/ 
2 http://www.nydmv.state.ny.us/dmanual/ 



 In this section we discuss the extraction of probabilistic ontologies based on 
the text analysis. We also discuss the inferences obtained from such ontologies as 
opposed to conventional ontologies. It is important to note that the extraction of 
ontologies in this case is based on linguistic analysis and although analysis of formal 
texts is suggested to be a good source for building ontologies, our main purpose is to 
demonstrate the use of a probabilistic framework for geospatial ontologies. It is to be 
noted that linguistic analysis is not the cornerstone of our framework for probabilistic 
ontologies; rather, it serves as one of the tools, which assists in building such 
ontologies. Nevertheless, simplistic ontologies (as Directed Acyclic Graphs) have 
been developed from analysis of formal texts and we further the same methodology 
by using probabilistic values in the place of binary values for affordances of different 
road network entities.    

3.1 Ontology extraction 

The steps listed in § 2.1 are used to construct the BN based ontologies. The 
important constituents required for these are extracted from the text as follows. 

1. Both texts are subjected to a Part Of Speech (POS) analysis which not only 
analyze the part of speech but also provides the sense of the words [19]. 

2. The most frequently occurring entities are used to construct a hierarchy of 
geospatial entities using hypernyms relations of noun terms from the 
WordNet lexicon [20]. 

3. Similarly hierarchies of geospatial action terms are used to construct the 
hierarchy of actions. Hypernym relations between verbs are used to construct 
such hierarchies. 

4. WordNet-similarity modules [21] are used to extract the conditional 
probabilities between class and subclass relations in the two hierarchies. The 
CPTs thus obtained allow us to construct individual BayesOWL ontologies 
of entities and actions separately. 

5. We go beyond this step by using the linkages between noun-verb pairs from 
the text analysis to link the two hierarchies together. A table of enitity 
concepts along with their assesed values of affordance for the given 
geospatial action concepts is used. The combined DAGs from the two texts 
are represented in figure 3 and 4 respectively. We need to clarify that the 
node denoting action concepts, when used in a combined DAG, represents 
the class of road network entities, which afford that particular action. Since 
the top concept for action concepts is move, we assume the top concept to be 
“all road network entities which afford the action move” 



 
Figure 3 DAG extracted from the NYDM text, in the form of a Bayesian Network 
containing both geospatial enitity concepts (on the left with first letters in capitals) 
and action concepts (on the right). Edges within an BayesOWL ontology 

3.2 Ontology reasoning and database ontologies 

The main purpose of our experiments was to evaluate the utility of the developed 
Bayesian network based ontologies to carry out inferencing tasks for our case study. 

 

 

Figure 4 DAG extracted from the UK Highway code tex similar to Figure 4 above. 
Note that some new entity concepts (Motorway  and Footpath) appear and some 
(Crosswalk and Expressway) are missing. The action concepts, however, remain 
consistent.  



3.2.1 Inferences within an ontology 

Given the Bayesian network ontologies as shown in figure 3 and 4, we now proceed 
to determine the most similar matches and most dissimilar matches within the same 
ontology. This is done using the notion of concept similarity described in § 2.2.  We 
try to obtain the action concept matches in relation to the entity concepts. Table 2 
depicts the results. 

 
Table 2 Most similar and most dissimilar entity concepts of the verb concepts with in 
the same ontology. These are calculated on the basis of the similarity score  

Entity Concept Occurs in Most similar action 
concept 

Most dissimilar action 
concept 

Crosswalk NYDM cross move,go 
Expressway NYDM drive cross 
Footpath HWC cross drive 
Highway NYDM/HWC drive drive walk go,move 
Motorway HWC drive cross,walk 
Path NYDM/HWC move,go cross cross move,go 
Road NYDM/HWC drive drive cross,walk cross,walk 
Street NYDM/HWC cross,walk cross,walk go Go 
Way NYDM/HWC move,go move,go cross cross,walk 

 
3.2.2 Reasoning across ontologies with common functions 
Finally we arrive at the bigger and more practical task of reasoning across ontologies. 
Since our two texts have differences in the list of geospatial entity concepts (the 
Highway code contains mention of Footpath and Motorway whereas the NY driver’s 
manual mentions Crosswalk and Expressway, our task is to obtain the degree of 
overlap between these two concepts and the most similar concepts given their 
linkages with the common function concepts. To do this, we make an assumption that 
action concepts remain invariant across the ontologies such that the meanings of walk 
or drive remain the same (although the meaning of a Road and a Highway can differ). 
We create a virtual node for each node of the given ontology in the target ontology 
based on its conditional probabilities in respect to the action concepts (common to 
both ontologies). Thereafter we obtain the most similar and most dissimilar concepts 
based on the approach already used in § 3.2.1. Table 3 lists these top matches 
obtained from the two BNs. 

  
Table 3 Most similar and dissimilar concepts of (i) the HWC in the NYDM and the 
NYDM in the HWC 

 
HWC 

Concept 
Most 

similar 
entity 

Most 
dissimilar 
entity 

NYDM 
Concept 

Most 
similar 
entity 

Most 
dissimilar 
entity 

Footpath Path Expressway Way Way Motorway 
Highway Way Street Street Way Street 
Motorway Road Crosswalk Road Road Street 
Path Path Expressway Path Path Motorway 
Road Road Expressway Highway Path Street 
Street Path Street Expressway Road Street 
Way Way Expressway Crosswalk Path Motorway 



4 Psycholinguistic Verification 

We have already stated that a simplistic evaluation of the machine based values of 
similarity and hence the mapping between concepts of two ontologies is not 
appropriate. This section explains human subjects testing based on the first case study 
and tries to compare the results of the machine based mappings vis-à-vis human 
generated ones. 

4.1 Human Subjects testing 

Human subject testing was conducted for 20 participants who were native English 
speakers or were highly proficient speakers and long-term residents of English-
speaking countries. Participants were given two sets of cards, which had names of 
road network entities from each ontology (the Highway Code and NY Driver’s 
Manual). The cards bearing names of Highway Code concepts were arranged in one 
row. Participants were asked to arrange the cards bearing NY Driver’s Manual 
concepts in such a way that the entities that they believed were most similar were kept 
closest. After this task was completed, they were asked to flip the cards and read the 
sections of the texts relevant to the respective entities, which occurred in the 
corresponding traffic code texts. These sections provided information about the 
different actions that were permissible on that particular road network entity. After 
taking as much time as they needed to read the cards, participants repeated the 
matching task. 

 The mappings generated before and after flipping the cards (and hence 
before and after the knowledge about entity functions was available) were recorded 
and analyzed. The tests took not more than 20 minutes and were administered with no 
interference once the initial instructions were given. All 20 participants volunteered 
willingly and were debriefed at the end of the tests. 

4.2 Analysis 

Table 4 below summarizes some of the mappings generated from the human subject 
tests. We note that most dissimilar mappings are not reported here for sake of 
simplicity. We note that other than the cases of Street and Motorway most similar 
mappings also appear in machine-based mappings.  
It is also important to note that the covariance of the mapping values in respect to age 
and gender was found to be insignificant (0.06). The variance of mappings produced  
Table 4: Human generated mappings. Most similar and dissimilar concepts of the 
HWC in the NYDM  

 
before reading the texts about entity functions after reading the texts about entity functions 
NYDM 

Concept 
Most 

similar entity 
Values (0 to 3) NYDM 

Concept 
Most 

similar entity 
Value (0 to 3) 

Way Way 2.7 Way Way 1.8 
Street Street 2.7 Street Street 2.85 
Road Road 2.65 Road Road 2.95 
Path Path 2.5 Path Path 1.2 
Highway Highway 0.875 Highway Road 1.25 
Expressway Motorway 2.55 Expressway Motorway 2.5 
Crosswalk Footpath 0.95 Crosswalk Path 1.0 

 



by subjects who have driven in both countries was found to be slightly lower than 
those who have driven only in one but this was fairly insignificant (0.09). 

We have already discussed that there is a close resemblance in the machine based 
mappings and the human based mappings although they are not identical. It is 
possible to report precision and recall of the mappings in terms of false positives 
(when a true match is overlooked) and false negatives (when a incorrect match is 
reported), using a unique name assumption (assuming that entities which have same 
names in both ontologies are the same entities). This is not a good evaluation of the 
performance of the machine based mapping because naming heterogeneity is 
abundant in most cases. For example, the term Highway is used differently in the 
HWC and the NYDM and this is concurrent with the use of the word in the two 
countries as well.  This is also evident from the results of our human subject tests. 
Thus evaluation of machine-based mappings warrants the use of human subjects 
testing to ascertain the goodness of the results.  

  The Graph 2 (below) compares the precision and recall values based on the 
unique name assumption and on the mappings produced by the human subject tests. 
The recall value remains the same (mainly due to the mismatch of the entity Street in 
the machine-based mappings). However recall has been shown to improve.  
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5 Conclusions and Future Work 
We have reported on a mechanism to design probabilistic ontologies in the geospatial 
domain. The use of text analysis to obtain information to construct such ontologies 
was discussed. Inferences based on such probabilistic geospatial ontologies provided 
results such as most similar and most dissimilar concepts within and across 
ontologies. Such results are comparable to human generated mappings. The precision 
and recall of ontology mapping exercises was found to be good with unique name 
assumptions of entities. The performance improved when human generated mappings 
were used as benchmarks. We summarize our conclusions from these case studies as 
follows: 
1) Ontologies of geospatial entities need to be extended with probabilistic 

frameworks in order to enable rich and practical inferences such as concept 
similarity and concept overlaps. 

2) It is possible to use both hierarchies of geospatial entities as well as geospatial 
actions and link them with probabilistic knowledge about affordances of 
geospatial entities.  

Graph 3 Comparing evaluations of machine-based mapping in the (i) absence  
or with Unique Name Assumption) and (ii) presence of human mapping values 



3) The use of probabilistic geospatial ontologies for mappings between most similar 
entities mimics, to a large extent, the human mechanism of semantic translations 
of entity names.  Our results provide support to the hypothesis that knowledge 
about geospatial actions and affordances to such actions are a critical part of 
geospatial knowledge. 

 
This is only a first step in our experimental validation and our experience has 

shown that there exist many themes for future work. These include 
(1) Inclusion of Disjoint, Equivalent, Intersection and Union relations: For 
simplification of our case study these relations were avoided although these relations 
can be easily determined from WordNet during text analysis. Using such relations in 
future will require use of some iterative algorithm such as Decomposed IPFP in order 
to enforce truth conditions of the LNodes in BayesOWL [17]. 
(2) Testing on industrial scale: this experiment, although at a prototype scale aims, in 
the end, to solve semantic problems, which occur at industrial scale.  
(3) Machine based learning: The human mappings, especially that of the experts, are 
considered as the ideal mappings. Human interactions and judgments for most similar 
concepts can be used to improve heuristics involved in specification of entity-action 
linkages. 
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Abstract. Creating mappings between ontologies is a common way of approach-
ing the semantic heterogeneity problem on the Semantic Web. To fit into the land-
scape of semantic web languages, a suitable, logic-based representation formal-
ism for mappings is needed. We argue that such a formalism has to be able to deal
with uncertainty and inconsistencies in automatically created mappings. We ana-
lyze the requirements for such a mapping language and present a formalism that
combines tightly integrated description logic programs with independent choice
logic for representing probabilistic information. We define the language, show
that it can be used to resolve inconsistencies and merge mappings from different
matchers based on the level of confidence assigned to different rules. We also
analyze the computational aspects of consistency checking and query processing
in tightly integrated probabilistic description logic programs.

1 Introduction

The problem of aligning heterogeneous ontologies via semantic mappings has been
identified as one of the major challenges of semantic web technologies. In order to ad-
dress this problem, a number of languages for representing semantic relations between
elements in different ontologies as a basis for reasoning and query answering across
multiple ontologies have been proposed [21]. In the presence of real world ontologies,
it is unrealistic to assume that mappings between ontologies are created manually by
domain experts, since existing ontologies, e.g., in the area of medicine contain thou-
sands of concepts and hundreds of relations. Recently, a number of heuristic methods
for matching elements from different ontologies have been proposed that support the
creation of mappings between different languages by suggesting candidate mappings
(e.g., [7]). These methods rely on linguistic and structural criteria. Evaluation stud-
ies have shown that existing methods often trade off precision and recall. The resulting
mapping either contains a fair amount of errors or only covers a small part of the ontolo-
gies involved [6,8]. To leverage the weaknesses of the individual methods, it is common
practice to combine the results of a number of matching components or even the results
of different matching systems to achieve a better coverage of the problem [7].



This means that automatically created mappings often contain uncertain hypotheses
and errors that need to be dealt with, as briefly summarized as follows:

– mapping hypotheses are often oversimplifying, since most matchers only support
very simple semantic relations (mostly equivalence between individual elements);

– there may be conflicts between different hypotheses for semantic relations from
different matching components and often even from the same matcher;

– semantic relations are only given with a degree of confidence in their correctness.
If we want to use the resulting mapping, we have to find a way to deal with these

uncertainties and errors in a suitable way. We argue that the most suitable way of dealing
with uncertainties in mappings is to provide means to explicitly represent uncertainties
in the target language that encodes the mappings. In this paper, we address the problem
of designing a mapping representation language that is capable of representing the kinds
of uncertainty mentioned above. We propose an approach to such a language, which is
based on an integration of ontologies and rules under probabilistic uncertainty.

There is a large body of work on integrating ontologies and rules, which is a promis-
ing way of representing mappings between ontologies. One type of integration is to
build rules on top of ontologies, that is, rule-based systems that use vocabulary from
ontology knowledge bases. Another form of integration is to build ontologies on top of
rules, where ontological definitions are supplemented by rules or imported from rules.
Both types of integration have been realized in recent hybrid integrations of rules and
ontologies, called description logic programs (or dl-programs), which have the form
KB =(L,P ), where L is a description logic knowledge base, and P is a finite set of
rules involving either queries to L in a loose integration [5] or concepts and roles from L
as unary resp. binary predicates in a tight integration [16] (see especially [5,18,16] for
detailed overviews on the different types of description logic programs).

Other works explore formalisms for uncertainty reasoning in the Semantic Web (an
important recent forum for approaches to uncertainty in the Semantic Web is the annual
Workshop on Uncertainty Reasoning for the Semantic Web (URSW); there also exists a
W3C Incubator Group on Uncertainty Reasoning for the World Wide Web). There are
especially probabilistic extensions of description logics [12], web ontology languages
[2,3], and description logic programs [15] (to encode ambiguous information, such as
“John is a student with the probability 0.7 and a teacher with the probability 0.3”, which
is very different from vague/fuzzy information, such as “John is tall with degree of truth
0.7”). In particular, [15] extends the loosely integrated description logic programs of [5]
by probabilistic uncertainty as in Poole’s independent choice logic (ICL) [20]. The ICL
is a powerful representation and reasoning formalism for single- and also multi-agent
systems, which combines logic and probability, and which can represent a number of
important uncertainty formalisms, in particular, influence diagrams, Bayesian networks,
Markov decision processes, normal form games, and Pearl’s causal models [10].

In this paper, we propose a language for representing and reasoning with uncertain
and possibly inconsistent mappings, where the tight integration between ontology and
rule languages (namely, the tightly integrated disjunctive description logic programs
of [16]) is combined with probabilistic uncertainty (as in the ICL). The resulting lan-
guage has the following useful features, which will be explained in more detail later:

– The semantics is based on a tight integration of the rule and the ontology language.
This enables us to have description logic concepts and roles in both rule bodies and
rule heads. This is necessary if we want to use rules to combine ontologies.



– The rule language is quite expressive. In particular, we can have disjunctions in rule
heads and nonmonotonic negations in rule bodies. This gives a rich basis for refi-
ning and rewriting automatically created mappings for resolving inconsistencies.

– The integration with probability theory provides us with a sound formal framework
for representing and reasoning with confidence values. In particular, we can inter-
pret the confidence values as error probabilities and use standard techniques for
combining them. We can also resolve inconsistencies by using trust probabilities.

– In [1], we show that consistency checking and query processing in the new rule lan-
guage are decidable resp. computable, and can be reduced to their classical counter-
parts in tightly integrated disjunctive description logic programs. We also analyze
the complexity of consistency checking and query processing in special cases.

– In [1], we show that there are tractable subsets of the language that are of practical
relevance. In particular, we show that when ontologies are represented in DL-Lite,
reasoning in the language can be done in polynomial time in the data complexity.

2 Representation Requirements
The problem of ontology matching can be defined as follows [7]. Ontologies are the-
ories encoded in a certain language L. In this work, we assume that ontologies are
encoded in OWL DL or OWL Lite. For each ontology O in language L, we denote
by Q(O) the matchable elements of the ontology O. Given two ontologies O and O′,
the task of matching is now to determine correspondences between the matchable ele-
ments in the two ontologies. Correspondences are 5-tuples (id, e, e′, r, n) such that

– id is a unique identifier for referring to the correspondence;
– e ∈ Q(O) and e′ ∈ Q(O′) are matchable elements from the two ontologies;
– r ∈ R is a semantic relation (in this work, we consider the case where the semantic

relation can be interpreted as an implication);
– n is a degree of confidence in the correctness of the correspondence.

From this general description of automatically generated correspondences between
ontologies, we can derive a number of requirements for a formal language for repre-
senting the results of multiple matchers as well as the contained uncertainties:
– Tight integration of mapping and ontology language: The semantics of the language
used to represent the correspondences between elements in different ontologies has to
be tightly integrated with the semantics of the ontology language used (in this case
OWL). This is important if we want to use the correspondences to reason across differ-
ent ontologies in a semantically coherent way. In particular, this means that the inter-
pretation of the mapped elements depends on the definitions in the ontologies.
– Support for mappings refinement: The language should be expressive enough to allow
the user to refine oversimplifying correspondences suggested by the matching system.
This is important to be able to provide a precise account of the true semantic relation
between elements in the mapped ontologies. In particular, this requires the ability to
describe correspondences that include several elements from the two ontologies.
– Support for repairing inconsistencies: Inconsistent mappings are a major problem for
the combined use of ontologies because they can cause inconsistencies in the mapped
ontologies. These inconsistencies can make logical reasoning impossible, since every-
thing can be derived from an inconsistent ontology. The mapping language should be
able to represent and reason about inconsistent mappings in an approximate fashion.



– Representation and combination of confidence: The confidence values provided by
matching systems is an important indicator for the uncertainty that has to be taken into
account. The mapping representation language should be able to use these confidence
values when reasoning with mappings. In particular, it should be able to represent the
confidence in a mapping rule and to combine confidence values on a sound formal basis.
– Decidability and efficiency of instance reasoning: An important use of ontology map-
pings is the exchange of data across different ontologies. In particular, we normally
want to be able to ask queries using the vocabulary of one ontology and receive answers
that do not only consist of instances of this ontology but also of ontologies connected
through ontology mappings. To support this, query answering in the combined formal-
ism consisting of ontology language and mapping language has to be decidable and
there should be efficient algorithms for answering queries at least for relevant cases.

Throughout the paper, we use real data form the Ontology Alignment Evaluation
Initiative1 to illustrate the different aspects of mapping representation. In particular,
we use examples from the benchmark and the conference data set. The benchmark
dataset consists of five OWL ontologies (tests 101 and 301 to 304) describing scien-
tific publications and related information. The conference dataset consists of about 10
OWL ontologies describing concepts related to conference organization and manage-
ment. In both cases, we give examples of mappings that have been created by the par-
ticipants of the 2006 evaluation campaign. In particular, we use mappings created by
state-of-the-art ontology matching systems like falcon, hmatch, and coma++.

3 Description Logics

In this section, we recall the expressive description logics SHIF(D) and SHOIN (D),
which stand behind the web ontology languages OWL Lite and OWL DL [13], respec-
tively. Intuitively, description logics model a domain of interest in terms of concepts and
roles, which represent classes of individuals and binary relations between classes of in-
dividuals, respectively. A description logic knowledge base encodes especially subset
relationships between concepts, subset relationships between roles, the membership of
individuals to concepts, and the membership of pairs of individuals to roles.

3.1 Syntax. We first describe the syntax of SHOIN (D). We assume a set of ele-
mentary datatypes and a set of data values. A datatype is either an elementary datatype
or a set of data values (datatype oneOf ). A datatype theory D=(∆D, ·D) consists of
a datatype domain ∆D and a mapping ·D that assigns to each elementary datatype a
subset of ∆D and to each data value an element of ∆D. The mapping ·D is extended
to all datatypes by {v1, . . .}D = {vD

1 , . . .}. Let A, RA, RD, and I be pairwise disjoint
(denumerable) sets of atomic concepts, abstract roles, datatype roles, and individuals,
respectively. We denote by R−

A the set of inverses R− of all R∈RA.
A role is any element of RA ∪R−

A ∪RD. Concepts are inductively defined as fol-
lows. Every φ∈A is a concept, and if o1, . . . , on ∈ I, then {o1, . . . , on} is a concept
(oneOf). If φ, φ1, and φ2 are concepts and if R∈RA ∪R−

A, then also (φ1 # φ2),
(φ1 $ φ2), and ¬φ are concepts (conjunction, disjunction, and negation, respectively),
as well as ∃R.φ, ∀R.φ, !nR, and "nR (exists, value, atleast, and atmost restriction,

1 http://oaei.ontologymatching.org/2006/



respectively) for an integer n ! 0. If D is a datatype and U ∈RD, then ∃U.D, ∀U.D,
!nU , and "nU are concepts (datatype exists, value, atleast, and atmost restriction,
respectively) for an integer n ! 0. We write ' and ⊥ to abbreviate the concepts φ$¬φ
and φ # ¬φ, respectively, and we eliminate parentheses as usual.

An axiom has one of the following forms: (1) φ)ψ (concept inclusion axiom),
where φ and ψ are concepts; (2) R)S (role inclusion axiom), where either R,S ∈RA∪
R−

A or R,S ∈RD; (3) Trans(R) (transitivity axiom), where R∈RA; (4) φ(a) (con-
cept membership axiom), where φ is a concept and a∈ I; (5) R(a, b) (resp., U(a, v))
(role membership axiom), where R∈RA (resp., U ∈RD) and a, b∈ I (resp., a∈ I and
v is a data value); and (6) a= b (resp., a *= b) (equality (resp., inequality) axiom), where
a, b∈ I. A (description logic) knowledge base L is a finite set of axioms. For decid-
ability, number restrictions in L are restricted to simple abstract roles [14].

The syntax of SHIF(D) is as the above syntax of SHOIN (D), but without the
oneOf constructor and with the atleast and atmost constructors limited to 0 and 1.

3.2 Semantics. An interpretation I =(∆I , ·I) relative to a datatype theory D=(∆D,
·D) consists of a nonempty (abstract) domain ∆I disjoint from ∆D, and a mapping ·I
that assigns to each atomic concept φ∈A a subset of ∆I , to each individual o∈ I an
element of ∆I , to each abstract role R∈RA a subset of ∆I ×∆I , and to each datatype
role U ∈RD a subset of ∆I ×∆D. We extend ·I to all concepts and roles, and we de-
fine the satisfaction of an axiom F in an interpretation I =(∆I , ·I), denoted I |=F ,
as usual [13]. We say I satisfies the axiom F , or I is a model of F , iff I |=F . We
say I satisfies a knowledge base L, or I is a model of L, denoted I |=L, iff I |=F for
all F ∈L. We say L is satisfiable iff L has a model. An axiom F is a logical conse-
quence of L, denoted L |= F , iff every model of L satisfies F .

4 Description Logic Programs

In this section, we recall the novel approach to description logic programs (or dl-pro-
grams) KB =(L,P ) from [16], where KB consists of a description logic knowledge
base L and a disjunctive logic program P . Their semantics is defined in a modular
way as in [5], but it allows for a much tighter integration of L and P . Note that we do
not assume any structural separation between the vocabularies of L and P . The main
idea behind their semantics is to interpret P relative to Herbrand interpretations that are
compatible with L, while L is interpreted relative to general interpretations over a first-
order domain. Thus, we modularly combine the standard semantics of logic programs
and of description logics, which allows for building on the standard techniques and
results of both areas. As another advantage, the novel dl-programs are decidable, even
when their components of logic programs and description logic knowledge bases are
both very expressive. See especially [16] for further details on the new approach to
dl-programs and for a detailed comparison to related works.

4.1 Syntax. We assume a first-order vocabulary Φ with finite nonempty sets of constant
and predicate symbols, but no function symbols. We use Φc to denote the set of all
constant symbols in Φ. We also assume a set of data values V (relative to a datatype
theory D=(∆D, ·D)) and pairwise disjoint (denumerable) sets A, RA, RD, and I
of atomic concepts, abstract roles, datatype roles, and individuals, respectively, as in



Section 3. We assume that (i) Φc is a subset of I∪V, and that (ii) Φ and A (resp.,
RA ∪RD) may have unary (resp., binary) predicate symbols in common.

Let X be a set of variables. A term is either a variable from X or a constant symbol
from Φ. An atom is of the form p(t1, . . . , tn), where p is a predicate symbol of arity
n ! 0 from Φ, and t1, . . . , tn are terms. A literal l is an atom p or a default-negated
atom not p. A disjunctive rule (or simply rule) r is an expression of the form

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βn+m , (1)

where α1, . . . , αk, β1, . . . , βn+m are atoms and k, m, n ! 0. We call α1 ∨ · · · ∨ αk the
head of r, while the conjunction β1, . . . , βn,not βn+1, . . . ,not βn+m is its body. We
define H(r) = {α1, . . . , αk} and B(r) =B+(r)∪B−(r), where B+(r) = {β1, . . . , βn}
and B−(r) = {βn+1, . . . , βn+m}. A disjunctive program P is a finite set of disjunctive
rules of the form (1). We say P is positive iff m =0 for all disjunctive rules (1) in P .
We say P is a normal program iff k " 1 for all disjunctive rules (1) in P .

A disjunctive description logic program (or disjunctive dl-program) KB =(L,P )
consists of a description logic knowledge base L and a disjunctive program P . We say
KB is positive iff P is positive. It is a normal dl-program iff P is a normal program.

4.2 Semantics. We now define the answer set semantics of disjunctive dl-programs
as a generalization of the answer set semantics of ordinary disjunctive logic programs.
In the sequel, let KB =(L,P ) be a disjunctive dl-program.

A ground instance of a rule r∈P is obtained from r by replacing every variable
that occurs in r by a constant symbol from Φc. We denote by ground(P ) the set of all
ground instances of rules in P . The Herbrand base relative to Φ, denoted HBΦ, is the
set of all ground atoms constructed with constant and predicate symbols from Φ. We
use DLΦ to denote the set of all ground atoms in HBΦ that are constructed from atomic
concepts in A, abstract roles in RA, and datatype roles in RD.

An interpretation I is any subset of HBΦ. Informally, every such I represents the
Herbrand interpretation in which all a∈ I (resp., a∈HBΦ− I) are true (resp., false).
We say an interpretation I is a model of a description logic knowledge base L, de-
noted I |=L, iff L∪ I ∪ {¬a | a∈HBΦ− I} is satisfiable. We say I is a model of a
ground atom a∈HBΦ, or I satisfies a, denoted I |= a, iff a∈ I . We say I is a model
of a ground rule r, denoted I |= r, iff I |=α for some α∈H(r) whenever I |=B(r),
that is, I |=β for all β ∈B+(r) and I *|=β for all β ∈B−(r). We say I is a model of a
set of rules P iff I |= r for every r∈ ground(P ). We say I is a model of a disjunctive
dl-program KB =(L,P ), denoted I |=KB , iff I is a model of both L and P .

We now define the answer set semantics of disjunctive dl-programs by generalizing
the ordinary answer set semantics of disjunctive logic programs. We generalize the def-
inition via the FLP-reduct [9] (which coincides with the answer set semantics defined
via the Gelfond-Lifschitz reduct [11]). Given a dl-program KB =(L,P ), the FLP-
reduct of KB relative to an interpretation I ⊆HBΦ, denoted KBI , is the dl-program
(L,P I), where P I is the set of all r∈ ground(P ) such that I |=B(r). An interpre-
tation I ⊆HBΦ is an answer set of KB iff I is a minimal model of KBI . A dl-pro-
gram KB is consistent (resp., inconsistent) iff it has an (resp., no) answer set.

We finally define the notions of cautious (resp., brave) reasoning from disjunctive
dl-programs under the answer set semantics as follows. A ground atom a∈HBΦ is a
cautious (resp., brave) consequence of a disjunctive dl-program KB under the answer
set semantics iff every (resp., some) answer set of KB satisfies a.



4.3 Semantic Properties. We now summarize some important semantic properties of
disjunctive dl-programs under the above answer set semantics. In the ordinary case, ev-
ery answer set of a disjunctive program P is also a minimal model of P , and the con-
verse holds when P is positive. This result holds also for disjunctive dl-programs.

The following theorem shows that the answer set semantics of disjunctive dl-pro-
grams faithfully extends its ordinary counterpart. That is, the answer set semantics of
a disjunctive dl-program with empty description logic knowledge base coincides with
the ordinary answer set semantics of its disjunctive program.

Theorem 4.1 (see [16]). Let KB=(L,P ) be a disjunctive dl-program with L=∅. Then,
the set of all answer sets of KB coincides with the set of all ordinary answer sets of P .

The next theorem shows that the answer set semantics of disjunctive dl-programs
also faithfully extends (from the perspective of answer set programming) the first-order
semantics of description logic knowledge bases. That is, α∈HBΦ is true in all answer
sets of a positive disjunctive dl-program KB =(L,P ) iff α is true in all first-order mod-
els of L∪ ground(P ). In particular, α∈HBΦ is true in all answer sets of KB =(L, ∅)
iff α is true in all first-order models of L. Note that the theorem holds also when α is a
ground formula constructed from HBΦ using the operators ∧ and ∨.

Theorem 4.2 (see [16]). Let KB =(L,P ) be a positive disjunctive dl-program, and
let α be a ground atom from HBΦ. Then, α is true in all answer sets of KB iff α is true
in all first-order models of L∪ ground(P ).

4.4 Representing Mappings. Tightly integrated disjunctive dl-programs KB =(L,P )
provide a natural way for representing mappings between two heterogeneous ontologies
O1 and O2 as follows. The description logic knowledge base L is the union of two
independent description logic knowledge bases L1 and L2 (representing O1 resp. O2)
with signatures A1, RA,1, RD,1, I1 and A2, RA,2, RD,2, I2, respectively, such that
A1 ∩A2 = ∅, RA,1 ∩ RA,2 = ∅, RD,1 ∩ RD,2 = ∅, and I1 ∩ I2 = ∅. Note that this
can easily be achieved for any pair of ontologies by a suitable renaming. A mapping
between elements e and e′ from L1 and L2, respectively, is then represented by a simple
rule e′(−→x )← e(−→x ) in P , where e∈A1 ∪RA,1 ∪RD,1, e′ ∈A2 ∪RA,2 ∪RD,2, and
−→x is a suitable variable vector. Note that the fact that we demand that the signatures
of L1 and L2 are disjoint guarantees that the rule base that represents mappings between
different ontologies is stratified as long as there are no cyclic mapping relations.

Taking some examples from the conference data set of the OAEI challenge 2006,
we find e.g. the following mappings that were created by automatic matching systems:2

NegativeReview(X)← Review(X) ;
NeutralReview(X)← Review(X) ;
PositiveReview(X)← Review(X) .

Another example of created mapping relations are the following:3

EarlyRegisteredParticipant(X)← participant(X) ;
LateRegisteredParticipant(X)← participant(X) .

2 Results of the hmatch system for mapping the SIGKDD on the EKAW Ontology.
3 Results of the hmatch system for mapping the CRS on the EKAW Ontology.



Both of these sets of correspondences are examples of mappings that introduce incon-
sistency in the target ontology. The reason is that the three concepts NegativeReview ,
NeutralReview , and PositiveReview , as well as the two concepts EarlyRegistered -
Participant and LateregisteredParticipant are defined to be disjoint in the corre-
sponding ontologies. Using the rules as shown above will make an instance of the
concept Review (resp., participant) a member of disjoint classes. In [17], we have
presented a method for detecting such inconsistent mappings. There are different ap-
proaches for resolving this inconsistency. The most straightforward one is to drop map-
pings until no inconsistency is present anymore. Peng and Xu [19] have proposed a
more suitable method for dealing with inconsistencies in terms of a relaxation of the
mappings. In particular, they propose to replace a number of conflicting mappings by
a single mapping that includes a disjunction of the conflicting concepts. In the first
example above, we would replace the three rules by the following one:

NegativeReview(X) ∨NeutralReview(X) ∨ PositiveReview(X)← Review(X) .

This new mapping rule can be represented in our framework and resolves the inconsis-
tency. In this particular case, it also correctly captures the meaning of the concepts.

In principle, the second example can be solved using the same approach. In this
case, however, the actual semantics of the concepts can be captured more accurately by
refining the rules and making use of the full expressiveness of the mapping language.
In particular, we can resolve the inconsistency by extending the body of the mapping
rules with additional requirements:

EarlyRegisteredParticipant(X)← participant(X) ∧ RegisterdbeforeDeadline(X) ;
LateRegisteredParticipant(X)← participant(X) ∧ not RegisteredbeforeDeadline(X) .

This refinement of the mapping rules resolves the inconsistency and also provides a
more correct mapping. A drawback of this approach is the fact that it requires manual
post-processing of mappings. In the next section, we present a probabilistic extension
of tightly integrated disjunctive dl-programs that allows us to directly use confidence
estimations of matching engines to resolve inconsistencies and to combine the results
of different matchers.

5 Probabilistic Description Logic Programs
In this section, we present a tightly integrated approach to probabilistic disjunctive de-
scription logic programs (or simply probabilistic dl-programs) under the answer set
semantics. Differently from [15] (in addition to being a tightly integrated approach),
the probabilistic dl-programs here also allow for disjunctions in rule heads. Similarly to
the probabilistic dl-programs in [15], they are defined as a combination of dl-programs
with Poole’s ICL [20], but using the tightly integrated disjunctive dl-programs of [16]
(see Section 4), rather than the loosely integrated dl-programs of [5]. Poole’s ICL is
based on ordinary acyclic logic programs P under different “choices”, where every
choice along with P produces a first-order model, and one then obtains a probability
distribution over the set of all first-order models by placing a probability distribution
over the different choices. We use the tightly integrated disjunctive dl-programs un-
der the answer set semantics of [16], instead of ordinary acyclic logic programs under



their canonical semantics (which coincides with their answer set semantics). We first
introduce the syntax of probabilistic dl-programs and then their answer set semantics.

5.1 Syntax. We now define the syntax of probabilistic dl-programs and probabilistic
queries to them. We first introduce choice spaces and probabilities on choice spaces.

A choice space C is a set of pairwise disjoint and nonempty sets A⊆HBΦ−DLΦ.
Any A∈C is an alternative of C and any element a∈A an atomic choice of C. Intu-
itively, every alternative A∈C represents a random variable and every atomic choice
a∈A one of its possible values. A total choice of C is a set B⊆HBΦ such that
|B ∩ A|=1 for all A∈C (and thus |B|= |C|). Intuitively, every total choice B of C
represents an assignment of values to all the random variables. A probability µ on
a choice space C is a probability function on the set of all total choices of C. Intu-
itively, every probability µ is a probability distribution over the set of all variable as-
signments. Since C and all its alternatives are finite, µ can be defined by (i) a mapping
µ :

⋃
C→ [0, 1] such that

∑
a∈A µ(a) = 1 for all A∈C, and (ii) µ(B) = Πb∈Bµ(b)

for all total choices B of C. Intuitively, (i) defines a probability over the values of each
random variable of C, and (ii) assumes independence between the random variables.

A probabilistic dl-program KB =(L,P,C, µ) consists of a disjunctive dl-program
(L,P ), a choice space C such that no atomic choice in C coincides with the head of
any rule in ground(P ), and a probability µ on C. Intuitively, since the total choices
of C select subsets of P , and µ is a probability distribution on the total choices of C,
every probabilistic dl-program is the compact representation of a probability distribu-
tion on a finite set of disjunctive dl-programs. Observe here that P is fully general and
not necessarily stratified or acyclic. We say KB is normal iff P is normal. A proba-
bilistic query to KB has the form ∃(c1(x) ∨ · · · ∨ cn(x))[r, s], where x, r, s is a tuple
of variables, n ! 1, and each ci(x) is a conjunction of atoms constructed from pred-
icate and constant symbols in Φ and variables in x. Note that the above probabilistic
queries can also be easily extended to conditional expressions as in [15].

5.2 Semantics. We now define an answer set semantics of probabilistic dl-programs,
and we introduce the notions of consistency, consequence, tight consequence, and cor-
rect and tight answers for probabilistic queries to probabilistic dl-programs.

Given a probabilistic dl-program KB =(L,P,C, µ), a probabilistic interpretation
Pr is a probability function on the set of all I ⊆HBΦ. We say Pr is an answer set of KB
iff (i) every interpretation I ⊆HBΦ with Pr(I) > 0 is an answer set of (L,P ∪ {p← |
p∈B}) for some total choice B of C, and (ii) Pr(

∧
p∈B p) =

∑
I⊆HBΦ, B⊆I Pr(I) =

µ(B) for every total choice B of C. Informally, Pr is an answer set of KB =(L,P,C, µ)
iff (i) every interpretation I ⊆HBΦ of positive probability under Pr is an answer set of
the dl-program (L,P ) under some total choice B of C, and (ii) Pr coincides with µ on
the total choices B of C. We say KB is consistent iff it has an answer set Pr .

We define the notions of consequence and tight consequence as follows. Given a
probabilistic query ∃(q(x))[r, s], the probability of q(x) in a probabilistic interpretation
Pr under a variable assignment σ, denoted Prσ(q(x)) is defined as the sum of all
Pr(I) such that I ⊆HBΦ and I |=σ q(x). We say (q(x))[l, u] (where l, u∈ [0, 1]) is a
consequence of KB , denoted KB‖∼ (q(x))[l, u], iff Prσ(q(x))∈ [l, u] for every answer
set Pr of KB and every variable assignment σ. We say (q(x))[l, u] (where l, u∈ [0, 1])
is a tight consequence of KB , denoted KB ‖∼tight(q(x))[l, u], iff l (resp., u) is the



infimum (resp., supremum) of Prσ(q(x)) subject to all answer sets Pr of KB and all σ.
A correct (resp., tight) answer to a probabilistic query ∃(c1(x) ∨ · · · ∨ cn(x))[r, s] is a
ground substitution θ (for the variables x, r, s) such that (c1(x)∨ · · · ∨ cn(x))[r, s] θ is
a consequence (resp., tight consequence) of KB .

5.3 Representing and Combining Confidence Values. The probabilistic extension of
disjunctive dl-programs KB =(L,P ) to probabilistic dl-programs KB ′ =(L,P,C, µ)
provides us with a means to explicitly represent and use the confidence values provided
by matching systems. In particular, we can interpret the confidence value as an error
probability and state that the probability that a mapping introduces an error is 1 − n.
Conversely, the probability that a mapping correctly describes the semantic relation
between elements of the different ontologies is 1 − (1 − n) = n. This means that we
can use the confidence value n as a probability for the correctness of a mapping. The
indirect formulation is chosen, because it allows us to combine the results of different
matchers in a meaningful way. In particular, if we assume that the error probabilities
of two matchers are independent, we can calculate the joint error probability of two
matchers that have found the same mapping rule as (1 − n1) · (1 − n2). This means
that we can get a new probability for the correctness of the rule found by two matchers
which is 1− (1−n1) · (1−n2). This way of calculating the joint probability meets the
intuition that a mapping is more likely to be correct if it has been discovered by more
than one matcher because 1−(1−n1) ·(1−n2) ! n1 and 1−(1−n1) ·(1−n2) ! n2.

In addition, when merging inconsistent results of different matching systems, we
weigh each matching system and its result with a (user-defined) trust probability, which
describes our confidence in its quality. All these trust probabilities sum up to 1. For
example, the trust probabilities of the matching systems m1, m2, and m3 may be 0.6,
0.3, and 0.1, respectively. That is, we trust most in m1, medium in m2, and less in m3.
Note that similarly one can associate trust probabilities with single mapping rules.

We illustrate this approach using an example from the benchmark data set of the
OAEI 2006 campaign. In particular, we consider the case where the publication on-
tology in test 101 (O1) is mapped on the ontology of test 302 (O2). Below we show
some mappings that have been detected by the matching system hmatch that partic-
ipated in the challenge. The mappings are described as rules in P , which contain a
conjunct indicating the matching system that has created it and a number for identify-
ing the mapping. These additional conjuncts are atomic choices of the choice space C
and link probabilities (which are specified in the probability µ on the choice space C)
to the rules (where the common concept Proceedings of both ontologies O1 and O2 is
renamed to the concepts Proceedings1 and Proceedings2, respectively):

Book(X)← Collection(X) ∧ hmatch1 ;
Proceedings2(X)← Proceedings1(X) ∧ hmatch2 .

We define the choice space according to the interpretation of confidence described
above. The resulting choice space is C = {{hmatchi,not hmatchi} | i ∈ {1, 2}}. It
comes along with the probability µ on C, which assigns the corresponding confidence
value n to each atomic choice hmatchi and the complement 1−n to the atomic choice
not hmatchi. In our case, we have µ(hmatch1) = 0.62, µ(not hmatch1) = 0.38,
µ(hmatch2) = 0.73, and µ(not hmatch2) = 0.27.



The benefits of this explicit treatment of the uncertainty becomes clear when we
now try to merge this mapping with the result of another matching system. Below are
two examples of rules that describe correspondences for the same ontologies that have
been found by the falcon system:

InCollection(X)← Collection(X) ∧ falcon1 ;
Proceedings2(X)← Proceedings1(X) ∧ falcon2 .

Here, the confidence encoding yields the choice space C ′ = {{falconi,not falconi} |
i∈{1, 2}} along with the probabilities µ′(falcon1) = 0.94 and µ′(falcon2) = 0.96.

Note that just putting together the rules without considering the choice space would
lead to the same inconsistency problems shown in the last section, because the concepts
Book and InCollection are disjoint. Further, the fact that the mapping between the con-
cepts Proceeding1 and Proceeding2 has been found by both matchers is not considered
and this mapping rule would have the same status as any other rule in the mapping.

Suppose we associate with hmatch and falcon the trust probabilities 0.55 and 0.45,
respectively. Based on the interpretation of confidence values as error probabilities, and
on the use of trust probabilities when resolving inconsistencies between rules, we can
now define a merged mapping set that consists of the following rules:

Book(X)← Collection(X) ∧ hmatch1 ∧ sel hmatch1 ;
InCollection(X)← Collection(X) ∧ falcon1 ∧ sel falcon1 ;
Proceedings2(X)← Proceedings1(X) ∧ hmatch2 ;
Proceedings2(X)← Proceedings1(X) ∧ falcon2 .

The new choice space C ′′ and the new probability µ′′ on C ′′ are obtained from C ∪C ′

and µ · µ′ (which is the product of µ and µ′, that is, (µ · µ′)(B ∪B′) =µ(B) · µ′(B′)
for all total choices B of C and B′ of C ′), respectively, by adding the alternative
{sel hmatch1, sel falcon1} and the probabilities µ′′(sel hmatch1) = 0.55 and µ′′(sel
falcon1) = 0.45 for resolving the inconsistency between the first two rules.

It is not difficult to verify that, due to the independent combination of alternatives,
the last two rules encode that the rule Proceedings2(X)←Proceedings1(X) holds
with the probability 1− (1−µ′′(hmatch2)) · (1−µ′′(falcon2))= 0.9892, as desired.

6 Summary and Outlook
We have presented a rule-based framework for representing ontology mappings that
supports the resolution of inconsistencies on a symbolic and a numeric level. While
the use of disjunction and nonmonotonic negation allows the rewriting of inconsistent
rules, the probabilistic extension of the language allows us to explicitly represent nu-
meric confidence values as error probabilities, to resolve inconsistencies by using trust
probabilities, and to reason about these on a numeric level. While being expressive and
well-integrated with description logic ontologies, the language is still decidable and has
data-tractable subsets that make it particularly interesting for practical applications.

We leave for future work the implementation of the language and the performing of
experiments on the basis of large data sets, to further substantiate our claims that this
formal framework is suited for realistic applications of ontology mappings.
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Abstract. The use of hierarchical taxonomies to organise information (or sets 

of objects) is a common approach for the semantic web and elsewhere, and is 

based on progressively finer granulations of objects. In many cases, seemingly 

crisp granulation disguises the fact that categories are based on loosely defined 

concepts which are better modelled by allowing graded membership. A related 

problem arises when different taxonomies are used, with different structures, as 

the integration process may also lead to fuzzy categories. Care is needed when 

information systems use fuzzy sets to model graded membership in categories - 

the fuzzy sets are not disjunctive possibility distributions, but must be 

interpreted conjunctively. We clarify this distinction and show how an extended 

mass assignment framework can be used to extract relations between fuzzy 

categories. These relations are association rules and are useful when integrating 

multiple information sources categorised according to different hierarchies. Our 

association rules do not suffer from problems associated with use of fuzzy 

cardinalities. An example of discovering associated film genres is given.  

Keywords: fuzzy, granules, association rules, hierarchies, mass assignments, 

semantic web, iPHI 

1 1   Introduction 

The use of taxonomic hierarchies to organise information and sets of objects into 

manageable chunks (granules) is widespread. Granules were informally defined by 

Zadeh [1] as a way of decomposing a whole into parts, generally in a hierarchical 

way. We can regard a hierarchical categorisation as a series of progressively finer 

granulations, allowing us to represent problems at the appropriate level of granularity.  

The idea of a taxonomy serves as an organisational principle for libraries, for 

document repositories, for corporate structure, for the grouping of species and very 

many other applications. It is therefore no surprise to note that the semantic web 

adopts hierarchical taxonomies as a fundamental structure, using the subClassOf 

construct. Although in principle the idea of a taxonomic hierarchy is crisply defined, 

in practice there is often a degree of arbitrariness in its definition. For example, we 

might divide the countries of the world by continent at the top level of a taxonomic 

hierarchy. However, continents do not have crisp definitions - Europe contains some 



definite members (e.g. France, Germany) but at the Eastern and South-Eastern border, 

the question of which countries belong / do not belong is less clear. Iceland is 

generally included in Europe despite being physically closer to Greenland (part of 

North America). Thus although the word “Europe” denotes a set of countries (i.e. it is 

a granule) and can be used as the basis for communication between humans, it does 

not have an unambiguous definition in terms of the elements that belong to the set. 

Different “authorities” adopt different definitions -  the set of countries eligible to 

enter European football competitions differs from the set of countries eligible to enter 

the Eurovision song contest, for example.   

Of course, mathematical and some legal taxonomic structures are generally very 

precisely defined - the class of polyhedra further subdivides into triangles, 

quadrilaterals, etc and triangles may be subdivided into equilateral, isosceles etc. Such 

definitions admit no uncertainty. Most information systems model the world in some 

way, and need to represent categories which correspond to the loosely defined classes 

used by humans in natural language. For example, a company may wish to divide 

adults into customers and non-customers, and then sub-divide these into high-value 

customers, dissatisfied customers, potential customers, etc. Such categories are not 

necessarily distinct (i.e. they may be a covering rather than a partition) but more 

importantly, membership in these categories  is graded - customer X may be highly 

dissatisfied and about to find a new supplier whilst customer Y is only mildly 

dissatisfied. We argue that most hierarchical taxonomies involve graded or loosely 

defined categories, but the nature of computerised information systems means that a 

more-or-less arbitrary decision has to be made on borderline cases, giving the 

taxonomy the appearance of a crisp, well-defined hierarchy. This may not be a 

problem as long as a rigorous and consistent criterion for membership is used (e.g. a 

dissatisfied customer is defined as one who has made at least two calls complaining 

about service), but the lack of subjectivity in a definition is rare. The use of graded 

membership (fuzziness) in categories enhances their expressive power and usefulness. 

A related problem arises when trying to combine multiple sources of information 

that have been categorised in some way (often hierarchically). For example, the 

category of “vintage wine” has a different (but objective) definition, depending on the 

country of origin. To a purist, vintage wines are made from grapes harvested in a 

single year – however, the European Union allows up to 5% of the grapes to be 

harvested in a different year, the USA allows 15% in some cases and 5% in others, 

while other countries such as Chile and South Africa may allow up to 25%. Thus even 

taking a simple (crisp) granulation of wines into vintage and non-vintage categories 

can lead to problems if we try to integrate different sources. 

In this paper we describe a new method for calculating association rules to find 

correspondences between fuzzy granules in different hierarchies (with the same 

underlying universe). We discuss the semantics of fuzzy sets when used to describe 

granules, and introduce a mass assignment-based method to rank association rules and 

show that the new method gives more satisfactory results than approaches based on 

fuzzy cardinalities. Ongoing work is focused on comparison of this approach to others 

(e.g. on ontology merging benchmarks), and with application to merging classified 

directory content. 



2 Background 

This work take place in the context of the iPHI system (intelligent Personal 

Hierarchies for Information) [2] which aims to combine and integrate multiple 

sources of information and to configure access to the information based on an 

individual’s personal categories. We assume here that the underlying entities 

(instances) that are being categorised are known unambiguously - when integrating 

multiple sources, this is often not the case. We have outlined SOFT (the Structured 

Object Fusion Toolkit) elsewhere [3] as one solution to this problem. 

2.1 Fuzzy Sets in Information Systems 

Many authors (e.g. [4]) have proposed the use of fuzzy sets to model uncertain values 

in databases and other knowledge based applications . The standard interpretation of a 

fuzzy set in this context is as a possibility distribution - that is to say it represents a 

single valued attribute which is not known exactly. For example we might use the 

fuzzy set tall to represent the height of a specific person or low to represent the value 

shown on a dice. The fuzzy sets tall and low admit a range of values, to a greater or 

lesser degree; the actual value is taken from the range. Knowing that a dice value val 

is even restricts the possible values to val=2 XOR val=4 XOR val=6 (where XOR is 

an exclusive or). If a fuzzy set on the same universe is defined as low = {1/1, 2/1, 

3/0.4} then knowing the value val is low restricts the possible values to val=1 XOR 

val=2 XOR val=3 with corresponding memberships. 

The conjunctive interpretation of a fuzzy set occurs when the attribute can have 

multiple values. For example, a person may be able to speak several languages; we 

could model this as a fuzzy set of languages, where membership would depend on the 

degree of fluency. This is formally a relation rather than a function on the underlying 

sets. Our position is to make a distinction between the  conjunctive interpretation - 

modelled by a fuzzy relation – and the disjunctive interpretation – modelled by a 

possibility distribution. To emphasise the distinction, we use the notation 

 F(a) = {x/µ(x) | x ! U}  

to denote a single valued attribute F of some object a (i.e. a possibility distribution 

over a universe U) and 

 R(a) = [x/"(x) | x ! U] 

to denote a multi-valued attribute (relation). Granules represent the latter case, since 

we have multiple values that satisfy the predicate to a greater or lesser degree. 

2.2 Association Rules 

In creating association rules within transaction databases (e.g. [5], see also [7] for a 

clear overview), the standard approach is to consider a table in which columns 

correspond to items and each row is a transaction. A column contains 1 if the item 

was bought, and 0 otherwise. The aim of association rule mining is to determine 

whether or not there are links between two disjoint subsets of items – for example, do 

customers generally buy biscuits and cheese when beer, lager and wine are bought? 



Let X denote the set of items, so that any transaction can be represented as tr # X 

and we have a multiset Tr of transactions. We must also specify two non-overlapping 

subsets of X,  s and t. An association rule is of the form S => T where S (resp T) is the 

set of transactions containing the items s (resp t). The rule is interpreted as stating that 

when the items in s appear in a transaction, it is likely that the items in t will also 

appear i.e. it is not an implication in the formal logical sense. 

Most authors use two measures to assess the significance of association rules, 

although these measures can be misleading in some circumstances. The support of a 

rule is the fraction of transactions in which both S and T appear, and the confidence of 

a rule is an estimate (based on the samples) of the conditional probability of T given S 
 

! 

Support S,T( ) = S"T  

and 

 

! 

Conf S,T( ) =
S"T

S
 

where we operate on multisets rather than sets. Typically a threshold is chosen for 

the support, so that only frequently occurring sets of items s and t are considered; a 

second threshold filters out rules of low confidence. 

Various approaches to fuzzifying association rules have been proposed e.g. [6-8]. 

The standard extension to the fuzzy case is to treat the (multi-) sets S, T as fuzzy and 

find the intersection and cardinality using a t-norm and sigma-count respectively.  

 

! 

Conf S,T( ) =

µS"T x( )
x#X

$

µS x( )
x#X

$

 

Note that many authors just refer to fuzzy sets, rather than multisets. 

As pointed out by [7], using min and the sigma count for cardinality can be 

unsatisfactory because it does not distinguish between several tuples with low 

memberships and few tuples with high memberships - for example, 

 

! 

S = x1 1, x2 0.01, x3 0.01,… , x1000 0.01[ ]
T = x1 0.01, x2 1, x3 0.01,… , x1000 0.01[ ]

 

leads to  

 

! 

Conf S,T( ) =
1000 " 0.01

1+ 999 " 0.01
# 0.91 

which is extremely high for two almost disjoint sets (this example originally 

appeared in [9]). Using a fuzzy cardinality (i.e. a fuzzy set over the possible 

cardinality values) is also potentially problematic. 

For these reasons, we propose the use of mass assignment theory in calculating the 

support and confidence of association rules between fuzzy categories.  

The fuzziness in our approach arises because we allow partial membership in 

categories – for example, instead of looking for an association between biscuits and 

beer, we might look for an association between alcoholic drinks and snack foods. It is 

important to note that we are dealing with conjunctive fuzzy sets (monadic fuzzy 

relations) here. Mass assignment theory is normally applied to fuzzy sets representing 

possibility distributions and the operation of finding the conditional probability of one 

fuzzy sets given another is known as semantic unification [10]. This rests on the 

underlying assumption of a single valued attribute – a different approach is required 

to find the conditional probability when we are dealing with set-valued attributes. 



2.3 Mass Assignments 

A mass assignment [11] (see also [12]) is a distribution over a power set, 

representing disjunctive uncertainty about a value. For a universe U 

 

! 

m :P U( )" 0,1[ ]

m X( )
X #U

$ =1

 ( 1 ) 

 

The mass assignment is related to a fuzzy set (possibility distribution) A as follows: 

Let µA be the membership function of A with range 

! 

R µ
A( ) = µ

A

1
,µ

A

2
,… ,µ

A

m{ }
such that µ

A

1 > µ
A

2 >… > µ
A

m

 

and Ai be the alpha-cuts at these values i.e. 

! 

A
i
= xµ

A
x( ) " µ

A

i{ }  

(also known as the focal elements) 

Then 

! 

m
A
A
i( ) = µ

A

i
"µ

A

i+1  ( 2) 

 

Given a fuzzy set A, the corresponding mass assignment can be written as 

! 

M A( ) = A
i
:m

A
A
i( ) A

i
" A{ }  

where conventionally only the focal elements (non-zero masses) are listed in the mass 

assignment. The mass assignment represents a family of probability distributions on 

U, with the restrictions 

 

! 

p :U" 0,1[ ]

p x( )
x#U

$ =1

m x{ }( ) % p x( ) % m X( )
x#X

$

 ( 3 ) 

For example, if X = {a, b, c, d} and A is the fuzzy set  

{a/1, b/0.8, c/0.3, d/0.2} 

then 

! 

M A( ) = a{ } : 0.2, a, b{ } : 0.5, a, b, c{ } : 0.1, a, b, c, d{ } : 0.2{ } 

In the example above, p(a) = 0.4, p(b) = 0.3, p(c) =0.1, p(d) = 0.2 is a possible 

distribution, obtained by allocating the mass of 0.5 on the set {a, b} to a (0.2) and b 

(0.3), and so on. We can also give a mass assignment definition of the cardinality of a 

fuzzy set as a distribution over integers 

! 

p A = n( ) = mA Ai( )
Ai"A

Ai =n

#
 

for 0!n!|U| 



In the example above, p(|A| = 1) = 0.2,  p(|A| = 2) = 0.5, etc. Clearly in this 

framework, the cardinality of a fuzzy set can be left as a distribution over integer 

values, or an expected value can be produced from this distribution in the usual way. 

A similar definition of fuzzy cardinality was proposed by [13], also motivated by the 

problem of fuzzy association rules. 

Baldwin introduced the least prejudiced distribution (lpd) which is a specific 

distribution satisfying (3) above but also obeying 

! 

lpdA x( ) =
m Ai( )
Aix"Ai

#  ( 4) 

where |A| indicates the cardinality of the set A and the summation is over all focal 

elements containing x. 

Informally, wherever mass is associated with a non-singleton focal element, it is 

shared equally between the members of the set. Clearly a least prejudiced distribution 

is a restriction of the original assignment. 

The steps from lpd to mass assignment and then to fuzzy set can be reversed, so 

that we can derive a unique fuzzy set for any frequency distribution on a finite 

universe, by assuming the relative frequencies are the least prejudiced distribution 

(proof in [14]). 

If the relative frequencies are written 

! 

L
A

= L
A
x
1( ), LA x

2( ),…, L
A
x
n( ){ }  

such that 

! 

L
A
x
1( ) > L

A
x
2( ) >… > L

A
x
n( ) 

then we can define 

! 

A
i
= x x "U # L

A
x( ) $ LA x

i( ){ } 

and the fuzzy set memberships are given by 

! 

µA xi( ) = Ai " LA xi( ) + Aj # Aj#1( ) " LA x j( )
j=i+1

n

$  

2.4 Fuzzy relations and mass assignments 

A relation is a conjunctive set of ordered n-tuples i.e. it represents a conjunction of n 

ground clauses. For example, if U is the set of dice scores then we could define a 

predicate differBy4or5 on U $ U as the set of pairs 

[(1, 6), (1, 5), (2, 6), (5, 1), (6, 1), (6, 2)] 

This is a conjunctive set in that each pair satisfies the predicate. In a similar way, a 

fuzzy relation represents a set of n-tuples that satisfy a predicate to a specified degree. 

Thus differByLargeAmount could be represented by  

[(1, 6)/1, (1, 5)/0.6, (2, 6)/0.6, (5, 1)/0.6, (6, 1)/1, (6, 2)/0.6] 



2.5 Mass-based association rules 

We consider two granules, represented as monadic fuzzy relations S and T on the 

same domain, and wish to calculate the degree of association between them. For 

example, consider a database of sales employees, salaries and sales figures. We can 

categorise employees according to whether their salaries are high, medium or low and 

also according to whether their sales figures are good, moderate or poor.  A mining 

task might be to find out whether the good sales figures are achieved by the highly 

paid employees. For example, given the table 

 

name sales salary 

a 100 1000 

b 80 400 

c 50 800 

d 20 700 

 

we might define the monadic fuzzy relations 

 S = goodSales = [a/1, b/0.8, c/0.5, d/0.2] 

and 

 T = highSalary =  [a/1, b/0.4, c/0.8, d/0.7] 

These represent sets of values (1-tuples) that all satisfy the related predicate to a 

degree. The confidence in an association rule can be calculated as follows: 

 

For a source granule  

 

! 

S = x
1
"
S
x
1( ), x2 "

S
x
2( ),…, x

S
"
S
x
S( )[ ]  

and a target granule  

 

! 

T = x
1
"
T
x
1( ), x2 "

T
x
2( ),…, x

T
"
T
x
T( )[ ]  

we can define the corresponding mass assignments as follows. Let the set of 

distinct memberships in S be 
 

! 

"
S

(1)
, "

S

(2)
,…, "

S

(n
S
){ } 

where 

 

! 

"
S

(1)
> "

S

(2)
>… > "

S

(n
S
) 

and nS ! |S| 

Let  

 

! 

S
1

= x "
S
x( ) = "

S

(1)[ ]{ }
S
i
= x "

S
x( ) # "S

(i)[ ]{ }$ S
i%1 1< i & n

S

 

Then the mass assignment corresponding to S is 

! 

S
i
:m

S
S
i( ){ }, 1" i " nS  

where  

! 

m
S
S
k( ) = "

S

k( ) # "
S

k+1( )  

and we define  

 

! 

"S

i( ) = 0 if i > nS  

For example, the fuzzy relation  



 S = [a/1, b/0.8, c/0.5, d/0.2] 

has the corresponding mass assignment 

 

! 

M
S

= a[ ]{ } : 0.2, a[ ], a,b[ ]{ } : 0.3, a[ ], a,b[ ], a,b,c[ ]{ } : 0.3, a[ ], a,b[ ], a,b,c[ ], a,b,c,d[ ]{ } : 0.2{ }
 

The mass assignment corresponds to a distribution on the power set of relations, 

and we can define the least prejudiced distribution in the same way as for the standard 

mass assignment. In the example above 

 

! 

L
S

= a[ ] : 0.5, a,b[ ] : 0.3, a,b,c[ ] : 0.15, a,b,c,d[ ] : 0.05{ } 

 

We can now calculate the confidence in the association between the granules S and 

T using mass assignment theory. In general, this will be an interval as we are free to 

move mass (consistently) between elements of each Si  .and T j 

For two mass assignments  

! 

MS = Spi{ } :mS Si( ){ }, 1" pi " i " nS
MT = Tq j

{ } :mT S j( ){ }, 1" q j " j " nT

 

the composite mass assignment is  

! 

M
C

= M
S
" M

T

= X :m
C
X( ){ }

 

where mC is specified by the composite mass allocation function 

! 

C i, j, Spi ,Tq j
( )  subject to 

! 

C i, j, Spi ,Tq j
( )

1"q j " j
1" pi " i

#
j=1

nT

# = mS Si( )

C i, j, Spi ,Tq j
( )

1" pi " i
1"q j " j

#
i=1

nS

# = mT Tj( )

 

This can be visualised using a mass tableau (see [11]) Each row (column) 

represents a focal element of the mass assignment, and is split into sub-rows (sub-

columns). The mass associated with a row (column) is shown at the far left (top) and 

can be distributed amongst the sub-rows (sub-columns). For example consider the 

granules 

S = [a/1, b/0.8, c/0.5, d/0.2]  and    

T = [a/1, b/0.4, c/0.8, d/0.7] 

 The rule confidence is given by equation (5)  

 

! 

Conf S" T( ) =

C i, j, Spi ,Tq j
( ) # Spi $Tq j

1%q j % j
1% pi % i

&
j=1

nT

&
i=1

nS

&

C i, j, Spi ,Tq j
( )

1%q j % j
1% pi % i

&
j=1

nT

& # Spi
i=1

nS

&

' 

( 

) 
) 
) 
) 
) 
) 

* 

+ 

, 
, 
, 
, 
, 
, 

   ( 5)  



 

Clearly the mass can be allocated in many ways, subject to the column constraints 

and it is not always straightforward to find the minimum and maximum confidences 

arising from different composite mass allocations. Two extreme examples are shown 

in Fig 1, so that the confidence in the association rule between the two granules lies in 

the interval [0.4, 1]. In general there can be considerable computation involved in 

finding the maximum and minimum confidences for a rule. When ranking association 

rules it is preferable to have a single figure for confidence, rather than an interval 

which can lead to ambiguity in the ordering. 

 

  0.2 0.1 0.3 0.4 

  a a ac a ac acd a ac acd abcd 

0.2 a 0.2          

a  0.1         
0.3 

ab          0.2 

a    0.3       

ab           0.3 

abc           

a       0.2    

ab           

abc           
0.2 

abcd           

(a) 

! 

Conf (S" T) =
0.2 #1+ 0.1#1+ 0.2 # 2 + 0.3#1+ 0.2 #1

0.2 #1+ 0.1#1+ 0.2 # 2 + 0.3#1+ 0.2 #1

=1

 

 

  0.2 0.1 0.3 0.4 

  a a ac a ac acd a ac acd abcd 

0.2 a 0.2          

a           
0.3 

ab  0.1     0.2    

a           

ab           0.3 

abc    0.3       

a           

ab           

abc           
0.2 

abcd       0.2    

(b) 

! 

Conf (S" T) =
0.2 #1+ 0.1#1+ 0.2 #1+ 0.3#1+ 0.2 #1

0.2 #1+ 0.1# 2 + 0.2 # 2 + 0.3# 3+ 0.2 # 4

= 0.4

 

Fig 1 - Composite mass allocation (a) maximising and (b) minimising association rule confidence 



We can redistribute the mass according to the least prejudiced distribution i.e. split 

the mass in each row (column) equally between its sub-rows (sub-columns) and 

taking the product as the mass in each cell. In this case, the calculation is simplified 

by (a) combining rows (columns) with the same label and (b) re-ordering the 

summations. This enables us to calculate association confidences with roughly O(n) 

complexity, rather than O(n4) where n is the number of focal elements in the source 

granule S. The confidence is then given by 

! 

ConfLPD S,T( ) =

LPDS Si( ) " LPDT Tj( ) " Si #Tj
j=1

nT

$
i=1

nS

$

LPDS Si( ) " Si
i=1

nS

$

6( )
 

 

(due to the nested structure of the sets, the numerator does not require a double 

summation but can be calculated by stepping through the cells on the leading 

diagonal). If we choose the least prejudiced distribution and re-arrange sub-rows into 

single rows with the same label (also columns) we obtain the following intersections  

 

  0.45 0.25 0.2 0.1 

  a ac acd abcd 

0.5 a a a a a 

0.3 ab a a a ab 

0.15 abc a ac ac abc 

0.05 abcd a ac acd abcd 

 

and the numerator for the rule confidence is  

0.5 ! (0.45+0.25+0.2+0.1) ! 1  

+ 0.3 ! (0.45+0.25+0.2) ! 1 + 0.3 ! 0.1 ! 2 

+ 0.15 ! 0.45 ! 1 + 0.15 ! (0.25+0.2) ! 2+  0.15 ! 0.1 ! 3 

+ 0.05 ! 0.45 ! 1 + 0.05 ! 0.25 ! 2+  0.05 ! 0.2 ! 3 + 0.05 ! 0.1 ! 4 

 

giving a confidence of 0.67 - lying in the interval shown in Fig 1 (obviously). 

Using the LPD allows us to replace the calculation in eq 5 with straightforward 

calculations of the expected values of the cardinality of the source set and the 

intersection.  

The example above gives a similar result to the cardinality-based method, but this 

is not always the case. For example if 

 

! 

S = x1 1, x2 0.01, x3 0.01,… , x1000 0.01[ ]
T = x1 0.01, x2 1, x3 0.01,… , x1000 0.01[ ]

  

then a fuzzy cardinality based approach gives a confidence of 10/10.99 " 0.91 

whereas our approach gives approximately 10-5. Clearly this is a far more reasonable 

answer, as there are no elements with strong membership in both granules. 



3 Experiment 

We have carried out preliminary tests on the approach by finding associations 

between movie genres from different online sources. Ongoing work is focusing on 

finding associations between music genres, categories in different classified business 

directories and also on comparative studies using the ontology matching benchmarks, 

where suitable instance data is available. 

The two online movie databases IMDB and Rotten Tomatoes have been used in 

previous work [15] to test instance matching methods. We have  used the SOFT 

method to establish correspondence between the (roughly) 95000 movies in the 

databases. Within these two sources, movies are assigned to one or more genres and 

our task is to find strong associations between genres. The genres form a fairly flat 

hierarchy, although in principle one would expect genres to form a deeper hierarchical 

structure (e.g. comedy could be sub-divided into slapstick, satire, situation comedy, 

etc).  At this stage, there is no benchmark for comparison but the results are 

intuitively reasonable as shown in Fig 2.  

 
Fig 2 - strong associations from source IMDB genres (left) to target Rotten Tomato genres 

(right). Edge labels denotes the association strength. 



4 Summary 

We have described a new method for generating association rules between 

granules in different information hierarchies. These rules enable us to find related 

categories without leading to spurious relations suggested by association rules based 

on fuzzy cardinalities. Results were presented for discovery of links between film 

genres in different classification hierarchies, giving intuitively reasonable 

associations. The new method is currently undergoing further tests, looking at 

benchmark instance-matching problems, finding associations between music genres 

and finding links between categories in different classified business directories.  
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Abstract. Instance-unification is a prime example for uncertainty on
the Semantic Web, as it is not always possible to automatically determine
with absolute certainty whether two references denote the same object or
not. In this paper, we present openacademia, a semantics-based system
for the management of distributed bibliographic information collected
from the Web, in which the Instance Unification problem is ubiquitous.
Our tentative solution is Rough DL, a simple extension of classical De-
scription Logics, which allows for approximations of vague concept. This
shows that already a simple formalism for dealing with uncertain infor-
mation in a qualitative way can provide an elegant solution to practical
problems on the Semantic Web.

1 Introduction

When information is gathered from the Web it often occurs that multiple de-
scriptions of the same resource are found. In that case the duplicate resources
should be identified and their descriptions have to be combined.

Failing to effectively deal with duplicate results negatively affects the work-
ings of all search engines. In a search system for publications instance unification
is important for at least two types of information: persons and publications. If
coreferences of persons [3, 4] are not resolved one will obtain an incomplete list of
publications when querying for publications of a specific person (e.g. because the
system does not recognize that the authors ‘John Smith’ and ‘John J.B. Smith’
are the same person. One may face the opposite situation of receiving irrelevant
results, such as when a system assumes that authors with the same name are
the same person, as is common in most existing NLP based publication search
engines such as Google Scholar and CiteSeer. On the other hand, if publications
are not unified [8, 6] the result will contain duplicates, which makes browsing
the results difficult and obscures publication counts, an important statistic in
academia. The problem of finding equivalent instances in this case is usually
referred to as “coreference resolution” or “instance unification”.

The most common way of representing the results of instance unification is
to declare the objects to be logically equivalent. This has the consequence that
all properties of one resource are also properties of the other resource. However,
this implementation has several drawbacks. First, it often represents a logical



overcommitment. Only in very limited cases are we absolutely certain that
two instances are equivalent, in most cases we only have some partial evidence
that two descriptions refer to the same object (e.g. name similarity). Further, it
is not possible to distinguish between different levels of confidence in sim-
ilarity relations. Moreover, transitivity of equivalence often causes an undesired
propagation of equivalence over similarity relations.

In this paper, we will introduce an alternative to complete instance unifica-
tion, which allows for reasoning over gradually weakening notions of similarity.
Our tentative solution is an extension to standard DL that can be used for
defining approximations of concepts without increasing the complexity of the
language.

We illustrate the use of this language in openacademia,1 an open source web-
based system for collecting, aggregating and querying publication metadata in
a group or community setting. openacademia offers an interactive, AJAX-based
search interface for querying publications by a combination of facets. Query
results can be visualized in a number of ways, including the possibility to generate
various dynamic HTML representations that can be easily inserted into personal
homepages or institutional publication pages. Integrating descriptions of similar
persons and publications is an important task of this system, which is in this
context sometimes called smushing [5].

In the subsequent sections, we introduce the language for defining approx-
imations, and apply it to model different levels of similarity of persons and
publications in openacademia. The flexible instance unification using Rough DL
illustrates how already rather simple mechanisms for dealing with uncertainty in
a qualitative way can be used to elegantly solve practical problems on the Web.

Of course, we do not claim that our practical problem could not have been
solved by other, for example more quantitative formalisms. However, we believe
that the simplicity of our approach makes it an attractive alternative for dealing
with uncertainty on the Semantic Web.

2 Rough DL

In [10] we presented a new paradigm to represent and reason about similarity
of instances in a qualitative way called rough Description Logics (RDL).2 This
language is an obvious candidate for modeling similarity and reasoning about
classes of de-referenced objects. Here, we introduce an adapted version of RDL,
which is based on similarity rather than equivalence relations.

Definition 1. A relation is called a similarity (or tolerance) relation if it is re-
flexive and symmetric. An equivalence relation is a transitive similarity relation.

As equivalence relations extend similarity relations, we define Rough DL
using the latter. We will use the notation Csim and Csim to describe the approx-
imations of a class C with respect to a similarity relation sim. We will omit the
1 http://www.openacademia.org
2 As the relation between OWL and Description Logics is well established, we only

introduce rough DL. The extension to rough OWL is conceptually trivial.
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lower-script and upper-script sim whenever the choice of relation is irrelevant.
The intuition regarding Csim is that it denotes the set of all elements that are
possibly in C, whereas Csim is meant to describe all elements definitively in
C. Often such an operator is useful when C cannot be specified in a crisp way.
By way of the approximation(s) we can at least restrict C with an upper, and a
lower, bound.

An illustrating example The following picture illustrates the general idea. In
the spirit of Rough Set theory [7], two concepts approximate an under-specified,
vague, concept as particular sub- and super-concepts. Suppose that we want
to define SWAuthor as the class of all Semantic Web authors. This is a vague
concept.

SWAuthor

SWAuthor

SWAuthor

Each square denotes a set of domain elements, which cannot further be discerned
by some available criterion at hand. The encircling line denotes the set of Se-
mantic Web authors, i.e., the vague concept which we are incapable to formally
define. If we capture this lack of criteria to discern between two objects as a
indiscernibility relation indis, we can formalize the upper approximation as the
authors that are indiscernible from at least one Semantic Web author.

SWAuthor ≡ {aut1 | ∃ aut2: indis(aut1,aut2) & aut2 ∈ SWAuthor}.

Similarly, we can define the lower approximation as the set of authors con-
taining all, and only those authors, for which it is known that all indiscernible
authors must be Semantic Web authors.

SWAuthor ≡{aut1 | ∀ aut2: indis(aut1,aut2) → aut2 ∈ SWAuthor}

In our picture, the upper approximation is depicted as the union of the dark
squares (the lower approximation), and the gray squares, the boundary. Note
that in our example, following the literature on Rough Sets, the similarity of
objects is determined by the indiscernibility of resources. This is an equivalence
relation, which makes it appropriate to denote the sets of indiscernible instances
as disjoint squares.

This intuition suggests two uses for Rough DL: first as a modeling language
for representing vague knowledge and, secondly, as a language to query over
similarity in a domain.

Modeling vague concepts Even if it is impossible to formally define a concept
such as SWAuthor, we can often specify the approximations. The class of Seman-
tic Web authors cannot be defined in a crisp way, but it is easy to think of an
upper approximation (the possible Semantic Web authors, e.g. all authors hav-
ing published in a Semantic Web conference or Journal). Rough DL semantics
enforce restrictions on the class SWAuthor indirectly. We will discuss modeling
with Rough DL concepts later in more detail.
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Qualitative querying over similarities In the case of instance unification
Rough DL can be used for querying classes of objects, and objects that were
identified as being similar. Suppose we have a particular author author who is
uniquely identifiable, say via his FOAF profile. Now, an algorithm Alg for object
de-referencing creates a relation simAlg of pairs (author1,author2). Based on
this relation each algorithm for referencing induces a set PossiblyAlg(author)
for each author author, i.e. a set of objects of the domain U which possibly
correspond to this particular author author, with the formal definition:

PossiblyAlg(author) = {i ∈ U |∃j ∈ U : (i, j) ∈ simAlg & j ∈ oneOf(author)},

which corresponds almost exactly to the formal semantics of an upper ap-
proximation. Most of the remainder of this paper will be about using Rough DL
for querying ontologies with explicit similarities.

2.1 Semantics of Rough DL

Using this property we can define the semantics of the approximations formally:

Definition 2. Let a rough interpretation be a triple I = (U,R∼, ·I), where U is
a universe, ·I an interpretation function, and R∼ an equivalence relation over
U . The function ·I maps RDL concepts to subsets and role names to relations
over the domain U . It extends to the new constructs as follows:

– (C)I = {i ∈ U | ∃j ∈ U : (i, j) ∈ R∼ & j ∈ CI}
– (C)I = {i ∈ U | ∀j ∈ U : (i, j) ∈ R∼ → j ∈ CI}

The semantics of the lower approximation is defined as usual as the dual operator
Csim = ¬¬C

sim with its respective semantics. Depending on the specifics of the
similarity relation, these semantics enforce powerful terminological consequences.
In [10] we discuss a number of them, here we have to restrict ourselves to two
relatively simple examples: Given an ontology O = {SWAuthoreq ! Author}
where eq is an equivalence relation, it follows that O |= SWAuthor

eq ! Authoreq.
What does this mean? It means that if any possible Semantic Web author is an
author, it must be a typical author. Another example is the non-existence of a
definitively non-typical Semantic Web author. Let the non-typical Semantic Web
authors be defined as the Semantic Web authors that are not typical Semantic
Web authors, i.e. we add NTSWAuthor ! SWAuthor "¬SWAuthoreq to O. Rough
DL semantics implies that there can be no definitely non-typical Semantic Web
authors, i.e. that O |= NTSWAuthorseq = ⊥.

Related to these semantic consequences is the question of reasoning support,
i.e. the existence of tools that can calculate consequences such as the ones dis-
cussed above in reasonable time. This points to the nice property of Rough DL
being a conservative extension of OWL, in the sense that any Rough DL on-
tology can be translated into a logically equivalent OWL ontology. This means
that reasoning for our language comes for free, as we can use standard reasoners
to calculate class hierarchies, consistency and all instances of a particular class.
The latter is the reasoning most needed in openacademia.
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We can now relate these semantics of Rough DL to our example of instance
unification given before. If we identify the class TBL with the singleton set t.b-l,
i.e. define TBL to be equivalent to oneOf(t.b-l), the set PossiblyAlg(t.b-l)
semantically corresponds to the upper approximation of TBL according to the
indiscernibility relation simAlg.

Adapting Rough DL for openacademia As already mentioned, for appli-
cation of Rough DL in openacademia we need a slightly different formalism from
the one introduced in [10] and described above. First, we use similarity relations
in addition to equivalence relations, and secondly, we want to apply different
similarity relations and approximations, as well as hierarchies on both.

Similarity versus equivalence In openacademia, approximations based on
similarity relations are used in addition to equivalence relations. Some smushing
algorithms indeed produce equivalences, e.g. when two instances are identified
through equivalence of the value of an inverse functional property. But even in
logically weaker cases, there will be methods which indicate most likely equiva-
lence between objects.

On the other hand, there are weaker methods, which will give indications
for similarity, and which are not transitive. A simple example is edit distance: a
similarity between two instances which is defined by an edit distance smaller or
equal to 1 is non-transitive.

Hierarchies on similarities & approximations In an application such as
openacademia there is no unique best way to identify co-reference of instances.
This means that there will usually be several algorithms, such as the ones de-
scribed in the following section, which produce several possible similarity rela-
tions. Often inclusion properties of such relations are easily created, and are often
even more meaningful than quantitative values. In an RDF(S) based framework
we can make use of hierarchies on relations to specify confidence in smushing
algorithms in a qualitative way.

A simple logical consequence of specifying similarities in hierarchies of prop-
erties is that it implies hierarchies of the approximations. More concretely, sup-
pose that two algorithms A1 and A2 produce two similarities oa:similarToA1 and
oa:similarToA2 where, by construction, individual1 oa:similarToA1 individual2

implies that individual1 oa:similarToA2 individual2. This is a typical case, as
smushing algorithms often include results of other algorithms. In this case, it
can be shown that an upper approximation based on oa:similarToA1 is more
specific than an upper approximation based on oa:similarToA2.

We make use of this property to construct hierarchies of approximations
based on the underlying similarity relations, which can be very useful for con-
trolled query relaxation.

3 Using Rough DL in openacademia

The current interface of openacademia allows to query for publications using
combinations of different criteria, such as “author”, “title”, “year”, “type” and
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“group”. With respect to the author criteria, users can provide a string that is
matched to a part of the author name.

This is a suboptimal solution when one wants to have precise control over the
search results, as there is no way to distinguish between publications of different
authors with a similar name. Regardless of instance unification, the result will
be a mix of publications of possibly different persons.

A first requirement for controlled instance unification is to search by the URI
of the resource instead of its label. For example, the system could search by label
and return a list of publications. Then, the user could select a specific instance
of an author in the result list, whose URI is used for the subsequent searches.

openacademia currently uses several methods to determine similarity between
authors and publications, which are sometimes called smushing algorithms.

1. The most certain way to determine the equivalence of two resources is by
comparing the values for their owl:InverseFunctionalProperty’s. When two
resources have the same value for such a property they can be considered as
equivalent. The FOAF-specification defines a number of properties, including
foaf:mbox and foaf:homepage as inverse functional.

2. Another method is based on the comparison of the labels of resources. In
openacademia we use several heuristics with different certainty to determine
possible equivalences. For example, we consider instances of foaf:Person as
unification candidates if both their first and last names match exactly (i.e.
the string is identical), or if their last name and their initials match, or if
their last name and first name are within a certain edit-distance.

3. An alternative method exploits the similarity of related resources. If, e.g., two
instances of swrc:Publication are determined to be equivalent, we assume
that the resources in the author-list are also equivalent.

Different from related work that focuses on learning the rules of smushing
(e.g. [1]), smushing is an iterative reasoning process in openacademia. The in-
stance matches found in one iteration can be used to discover new matches in
subsequent iterations. Iterative reasoning is even a requirement if the smushing
rules are co-dependent, such as the case when one would like to infer similarities
of persons based on similarities of publications and vice versa, similarities of
publications based on similarities of their authors.

To reflect the fact that different algorithms have a different certainty, we add
similarity statements of the form individual1 oa:similarToX individual2 to
the repository. Each individual must be identified by a URI and oa:similarToX

is a similarity relation of instances returned by one of the algorithms discussed.

3.1 Benefits of Rough DL

In the context of openacademia, Rough DL has two functions: it offers an ap-
pealing conceptual framework for querying over similarities, and it provides the
possibility to model vague concepts, such as typical Semantic Web authors. We
will discuss both features in more detail.
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Querying over similarities Using similarities for object-dereferencing is a
relatively obvious proposal as the problems of ad-hoc solutions (such as using
owl:sameAs) are known. However, most people decide to use the slight over-
commitment of owl:sameAs in order to be able to continue to use the automatic
reasoning support for OWL, i.e. in order to avoid having to deal with similarities
explicitly.

Rough DL offers an attractive alternative, as it provides a conceptually ele-
gant framework for querying an RDF(S) repository including similarity relations
by two simple operators (·) and (·), the approximations. Let us start with a sim-
ple example of how Rough DL can help in order to formulate concise queries
over graphs including similarities.

Suppose we have identified two resources, a1 and a2, each of type foaf:Person.
Each resource is connected via a swrc:author property to a number of resources
of type swrc:Publication (p1. . . p4). Besides this, a1 and a2 each have an rdfs:

label. One of the similarity heuristics discovered a similarity between the labels
of a1 and a2, which is represented by a property oa:similarTo between both
resources.

p1 p2

swrc:author

p4p3  

rdfs:label
John Smith

swrc:author

rdfs:label
J.Smith a1

a2

oa
:s
im
il
ar
To

The obvious query to take from this graph is to find all publications of the
resource a1, uniquely identified by the URI <http://www.uni1.edu/~personA/pubs.bib#john_smith>, and
every resource that is similar.

Formulating this as instance checking in Rough DL is simply to ask for all
instances of class oneOf{...#john smith} (for the resource). Already for such
a simple Rough DL query, the corresponding SeRQL query requires explicit
knowledge of the structure of the graph, and of the similarity relation used.

SELECT distinct Pub FROM
{Pub} swrc:author {Person},
{Person} oa:nameSimilarTo3

{<http://www.uni1.edu/~personA/pubs.bib#john_smith>}

Another example exploits similarities between publications. Suppose that we
add different kinds of similarity relations between publications. For example,
two publications could be connected via a property oa:hasJointAuthors if they
share at least two authors. Or, another possibility, they can be connected via
oa:hasRelatedKeywords if their keywords are related according to some metric,
e.g. because the keywords are semantically close to each other in some topic
hierarchy. One could even add similarity relations based on the textual overlap
of the abstract.

Now, the Rough DL framework allows queries for upper approximations —
according to a specific type of similarity — of publications that fulfill specific
criteria. For example, if we use the “author overlap” similarity, we could query for
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the upper approximation of papers with “OWL” as a keyword by simply asking
for the instances of the Rough DL class restriction(keyword hasValue("OWL")).
When we have oa:hasJointAuthors in place as a similarity relation we get as the
result all papers of authors that together have published papers with OWL as a
keyword. Again, the corresponding SeRQL query is simple, but we could easily
use a different similarity measure without requiring any change for the user.

SELECT DISTINCT Pub FROM {Pub}
oa:hasJointAuthors {Other}, WHERE

{Other} IN (SELECT Pub FROM {Pub} swrc:keyword {"OWL"})

Modeling vague concepts in OA Up to now we discussed the use of Rough
DL for formulating queries over an RDF(S) repository with similarity relations.
But of course, the language can also be used to model vague concepts directly
in the repository. Imagine that one wants to model Semantic Web conferences
and authors, obviously terms that describe vague concepts for which it will be
impossible to find commonly agreed upon definitions. What is possible, on the
other hand, is to define approximations for both classes. Most people would
agree that there are three prototypical Semantic Web conferences: the Interna-
tional and European Semantic Web conferences (ISWC and ESWC), and the
World-Wide Web conference (WWW). Defining the lower approximation of a
class SWconference can then be done simply as SWconference = WWW& ISWC& ESWC

where the conferences are described as classes (e.g. ISWC) containing at least
one uniquely identifying resource (e.g., ns:iswc). Here, we chose the lower ap-
proximations of the resources for the conferences as we want to avoid ambiguity
through spelling variants or other forms of synonymy (e.g. ESWC also refers to
the Electronic Sports World Cup).

Semantic Web authors can now be defined as authors having published at
possible Semantic Web conference, i.e.

SWauthor = ∃ publishedIn.SWconference

Even though Rough DL is a conservative extension of OWL DL this example
shows that modeling the same information without approximation operators
would be extremely cumbersome. Using Rough DL, and the reasoning machinery
that comes for free, thanks to the translation back to OWL, allows queries such
as for all possible Semantic Web authors i : SWauthor?, which even for this simple
example is non-trivial on a larger data set.

Furthermore, for the Rough DL fragment built on the OWL DL dialect,
the usual reasoning services, such as query entailment, satisfiability checking or
subsumption hierarchies can be easily calculated.

For openacademia querying with Rough DL is the more prominent applica-
tion, and we have not yet pursued modeling of rough concepts in openacademia.
Technically, and conceptually, it is easy to add Rough DL axioms to the Sesame
repository. By adding rules, part of the OWL semantics can be captured, but
completeness cannot be achieved. A more detailed study of this, e.g., consider-
ing the alternative semantics proposed in [12], is outside the scope of this paper.
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Therefore, although we are also convinced that modeling approximate concepts
will significantly improve the ease of use of openacademia, the focus in this paper
will be on querying from now on.

3.2 Technical Issues

The application of Rough DL in openacademia amplifies a discrepancy of two
Knowledge Representation frameworks that is present in many practical ap-
proaches to the Semantic Web. With query languages such as SeRQL or SPARQL
for RDF(S) ontologies and the advent of robust and fast RDF repositories, effi-
cient data access is now made possible even for very large data sets. On the other
hand, the expressivity of OWL makes it possible to model ontological knowledge
in very elegant ways, which is needed for many realistic applications. Unfortu-
nately, theoretically both paradigms are less easily integrated than one would
hope for, and than could be expected at first glance.

1. A first issue is the use of a query-language such as SeRQL for a repository
containing OWL statements.

2. The second problem to be addressed is the question of Open- versus Closed-
World Assumption.

For lack of space both issues can only be discussed briefly.
First, to make use of the best of both worlds, many people include OWL

ontologies in RDF repositories, and query those with traditional RDF query
languages. The problem with such an approach is that completeness cannot be
guaranteed in general. For openacademia we do the same: particular knowledge
is represented in OWL (e.g. defining a property as transitive or functional), but
SeRQL is used for querying. In the case of openacademia, however, the problem
of incompleteness can be circumvented. This is done by including parts of the
OWL semantics in the Sesame inference engine (in the style of [12]), and by
encoding parts in the queries.

Secondly, querying a triple store such as Sesame usually employs a Close-
World assumption, i.e. a universally quantified statement is evaluated as true if
all known instances in the relation have the required property. This is different
than DL, where an Open-World Assumption is taken. For the lower approxi-
mation this means that the DL interpretation differs from the interpretation of
a natural SeRQL encoding. As a DL query for lower approximations will only
return relevant results when there are explicit universal statements (or approx-
imations) in the ontology, our current research focuses on the use of the upper
approximation for querying.

4 Case study

To illustrate the benefits of Rough DL descriptions in practice, we show the
effect of applying different approximations in openacademia. For this, we use
the approximation interface as shown in Figure 1. This interface translates a
restricted set of Rough DL queries into SeRQL.
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Fig. 1. The approximation interface, allowing for broadening or narrowing the author
concept.

We apply Rough DL for author similarity, using a hierarchy of similarities.
Suppose we want to query for publications of “Marta Sabou” with several entries
in our database. We start with a URI <http://www.uni1.edu/~personA/pubs.bib#
marta_sabou> in our own BibTeX files, which gives high confidence that the
resource represents the right person.

No approximation Without approximation, a query for the publications
of this resource results in 3 publications, which were all specified in <http:

//www.uni1.edu/~personA/pubs.bib>.
Exploiting inverse functional properties Smushing adds oa:nameSimilarTo1

statements between all resources with the same value for an inverse functional
property. As Marta’s email is listed in her FOAF-profile, an oa:nameSimilarTo1

statement is added between the original resource and <http://www.uni1.edu/

swhome/person/marta>, an RDF representation of a personnel database. When
querying for the upper approximation of the resource, the search results now
include the publications on Marta’s homepage.

Exact match of fullname A second level of approximation uses the la-
bel of the resources of type foaf:Person. When the first and lastname of a
person exactly match, a oa:nameSimilarTo2 is added. This results in similarity
statements between the original resource and <http://www.uni2.edu/~personB/
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biblio/bnaic2002.bib#marta_sabou> and <http://www.uni3.edu/~personC/pubs.

bib#marta_sabou>. When using this property as similarity in the Rough DL
framework, the search result contains 7 publications.

Exact match of lastname and initial The next level of approximation
exploits the oa:nameSimilarTo3 statements that are added when both the last-
names match and the initial of one resource matches the first character of the
firstname of another resource. This results in similarity statements to the re-
source <http://www.uni3.org/~personD/publications.bib#m_sabou> with the la-
bel “M. Sabou” and the resource <http://www.uni1.edu/swhome/person/marta>

with the label “M.R. Sabou”, yielding in one new publication.
Fuzzy match on fullname The final level of approximation uses n-gram

distance between labels of two resources and adds oa:nameSimilarTo4 when the
distance is above some threshold. In our data set there is such a statement
between the original resource and <http://www.uni4.edu/publications/ins.bib#

martha_sabou>, which has “Martha Sabou” as label. This again added one addi-
tional publication, resulting in 9 publications.

Note that we only discussed the additional search results in the description
above. However, when exploiting the similarities between the authors in the
search, we also get duplicate resources for publications for which we apply a
similar strategy to combine publication resources.

5 Conclusions

Summary Rough DL is a conservative extension of DL, i.e. an extension of DL
with new operators for modeling vague concepts, that does not increase the ex-
pressive power of the original language. We show that this language is suitable for
reasoning over similarities or equivalences introduced into an ontology through
co-reference resolution. Rough DL provides a qualitative way of representing
vague concepts, and to reason and query over similarities. By applying Rough
DL to openacademia we show that AI techniques can elegantly solve practical
problems on the web.

To make the Rough DL version of openacademia robust and efficient for
large collections, e.g., crawled on the WWW, the application has initially been
restricted to querying. Large scale experiments with Rough DL modeling are
planned as future work to evaluate scalability of this theoretically promising
framework.

Related Work The related work covers modeling vagueness in ontologies, most
prominently in combining fuzzy logic with Semantic Web research, as exempli-
fied in [9]. Some of this work is based on Straccia’s paper on fuzzy Description
Logics, e.g., [11]. Vagueness of concepts is expressed as a degree of membership.
Rough DL advocates a simpler, qualitative, approach to domains where there is
no way of quantifying membership of the class but well-defined upper and lower
approximations. The difference is intrinsically in the type of vagueness of par-
ticular concepts. On the querying side, there have also been efforts to integrate
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querying over similarities into a standard RDF querying language, e.g., [2]. The
language described there, iRDQL, has implicit functionality to query for objects
with a certain similarity.

There, however, lies the biggest difference to our approach, which focuses on
qualitative modeling of vagueness and querying over similarities. For some do-
mains and particular applications, such as for access to distributed data sources,
this approach can be more appropriate. This does not just hold for bibliographic
data, but for any data integration where the identity of resources cannot al-
ways be established with absolute certainty, and where qualitative querying over
similarities can provide a fine-grained access to collections.

Future Work The application of Rough DL to openacademia is a first step
towards achieving the full potential of the language. Currently, SeRQL queries
are automatically created for narrowing or broadening search results. A next
step will be to extend querying to more expressive Rough DL queries, and to
integrate Rough DL in the ontology. Together with such an extension of the
functionality we will have to undertake a detailed investigation of the scalability
of the system, and a qualitative and quantitative analysis of the effects on the
querying results in openacademia.
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Abstract. Classical ontologies are not suitable to represent imprecise
nor uncertain pieces of information. Fuzzy Description Logics were born
to represent the former type of knowledge, but they require an appropri-
ate fuzzy language to be agreed and an important number of available
resources to be adapted. This paper faces these problems by presenting
a reasoning preserving procedure to obtain a crisp representation for a
fuzzy extension of the logic SROIQ which uses Gödel implication in the
semantics of fuzzy concept and role subsumption. This reduction allows
to reuse a crisp representation language as well as currently available
reasoners. Our procedure is optimized with respect to the related work,
reducing the size of the resulting knowledge base, and is implemented in
DeLorean, the first reasoner supporting fuzzy OWL DL.

1 Introduction

Description Logics (DLs for short) [1] are a family of logics for representing
structured knowledge which have proved to be very useful as ontology languages.
For instance, SROIQ(D) [2] is the subjacent DL of OWL 1.1., a recent extension
of the standard language OWL1 which is its most likely immediate successor.

Nevertheless, it has been widely pointed out that classical ontologies are not
appropriate to deal with imprecise and vague knowledge, which is inherent to
several real-world domains. Since fuzzy logic is a suitable formalism to handle
these types of knowledge, several fuzzy extensions of DLs can be found in the
literature (see [3] for an overview).

Defining a fuzzy DL brings about that crisp standard languages are no longer
appropriate, new fuzzy languages need to be used, and hence the large number
of resources available need to be adapted to the new framework, requiring an
important effort. An additional problem is that reasoning within (crisp) expres-
sive DLs has a very high worst-case complexity (e.g. NExpTime in SHOIN )
and, consequently, there exists a significant gap between the design of a decision
procedure and the achievement of a practical implementation [4].

An alternative is to represent fuzzy DLs using crisp DLs and to reduce reason-
ing within fuzzy DLs to reasoning within crisp ones. This has several advantages:
1 http://www.w3.org/TR/owl-features



– There would be no need to agree a new standard fuzzy language, but every
developer could use its own language expressing fuzzy SROIQ, as long as
he implements the reduction that we describe.

– We will continue using standard languages with a lot of resources available,
so the need (and cost) of adapting them to the new fuzzy language is avoided.

– We will continue using the existing crisp reasoners. We do not claim that
reasoning will be more efficient, but it supposes an easy alternative to sup-
port early reasoning in future fuzzy languages. In fact, nowadays there is no
reasoner fully supporting a fuzzy extension of OWL DL.

Under this approach an immediate practical application of fuzzy ontologies
is feasible, because of its tight relation with already existing languages and tools
which have proved their validity.

Although there has been a relatively significant amount of works in extending
DLs with fuzzy set theory ( [3] is a good survey), the representation of them using
crisp description logics has not received such attention. The first efforts in this
direction are due to U. Straccia, who considered fuzzy ALCH [5] and fuzzy ALC
with truth values taken from an uncertainty lattice [6]. F. Bobillo et al. extended
Straccia’s work to SHOIN , including fuzzy nominals and fuzzy General Concept
Inclusions (GCIs) with a semantics given by Kleene-Dienes (KD) implication [7].
Finally, G. Stoilos et al. extended this work to SROIQ [8]. This paper improves
the latter work providing the following contributions:

– We provide a full representation, differently from [8] which do not show
how to reduce qualified cardinality restrictions, local reflexivity concepts in
expressions of the form ρ(∃S.Self, !γ) nor negative role assertions.

– [5, 8] force GCIs and Role Inclusion Axioms (RIAs) to be either true or
false, but we will allow them to be verified up to some degree by using Gödel
implication in the semantics.

– We improve one of their starting points (the reduction presented in [5]) by
reducing the number of new atomic elements and their corresponding axioms.

– We show how to optimize some important GCIs.
– We present DeLorean, our implementation of the reduction and the first

implemented reasoner supporting fuzzy SHOIN .

The remainder is organized as follows. Section 2 describes a fuzzy extension of
SROIQ and discusses some logical properties. Section 3 depicts a reduction into
crisp SROIQ, whereas Section 4 presents our implementation of the procedure.
Finally, in Section 5 we set out some conclusions and ideas for future work.

2 Fuzzy SROIQ

In this section we define fSROIQ, which extend SROIQ to the fuzzy case
by letting (i) concepts denote fuzzy sets of individuals and (ii) roles denote fuzzy
binary relations. Axioms are also extended to the fuzzy case and some of them
hold to a degree. The following definition combines [7–9], but we will use Gödel
implication in the semantics of GCIs and RIAs.



Syntax. fSROIQ assumes three alphabets of symbols, for concepts, roles and
individuals. The concepts of the language (denoted C or D) can be built in-
ductively from atomic concepts (A), atomic roles (R), top concept ", bottom
concept ⊥, named individuals (oi), universal role (U) and simple roles (S, which
will be defined below) according to the following syntax rule, where n, m are
natural numbers (n ≥ 0,m > 0) and αi ∈ [0, 1]: C,D → A | " | ⊥ | C 'D | C (
D | ¬C | ∀R.C | ∃R.C | {α1/o1, . . . , αm/om} | (≥ n S.C) | (≤ n S.C) | ∃S.Self .
Notice that the only difference with the crisp case is the presence of fuzzy nom-
inals [7]. Complex roles are built using the syntax rule R → RA | R− | U .

A fuzzy Knowledge Base (fKB) comprises two parts: the extensional knowl-
edge, i.e. particular knowledge about some specific situation (a fuzzy Assertional
Box or ABox KA with statements about individuals) and the intensional knowl-
edge, i.e. general knowledge about the application domain (a fuzzy Terminolog-
ical Box or TBox KT and a fuzzy Role Box or RBox KR).

In the rest of the paper we will assume $% ∈ {≥, <,≤, >}, α ∈ (0, 1], β ∈
[0, 1) and γ ∈ [0, 1]. Moreover, for every operator $% we define (i) its symmetric
operator $%− defined as ≥−=≤, >−=<,≤−=≥, <−=>, and (ii) its negation
operator ¬ $%, defined as ¬ ≥=<,¬ >=≤,¬ ≤=>,¬ <=≥.

A fuzzy ABox consists of a finite set of fuzzy assertions. A fuzzy assertion can
be an inequality assertion 〈a ,= b〉, an equality assertion 〈a = b〉 or a constraint
on the truth value of a concept or role assertion, i.e. an expression of the form
〈Ψ $% α〉, where Ψ is an assertion of the form a :C or (a, b) :R.

A fuzzy TBox consists of fuzzy GCIs, which constrain the truth value of a
GCI i.e. they are expressions of the form 〈Ω ≥ α〉 or 〈Ω > β〉, where Ω = C . D.

A fuzzy RBox consists of a finite set of role axioms, which can be fuzzy RIAs
〈w . R ≥ α〉 or 〈w . R > β〉 for a role chain w = R1R2 . . . Rn, or any other of
the role axioms from the crisp case: transitive trans(R), disjoint dis(S1, S2),
reflexive ref(R), irreflexive irr(S), symmetric sym(R) or asymmetric asy(S).
As in the crisp case, role axioms cannot contain U and every RIA should be ≺-
regular for a regular order ≺. A RIA 〈w . R"γ〉 is ≺-regular if R = RA and (i)
w = RR, or (ii) w = R−, or (iii) w = S1 . . . Sn and Si ≺ R for all i = 1, . . . , n,
or (iv) w = RS1 . . . Sn and Si ≺ R for all i = 1, . . . , n, or (v) w = S1 . . . SnR
and Si ≺ R for all i = 1, . . . , n.

Simple roles are inductively defined: (i) RA is simple if does not occur on
the right side of a RIA, (ii) R− is simple if R is, (iii) if R occurs on the right
side of a RIA, R is simple if, for each 〈w . R " γ〉, w = S for a simple role S.

A fuzzy axiom τ is positive (denoted 〈τ " α〉) if it is of the form 〈τ ≥ α〉 or
〈τ > β〉, and negative (denoted 〈τ ! α〉) if it is of the form 〈τ ≤ β〉 or 〈τ < α〉.
〈τ = α〉 is equivalent to the pair of axioms 〈τ ≥ α〉 and 〈τ ≤ α〉.

Notice that negative GCIs or RIAs are not allowed, because they correspond
to negated GCIs and RIAs respectively, which are not part of crisp SROIQ.

Semantics. A fuzzy interpretation I is a pair (∆I , ·I) consisting of a non empty
set ∆I (the interpretation domain) and a fuzzy interpretation function ·I map-
ping (i) every individual onto an element of ∆I , (ii) every concept C onto a func-
tion CI : ∆I → [0, 1], (iii) every role R onto a function RI : ∆I ×∆I → [0, 1].



CI (resp. RI) denotes the membership function of the fuzzy concept C (resp.
fuzzy role R) w.r.t. I. CI(a) (resp. RI(a, b)) gives us the degree of being the
individual a an element of the fuzzy concept C (resp. the degree of being (a, b) an
element of the fuzzy role R) under the fuzzy interpretation I. We do not impose
unique name assumption, i.e. two nominals might refer to the same individual.
For a t-norm ⊗, a t-conorm ⊕, a negation function 3 and an implication function
→, the fuzzy interpretation function is extended to complex concepts and roles
as follows:

"I(a) = 1
⊥I(a) = 0

(C 'D)I(a) = CI(a)⊗DI(a)
(C (D)I(a) = CI(a)⊕DI(a)

(¬C)I(a) = 3CI(a)
(∀R.C)I(a) = infb∈∆I{RI(a, b) → CI(b)}
(∃R.C)I(a) = supb∈∆I{RI(a, b)⊗ CI(b)}

{α1/o1, . . . , αm/om}I(a) = supi | a∈{oIi } αi

(≥ 0 S.C)I(a) = "I(a) = 1
(≥ m S.C)I(a) = supb1,...,bm∈∆I [(⊗n

i=1{SI(a, bi)⊗ CI(bi)})
⊗

(⊗j<k{bj ,= bk})]
(≤ n S.C)I(a) = infb1,...,bn+1∈∆I [(⊗n+1

i=1 {SI(a, bi)⊗ CI(bi)}) → (⊕j<k{bj = bk})]
(∃S.Self)I(a) = SI(a, a)

(R−)I(a, b) = RI(b, a)
UI(a, b) = 1

A fuzzy interpretation I satisfies (is a model of):

– (i) 〈a :C ≥ α〉 iff CI(aI) ≥ α,
– (ii) 〈(a, b) :R ≥ α〉 iff RI(aI , bI) ≥ α,
– (iii) 〈a ,= b〉 iff aI ,= bI ,
– (iv) 〈a = b〉 iff aI = bI ,
– (v) 〈C . D ≥ α〉 iff infa∈∆I{CI(a) → DI(a)} ≥ α,
– (vi) 〈R1 . . . Rn . R ≥ α〉 iff supb1...bn+1∈∆I

⊗
[RI

1 (b1, b2), . . . , RI
n(bn, bn+1)] →

RI(b1, bn+1) ≥ α,
– (vii) trans(R) iff ∀a, b ∈ ∆I , RI(a, b) ≥ supc∈∆I RI(a, c)⊗RI(c, b),
– (viii) dis(S1, S2) iff ∀a, b ∈ ∆I , SI

1 (a, b)⊗ SI
2 (a, b) = 0,

– (ix) ref(R) iff ∀a ∈ ∆I , RI(a, a) = 1,
– (x) irr(S) iff ∀a ∈ ∆I , SI(a, a) = 0,
– (xi) sym(R) iff ∀a, b ∈ ∆I , RI(a, b) = RI(b, a),
– (xii) asy(S) iff ∀a, b ∈ ∆I , if SI(a, b) > 0 then SI(b, a) = 0,
– (xii) a fKB iff it satisfies each element in fKA, fKT and fKR.

In cases (i), (ii) similar definitions can be given for > β, ≤ β and < α,
whereas in cases (v), (vi) a similar definition can be given for > β.

Notice that individual assertions are considered to be crisp
In the rest of the paper we will only consider fKB satisfiability, since (as in

the crisp case) most inference problems can be reduced to it [10].



Some logical properties. It can be easily shown that fSROIQ is a sound ex-
tension of crisp SROIQ, because fuzzy interpretations coincide with crisp in-
terpretations if we restrict the membership degrees to {0, 1}.

In the fuzzy DLs literature, the notation fiDL has been proposed [11], where
i is the fuzzy implication function considered. Here in after we will concentrate
on fKDSROIQ, restricting ourselves to the Zadeh family: minimum t-norm,
maximum t-conorm, #Lukasiewicz negation and KD implication, with the excep-
tion of GCIs and RIAs, where we will consider Gödel implication. This choice
comes from the fact that KD implication specifies a t-norm, a t-conorm and
a negation which make possible the reduction to a crisp KB, as we will see in
Section 3 (other fuzzy operators are not suitable for a similar reduction).

However, the use of KD implication in the semantics of GCIs and RIAs
brings about two counter-intuitive effects: (i) in general concepts (and roles) do
not fully subsume themselves and (ii) crisp subsumption (holding to degree 1)
forces some fuzzy concepts and roles to be interpreted as crisp [7].

Another common semantics which could be considered is the one based on
Zadeh’s set inclusion (C . D = ∀x ∈ ∆I , CI(x) ≤ DI(x)) as in [10, 12], but it
forces the axioms to be either true or false. For example, under this semantics
it is not possible that concept Hotel subsumes concept Inn with degree 0.5.

Gödel implication solves the afore-mentioned problems and is suitable for a
classical representation as we will see in Section 3. Moreover, for GCIs of the
form 〈C . D ≥ 1〉, the semantics is equivalent to that of Zadeh’s set inclusion.

It is possible to transform concept expressions into a semantically equiva-
lent Negation Normal Form (NNF), which is obtained by pushing in the usual
manner negation in front of atomic concepts, fuzzy nominals and local reflexiv-
ity concepts. In the case of ¬(≥ 0 S), it could be replaced by ⊥ since it is an
inconsistent concept. In the following, we will assume that concepts are in NNF.

Irreflexive, transitive and symmetric role axioms are syntactic sugar for every
R-implication (and consequently it can be assumed that they do not appear in
fKBs) due to the following equivalences:

– irr(S) ≡ 〈" . ¬∃S.Self ≥ 1〉,
– trans(R) ≡ 〈RR . R ≥ 1〉,
– sym(R) ≡ 〈R . R− ≥ 1〉.

3 An Optimized Crisp Representation for Fuzzy SROIQ

In this section we show how to reduce a fKDSROIQ fKB into a crisp KB,
similarly as in [5, 7, 8]. The procedure preserves reasoning, so existing SROIQ
reasoners could be applied to the resulting KB. First we will describe the reduc-
tion and then we will provide an illustrating example. The basic idea is to create
some new crisp concepts and roles, representing the α-cuts of the fuzzy concepts
and relations, and to rely on them. Next, some new axioms are added to preserve
their semantics and finally every axiom in the ABox, the TBox and the RBox is
represented, independently from other axioms, using these new crisp elements.



Adding (an optimized number of) new elements. Let AfK and RfK be the set of
atomic concepts and atomic roles occurring in a fKB fK = 〈fKA, fKT , fKR〉.
In [5] it is shown that the set of the degrees which must be considered for
any reasoning task is defined as NfK = XfK ∪ {1 − α | α ∈ XfK}, where
XfK = {0, 0.5, 1} ∪ {γ | 〈τ $% γ〉 ∈ fK}. This also holds in fKDSROIQ, but
note that it is not necessarily true when other fuzzy operators are considered.
Without loss of generality, it can be assumed that NfK = {γ1, . . . , γ|NfK |} and
γi < γi+1, 1 ≤ i ≤ |NfK | − 1. It is easy to see that γ1 = 0 and γ|NfK | = 1.

Now, for each α, β ∈ NfK with α ∈ (0, 1] and β ∈ [0, 1), for each A ∈ AfK

and for each RA ∈ RfK , two new atomic concepts A≥α, A>β and two new
atomic roles R≥α, R>β are introduced. A≥α represents the crisp set of individuals
which are instance of A with degree higher or equal than α i.e the α-cut of
A. The other new elements are defined in a similar way. The atomic elements
A>1, R>1, A≥0 and R≥0 are not considered because they are not necessary, due
to the restrictions on the allowed degree of the axioms in the fKB (e.g. we do
not allow GCIs of the form C . D ≥ 0). Note that [5, 7] consider A≥0 and R≥0.

The semantics of these newly introduced atomic concepts and roles is pre-
served by some terminological and role axioms. For each 1 ≤ i ≤ |NfK | − 1, 2 ≤
j ≤ |NfK | − 1 and for each A ∈ AfK , T (NfK) is the smallest terminology
containing these two axioms: A≥γi+1 . A>γi , A>γj . A≥γj . Similarly, for each
RA ∈ RfK , R(NfK) is the smallest terminology containing R≥γi+1 . R>γi and
R>γi . R≥γi .

In contrast to previous works, which use two more atomic concepts A≤β , A<α

and some additional axioms (2 ≤ k ≤ |NfK |) [5, 7]:

A<γk . A≤γk , A≤γi . A<γi+1

A≥γk 'A<γk . ⊥, A>γi 'A≤γi . ⊥
" . A≥γk (A<γk , " . A>γi (A≤γi

we use ¬A>γk rather than A≤γk and ¬A≥γk instead of A<γk , since the six
axioms above follow immediately from the semantics of the crisp concepts as
Proposition 1 shows:

Proposition 1. If A≥γi+1 . A>γi and A>γk . A≥γk hold, then the followings
axioms are verified:

(1) ¬A≥γk . ¬A>γk (2) ¬A>γi . ¬A≥γi+1

(3) A≥γk ' ¬A≥γk . ⊥ (4) A>γi ' ¬A>γi . ⊥
(5) " . A≥γk ( ¬A≥γk (6) " . A>γi ( ¬A>γi

(1) and (2) derive from the fact that in crisp DLs A . B ≡ ¬B . ¬A. (3)
and (4) come from the law of contradiction A'¬A . ⊥, while (5) and (6) derive
from the law of excluded middle " . A ( ¬A. Moreover, we do not introduce
the axiom A>0 . A≥0; since A≥0 is equivalent to " the axiom trivially holds.

Mapping fuzzy concepts, roles and axioms. Concept and role expressions are
reduced using mapping ρ, as shown in Table 1. Axioms are reduced as in Table 2,



where σ maps fuzzy axioms into crisp assertions and κ maps fuzzy TBox (resp.
RBox) axioms into crisp TBox (resp. RBox) axioms.

Notice that ρ(R,!γ) can only appear in a (crisp) negated role assertion.
Notice also that expressions of the form ρ(A,≥ 0), ρ(A,> 1), ρ(A,≤ 1), ρ(A,< 0)
cannot appear, because there exist some restrictions on the degree of the axioms
in the fKB. The same also holds for",⊥ and RA. Besides, expressions of the form
ρ(U,!γ) cannot appear either. Observe that the reduction preserves simplicity
of the roles and regularity of the RIAs.

Our reduction of a fuzzy GCI 〈C . D ≥ 1〉 is equivalent to the reduction of a
GCI under a semantics based on Zadeh’s set inclusion proposed in [5], although
it introduces some unnecessary axioms: C≥0 . D≥0 and C>1 . D>1.

Summing up, a fKB fK = 〈fKA, fKT , fKR〉 is reduced into a KB K(fK) =
〈σ(fKA), T (NfK) ∪ κ(fK, fKT ), R(NfK) ∪ κ(fK, fKR)〉.

Example 1. Let us consider the following fKB: {〈sym(isCloseTo)〉, 〈(h1, h2) :
isCloseTo ≤ 0.75〉}. Firstly, 〈sym(isCloseTo)〉 is represented as the fuzzy RIA
〈isCloseTo . isCloseTo− ≥ 1〉. Now, we have to compute the number of
truth values which have to be considered: XfK = {0, 0.5, 1, 0.75}, so NfK =
{0, 0.25, 0.5, 0.75, 1}.

Next, we create some new atomic concepts and roles, as well as some axioms
preserving their semantics. T (NfK) = ∅ and R(NfK) will contain the follow-
ing axioms: isCloseTo≥1 . isCloseTo>0.75, isCloseTo>0.75 . isCloseTo≥0.75,
isCloseTo≥0.75 . isCloseTo>0.5, isCloseTo>0.5 . isCloseTo≥0.5, isCloseTo≥0.5

. isCloseTo>0.25, isCloseTo>0.25 . isCloseTo≥0.25 and isCloseTo≥0.25 .
isClose To>0.

Finally, we map axioms in the ABox, TBox and RBox. Firstly, σ(〈(h1, h2) :
isCloseTo ≤ 0.75〉) = (h1, h2) :¬isCloseTo>0.75. Then, κ(〈isCloseTo . isCloseTo−

≥ 1〉) = {isCloseTo>0 . isCloseTo−>0, isCloseTo≥0.25 . isCloseTo−≥0.25, isClo−
seTo>0.25 . isCloseTo−>0.25, isCloseTo≥0.5 . isCloseTo−≥0.5, isCloseTo>0.5 .
isCloseTo−>0.5, isCloseTo≥0.75 . isCloseTo−≥0.75, isCloseTo>0.75 . isClose−
To−>0.75, isCloseTo≥1 . isCloseTo−≥1}. '(

Optimizing GCI reductions. GCI reductions can be optimized in several cases:

– 〈C . " $% γ〉 and 〈⊥ . D $% γ〉 are tautologies, so their reductions are
unnecessary in the resulting KB.

– κ(" . D $% γ) = " . ρ(D, $% γ). Note that this kind of axiom appears in
role range axioms i.e. C is the range of R iff " . ∀R.C holds with degree 1.

– κ(C . ⊥ $% γ) = ρ(C,> 0) . ⊥. This appears when two concepts are
disjoint i.e. C and D are disjoint iff C 'D . ⊥ holds with degree 1.

Another optimization involving GCIs follows from the following observation.
If the resulting TBox contains A . B, A . C and B . C, then A . C is un-
necessary. This is very useful in concept definitions involving the nominal con-
structor. For example, the reduction of the definition κ(C . {1/o1, 0.5/o2}) =
{C>0 . {o1, o2}, C≥0.5 . {o1, o2}, C>0.5 . {o1}, C≥1 . {o1}} can be optimized
to: {C>0 . {o1, o2}, C≥0.5 . {o1}}.



Table 1. Mapping of concept and role expressions.

x y ρ(x, y)
! !γ !
! "γ ⊥
⊥ !γ ⊥
⊥ "γ !
A ≥ α A≥α

A > β A>β

A ≤ β ¬A>β

A < α ¬A≥α

¬A %& γ ρ(A, %&− 1− γ)
C &D !γ ρ(C, !γ) & ρ(D, !γ)
C &D "γ ρ(C, "γ) ' ρ(D, "γ)
C 'D !γ ρ(C, !γ) ' ρ(D, !γ)
C 'D "γ ρ(C, "γ) & ρ(D, "γ)
∃R.C !γ ∃ρ(R, !γ).ρ(C, !γ)
∃R.C "γ ∀ρ(R,¬" γ).ρ(C, "γ)
∀R.C ≥ α ∀ρ(R, > 1− α).ρ(C,≥ α)
∀R.C > β ∀ρ(R,≥ 1− β).ρ(C, > β)
∀R.C ≤ β ∃ρ(R,≥ 1− β).ρ(C,≤ β)
∀R.C < α ∃ρ(R, > 1− α).ρ(C, < α)

{α1/o1, . . . , αm/om} %& γ {oi | αi %& γ, 1 ≤ i ≤ n}
¬{α1/o1, . . . , αm/om} %& γ ρ({α1/o1, . . . , αm/om}, %&− 1− γ)

≥ 0 S.C %& γ ρ(!, %& γ)
≥ m S.C !γ ≥ m ρ(S, !γ).ρ(C, !γ)
≥ m S.C "γ ≤ m−1 ρ(S,¬" γ).ρ(C,¬" γ)
≤ n S.C ≥ α ≤ n ρ(S, > 1− α).ρ(C, > 1− α)
≤ n S.C > β ≤ n ρ(S,≥ 1− β).ρ(C,≥ 1− β)
≤ n S.C ≤ β ≥ n+1 ρ(S,≥ 1− β).ρ(C,≥ 1− β)
≤ n S.C < α ≥ n+1 ρ(S, > 1− α).ρ(C, > 1− α)
∃S.Self !γ ∃ρ(S, !γ).Self
∃S.Self "γ ¬∃ρ(S,¬" γ).Self

RA ≥ α R≥α

RA > β R>β

RA ≤ β ¬R>β

RA < α ¬R≥α

R− !γ ρ(R, !γ)−

U ≥ α U
U > β U



Table 2. Reduction of the axioms.

σ(〈a :C %& γ〉) a :ρ(C, %& γ)
σ(〈(a, b) :R %& γ〉) (a, b) :ρ(R, %& γ)
σ(〈a ,= b〉) a ,= b
σ(〈a = b〉) a = b
κ(C - D ≥ α)

S
γ∈NfK−{0} | γ≤α{ρ(C,≥ γ) - ρ(D,≥ γ)}

S
γ∈NfK | γ<α{ρ(C, > γ) - ρ(D, > γ)}

κ(C - D > β) κ(C - D ≥ β) ∪ {ρ(C, > β) - ρ(D, > β)}
κ(〈R1 . . . Rn - R ≥ α〉)

S
γ∈NfK−{0} | γ≤α{ρ(R1,≥ γ) . . . ρ(Rn,≥ γ) - ρ(R,≥ γ)}

S
γ∈NfK | γ<α

{ρ(R1, > γ) . . . ρ(Rn, > γ) - ρ(R, > γ)}
κ(〈R1 . . . Rn - R > β〉) κ(〈R1 . . . Rn - R ≥ β〉) ∪ {ρ(R1, > β) . . . ρ(Rn, > β) - ρ(R, > β)}
κ(dis(S1, S2)) dis(ρ(S1, > 0), ρ(S2, > 0))
κ(ref(R)) ref(ρ(R,≥ 1))
κ(asy(S)) asy(ρ(S, > 0)

Theorem 1. A fKDSROIQ fKB fK is satisfiable iff K(fK) is satisfiable.

Complexity. |K(fK)| is O(|fK|2) i.e. the resulting knowledge base is quadratic.
The ABox is actually linear while the TBox and the RBox are both quadratic:

– |NfK | is linearly bounded by |fKA|+ |fKT |+ |fKR|.
– |σ(fKA)| = |fKA|.
– |T (NfK)| = 2 · (|NfK | − 1) · |AfK |.
– |κ(fK, T )| ≤ 2 · (|NfK | − 1) · |T |.
– |R(NfK)| = 2 · (|NfK | − 1) · |RfK |.
– |κ(fK,R)| ≤ 2 · (|NfK | − 1) · |R|.

The resulting KB is quadratic because it depends on the number of rele-
vant degrees |NfK |. An immediate solution to obtain a KB which is linear in
complexity is to fix the number of degrees which can appear in the knowledge
base. From a practical point of view, in most of the applications it is sufficient
to consider a small number of degrees, e.g. {0, 0.25, 0.5, 0.75, 1}.

It is easy to see that the complexity of the crisp representation is caused by
fuzzy concepts and roles. Fortunately, in real applications not all concepts and
roles will be fuzzy. Another optimization would be allowing to specify that a
concept (resp. a role) is crisp. For instance, suppose that A is a fuzzy concept.
Then, we need NfK−1 concepts of the form A≥α and another NfK−1 concepts
of the form A>β to represent it, as well as 2 · |NfK | − 3 axioms to preserve their
semantics. On the other hand, if A is declared to be crisp, we just need one
concept to represent it and no new axioms. The case for crisp roles is similar.

An interesting property of the procedure is that the reduction of an ontology
can be reused when adding new axioms. In fact, for every new axiom τ , the
reduction procedure generates only one new axiom or a (linear in size) set of
axioms if τ does not introduce new atomic concepts nor new atomic roles and,
in case τ is a fuzzy axiom, if it does not introduce a new degree of truth.



4 Implementation: DeLorean

Our prototype implementation of the reduction process is called DeLorean
(DEscription LOgic REasoner with vAgueNess). It has been developed in Java
with Jena API2, the parser generator JavaCC3, and using DIG 1.1 interface4 to
communicate with crisp DL reasoners. Currently the logic supported is fKDSHOIN
(OWL DL), since DIG interface does not yet support full SROIQ.

Fig. 1. Architecture of DeLorean reasoner.

Figure 1 illustrates the architecture of the system. The Parser reads an input
file with a fuzzy ontology and translates it into an internal representation. As
we have remarked in the Introduction, we could use any language to encode the
fuzzy ontology, as long as the Parser can understand the representation and the
reduction is properly implemented; consequently we will not get into details of
our particular choice. In the next step, the Reduction module implements the
procedure described in Section 3, building a Jena model from which an OWL
file with an equivalent crisp ontology is created. Finally, the Inference module
tests this ontology for consistency, using any crisp reasoner through the DIG
interface. The User interface allows the user to introduce the inputs and shows
the result of the reasoning and the elapsed time.

We have carried out some experiments in order to evaluate our approach in
terms of reasoning, that is, in order to check that the results of the reasoning
tasks over the crisp ontology were the expected. The aim of this section is not to
perform a full benchmark, which could be the topic of a forthcoming work. Nev-
ertheless, we will show some performance examples to show that our approach
is feasible and the increment of time for small ontologies when using a limited
number of degrees of truth is acceptable. In any case, optimizations are crucial.

We considered the Koala ontology5, a sample ALCON (D) ontology with 20
named classes, 15 anonymous classes, 4 object properties, 1 datatype property
(which we have omitted) and 6 individuals. We extended its axioms with random
(lower bound) degrees and we used Pellet reasoner through the DIG interface.
2 http://jena.sourceforge.net/
3 https://javacc.dev.java.net
4 http://dl.kr.org/dig/
5 http://http://protege.cim3.net/file/pub/ontologies/koala/koala.owl



Table 3 shows the influence of the number of degrees on the time of the
reduction process as well as on the time (in seconds) of a classification test over
the resulting crisp ontology.

Table 3. Influence of the number of degrees in the performance of DeLorean.

Number of degrees crisp 3 5 7 9 11
Reduction time - 1.18 6.28 23.5 64.94 148.25
Reasoning time 0.56 0.98 1.343 2.88 4.28 6.47

It can be observed that the reduction time is quite large with respect to
the reasoning time. We recall that DeLorean is currently just a prototype, so
the implementation of the reduction process should be optimized. Moreover, as
already discussed in the previous section, the reduction can be reused and hence
needs to be computed just once. Regarding the reasoning time, the increment of
complexity when the fuzzy ontology contains 3 or 5 degrees can be assumed.

5 Conclusions and Future Work

In this paper we have shown how to reduce a fuzzy extension of SROIQ with
fuzzy GCIs and RIAs (under a novel semantics using Gödel implication) into
SROIQ. We have enhanced previous works by reducing the number of new
elements and axioms. We have also presented DeLorean, our implementation
of this reduction procedure which is, to the very best of our knowledge, the first
reasoner supporting fuzzy SHOIN (and hence and eventually fuzzy OWL DL).
The very preliminary experimentation shows that our approach is feasible in
practice when the number of truth degrees is small, even for our non-optimized
prototype. This work means an important step towards the possibility of dealing
with imprecise and vague knowledge in DLs, since it relies on existing languages
and tools.

In general, Gödel implication provides better logical properties than KD,
but KD for example allows to reason with modus tolens [7]. A representation
language could allow the use of two types of GCIs and RIAs .KD y .G (with
semantics based on KD and Gödel implications respectively) similarly as [13]
which allows three types of subsumption. This way, the ontology developer would
be free to choose the better option for his own needs. [7] shows how to reduce
GCIs under KD semantics, and RIAs can be reduced similarly.

Future work could include to compare DeLorean with other fuzzy DL rea-
soners, although they support different languages and features and, as far as we
know, there does not exist any significant fuzzy knowledge base. We will also
allow the definition of crisp concepts and roles in the fuzzy language. Finally,
the reasoner will be extended to fKDSROIQ (and hence OWL 1.1) as soon as
DIG 2.0 interface is available, so it is independent of any concrete crisp reasoner.
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Abstract. We propose semantic distance measures based on the crite-
rion of approximate discernibility and on evidence combination. In the
presence of incomplete knowledge, the distance measures the degree of
belief in the discernibility of two individuals by combining estimates of
basic probability masses related to a set of discriminating features. We
also suggest ways to extend this distance for comparing individuals to
concepts and concepts to other concepts.

1 Introduction

In the context of reasoning in the Semantic Web, a growing interest is being com-
mitted to alternative inductive procedures extending the scope of the methods
that can be applied to concept representations. Among them, many are based on
a notion of similarity such as case-based reasoning [4], retrieval [3], conceptual
clustering [7] or ontology matching [6]. However this notion is not easily captured
in a definition, especially in the presence of uncertainty.

As pointed out in the seminal paper [2] concerning similarity in Description
Logics (DL), most of the existing measures focus on the similarity of atomic
concepts within simple hierarchies. Besides, alternative approaches are based on
related notions of feature similarity or information content. All these approaches
have been specifically aimed at assessing concept similarity.

In the perspective of crafting inductive methods for the aforementioned tasks,
the need for a definition of a semantic similarity measure for individuals arises,
that is a problem that so far received less attention in the literature. Some dis-
similarity measures for individuals in specific DL representations have recently
been proposed which turned out to be practically effective for the targeted in-
ductive tasks [3], however they are still partly based on structural criteria which
determine also their main weakness: they can hardly scale to complex languages.

We devised a new family of dissimilarity measures for semantically annotated
resources, which can overcome the aforementioned limitations [8]. Our measures
are mainly based on Minkowski’s measures for Euclidean spaces [18] induced by
means of a method developed in the context of relational machine learning [14].



We extend the idea a notion of discernibility borrowed from rough sets theory [13]
which aims at the formal definition of vague sets (concepts) by means of their
approximations. In this paper, we propose (semi-)distance measures based on
semantic discernibility and on evidence combination [16, 5, 15].

Namely, the measures are based on the degree of discernibility of the input
individuals with respect to a committee of features, which are represented by
concept descriptions expressed in the concept language of choice. One of the ad-
vantages of these measures is that they do not rely on a particular language for
semantic annotations. However, these new measures are not to be regarded as
absolute, since they depend both on the choice (and cardinality) of the features
committee and on the knowledge base they are applied to. These measures can
easily be computed based on statistics on individuals that are likely to be main-
tained by knowledge base management systems designed for storing instances
(e.g. [10]), which can determine a potential speed-up in the measure computation
during knowledge-intensive tasks.

Furthermore, we also propose a way to extend the presented measures to
the case of assessing concept similarity by means of the notion of medoid [11],
i.e., in a categorical context, the most centrally located individual in a concept
extension w.r.t. a given metric.

The remainder of the paper is organized as follows. In the next section, we
recall the basics of approximate semantic distance measures for individuals in
a DL knowledge base. Hence, we extend the measures with a more principled
treatment of uncertainty based on evidence combination. Conclusions discuss
the applicability of these measures in further works,

2 Semantic Distance Measures

Since our method is not intended for a particular representation, in the following
we assume that resources, concepts and their relationships may be defined in
terms of a generic representation that may be mapped to some DL language
with the standard model-theoretic semantics (see the handbook [1] for a thorough
reference).

In this context, a knowledge base K = 〈T ,A〉 contains a TBox T and an
ABox A. T is a set of concept definitions. A contains assertions concerning the
world state. The set of the individuals (resources) occurring in A will be denoted
with Ind(A). Each individual can be assumed to be identified by its own URI.
Sometimes, it could be useful to make the unique names assumption on such
individuals.

As regards the inference services, our procedure requires performing instance-
checking and the related service of retrieval, which will be used for the approxi-
mations.

2.1 A Simple Semantic Metric for Individuals

Aiming at distance-based tasks, such as clustering or similarity search, we have
developed a new measure with a definition that totally depends on semantic



aspects of the individuals in the knowledge base [8], following ideas borrowed
from metric learning in clausal spaces [14].

Indeed, for our purposes, we needed functions to measure the (dis)similarity
of individuals. However individuals do not have a syntactic (or algebraic) struc-
ture that can be compared. Then the underlying idea is that. on a semantic level,
similar individuals should behave similarly with respect to the same concepts. A
way for assessing the similarity of individuals in a knowledge base can be based
on the comparison of their semantics along a number of dimensions represented
by a set of concept descriptions (henceforth referred to as the committee). Partic-
ularly, the rationale of the measure is to compare them on the grounds of their
behavior w.r.t. a given set of concept descriptions, say F = {F1, F2, . . . , Fk},
which stands as a group of discriminating features expressed in the language
taken into account.

We begin with defining the behavior of an individual w.r.t. a certain concept
in terms of projecting it in this dimension:

Definition 2.1 (projection function). Given a concept Fi ∈ F, the related
projection function

πi : Ind(A) $→ {0, 1/2, 1}

is defined:
∀a ∈ Ind(A)

πi(a) :=






1 K |= Fi(a)
0 K |= ¬Fi(a)

1/2 otherwise

The case of πi(a) = 1/2 corresponds to the case when a reasoner cannot give
the truth value for a certain membership query. This is due to the Open World
Assumption normally made in this context. Hence, as in the classic probabilistic
models uncertainty is coped with by considering a uniform distribution over the
possible cases.

Now the discernibility functions related to the committee concepts which
compare the two input individuals w.r.t. these concepts through their projec-
tions:

Definition 2.2 (discernibility function). Given a feature concept Fi ∈ F,
the related discernibility function

δi : Ind(A)× Ind(A) $→ [0, 1]

is defined as follows:
∀(a, b) ∈ Ind(A)× Ind(A)

δi(a, b) = |πi(a)− πi(b)|

Finally, a whole family of distance functions for individuals inspired to Minkowski’s
distances Lp [18] can be defined as follows [8]:



Definition 2.3 (dissimilarity measures). Let K = 〈T ,A〉 be a knowledge
base. Given a set of concept descriptions F = {F1, F2, . . . , Fk}, a family of dis-
similarity measures {dF

p}p∈IN, contains functions

dF
p : Ind(A)× Ind(A) $→ [0, 1]

defined
∀(a, b) ∈ Ind(A)× Ind(A):

dF
p(a, b) :=

Lp(πi(a), πi(b))
|F| =

1
k

p

√√√√
k∑

i=1

δi(a, b)p

Note that k depends on F and the effect of the factor 1/k is just to normalize
the norms w.r.t. the number of features that are involved. It is worthwhile to re-
call that these measures are not absolute, then they should be also be considered
w.r.t. the committee of choice, hence comparisons across different committees
may not be meaningful. Larger committees are likely to decrease the measures
because of the normalizing factor yet these values is affected also by the degree
of redundancy of the features employed.

2.2 Example

Let us consider a knowledge base in a DL language made up of a TBox:
T = { Female ≡ ¬Male,

Parent ≡ ∀child.Being * ∃child.Being,
Father ≡ Male * Parent,
FatherWithoutSons ≡ Father * ∀child.Female

}
and of an ABox:
A = { Being(ZEUS),Being(APOLLO),Being(HERCULES),Being(HERA),

Male(ZEUS),Male(APOLLO),Male(HERCULES),
Parent(ZEUS),Parent(APOLLO),¬Father(HERA),
God(ZEUS),God(APOLLO),God(HERA),¬God(HERCULES),
hasChild(ZEUS,APOLLO), hasChild(HERA,APOLLO),
hasChild(ZEUS,HERCULES),

}
Suppose F = {F1, F2, F3, F4} = {Male,God,Parent,FatherWithoutSons}. Let us
compute the distances (with p = 1):
dF
1(ZEUS,HERA) = (|1− 0| + |1− 1| + |1− 1| + |0− 0|) /4 = 1/4

dF
1(HERA,APOLLO) = (|0− 1| + |1− 1| + |1− 1| + |0− 1/2|) /4 = 3/8

dF
1(APOLLO,HERCULES) = (|1− 1| + |1− 0| + |1− 1/2| + |1/2− 1/2|) /4 = 3/8

dF
1(HERCULES,ZEUS) = (|1− 1| + |0− 1| + |1/2− 1| + |1/2− 0|) /4 = 1/2

dF
1(HERA,HERCULES) = (|0− 1| + |1− 0| + |1− 1/2| + |0− 1/2|) /4 = 3/4

dF
1(APOLLO,ZEUS) = (|1− 1| + |1− 1| + |1− 1| + |1/2− 0|) /4 = 1/8



2.3 Discussion

It is easy to prove that these dissimilarity functions have the standard properties
for semi-distances [8]:

Proposition 2.1 (semi-distance). For a fixed feature set F and p > 0, given
any three instances a, b, c ∈ Ind(A). it holds that:

1. dF
p(a, b) ≥ 0 and dF

p(a, b) = 0 if a = b

2. dF
p(a, b) = dF

p(b, a)
3. dF

p(a, c) ≤ dF
p(a, b) + dF

p(b, c)

This measure is not a distance since it does not hold that a = b if dF
p(a, b) = 0.

This is the case of indiscernible individuals with respect to the given committee
of features F. However, if the unique names assumption were made then one may
define a supplementary dimension for the committee (a sort of meta-feature F0)
based on equality, such that:
∀(a, b) ∈ Ind(A)× Ind(A)

δ0(a, b) :=
{

0 a = b
1 a .= b

and then

dF
p(a, b) :=

1
k + 1

p

√√√√
k∑

i=0

δi(a, b)p

The resulting measures are distance measures.
Compared to other proposed dissimilarity measures [2, 3], the presented func-

tions do not depend on the constructors of a specific language, rather they re-
quire only (retrieval or) instance-checking for computing the projections through
class-membership queries to the knowledge base.

The complexity of measuring he dissimilarity of two individuals depends on
the complexity of such inferences (see [1], Ch. 3). Note also that the projec-
tions that determine the measure can be computed (or derived from statistics
maintained on the knowledge base) before the actual distance application, thus
determining a speed-up in the computation of the measure. This is very impor-
tant for algorithms that massively use this distance, such as all instance-based
methods.

So far we made the assumption that F may represent a sufficient number
of (possibly redundant) features that are able to discriminate really different
individuals. The choice of the concepts to be included – feature selection – may
be crucial. Therefore, we have devised specific optimization algorithms founded
in randomized search which are able to find optimal choices of discriminating
concept committees [8, 7].

The fitness function to be optimized is based on the discernibility factor [13]
of the committee. Given the whole set of individuals Ind(A) (or just a hold-
out sample to be used to induce an optimal measure) HS ⊆ Ind(A) the fitness



function to be maximized is:

discernibility(F,HS ) :=
∑

(a,b)∈HS2

k∑

i=1

δi(a, b)

However, the results obtained so far with knowledge bases drawn from ontol-
ogy libraries [7, 9] show that (a selection) of the (primitive and defined) concepts
is often sufficient to induce satisfactory dissimilarity measures.

3 Dissimilarity Measures Based on Uncertainty

The measure defined in the previous section deals with uncertainty in a uniform
way: in particular, the degree of discernibility of two individuals is null when
they have the same behavior w.r.t. the same feature, even in the presence of
total uncertainty of class-membership for both. When uncertainty regards only
one projection, then they are considered partially (possibly) similar.

We would like to make this uncertainty more explicit1. One way to deal with
uncertainty would be considering intervals rather than numbers in [0,1] as a
measure of dissimilarity. This is similar to the case of imprecise probabilities [17].

In order to extend the measure, we propose an epistemic definition based on
rules for combining evidence [5, 15]. The ultimate aim is to assess the distance
between two individuals as a combination of the evidence that they differ based
on some selected features (as in the previous section).

The distance measure that is to be defined is again based on the degree of
belief of discernibility of individuals w.r.t. such features. To this purpose the
probability masses of the basic events (class-membership) have to be assessed.
However, in this case we will not treat uncertainty in the classic probabilistic
way (uniform probability). Rather, we intend to take into account uncertainty
in the computation.

The new dissimilarity measure will be derived as a combination of the degree
of belief in the discernibility of the individuals w.r.t. each single feature. Before
introducing the combination rule (that will have the measure as a specialization),
the basic probability assignments have to be considered, especially for the cases
when instance-checking is not able to provide a certain answer.

As in previous works [3], we may estimate the concept extensions recurring to
their retrieval [1], i.e. the individuals of the ABox that can be proved to belong
to a concept. Thus, in case of uncertainty, the basic probabilities masses for each
feature concept, can be approximated2 in the following way:

1 We are referring to a notion of epistemic (rather than aleatory) probability [15],
which seems more suitable for our purposes. See Shafer’s introductory chapter in [16]
on this distinction.

2 In case of a certain answer received from the reasoner, the probability mass amounts
to 0 or 1.



∀i ∈ {1, . . . , k}

mi(K |= Fi(a)) ≈ |retrieval(Fi,K)|/|Ind(A)|
mi(K |= ¬Fi(a)) ≈ |retrieval(¬Fi,K)|/|Ind(A)|

mi(K |= Fi(a) ∨ K |= ¬Fi(a)) ≈ 1−mi(K |= Fi(a))−mi(K |= ¬Fi(a))

where the retrieval(·, ·) operator returns the individuals which can be proven to
be members of the argument concept in the context of the current knowledge
base [1]. The rationale is that the larger the (estimated) extension the more
likely is for individuals to belong to the concept. These approximated probability
masses become more precise as more information is acquired. Alternatively, these
masses could come with the ontology as a supplementary for of prior knowledge.

As in the previous section, we define a discernibility function related to a
fixed concept which measures the amount of evidence that two input individuals
may be separated by that concept:

Definition 3.1 (discernibility function). Given a feature concept Fi ∈ F,
the related discernibility function

δi : Ind(A)× Ind(A) $→ [0, 1]

is defined as follows:
∀(a, b) ∈ Ind(A)× Ind(A)

δi(a, b) :=






mi(K |= ¬Fi(b)) if K |= Fi(a)
mi(K |= Fi(b)) else if K |= ¬Fi(a)
δi(b, a) else if K |= Fi(b) ∨ K |= ¬Fi(b)
2 · mi(K |= Fi(a)) · mi(K |= ¬Fi(b)) otherwise

The extreme values {0, 1} are returned when the answers from the instance-
checking service are certain for both individuals. If the first individual is an
instance of the i-th feature (resp., its complement) then the discernibility de-
pends on the belief of class-membership to the complement concept of the other
individual. Otherwise, if there is uncertainty for the former individual but not
for the latter, the function changes its perspective, swapping the roles of the
two individuals. Finally, in case there were uncertainty for both individuals, the
discernibility is computed as the chance that they may belong one to the feature
concept and one to its complement,

The combined degree of belief in the case of discernible individuals, assessed
using the mixing combination rule [12, 15], can give a measure of the semantic
distance between them.

Definition 3.2 (weighted average measure). Given an ABox A, a dissim-
ilarity measure for the individuals in A

dF
avg : Ind(A)× Ind(A) $→ [0, 1]



is defined as follows:
∀(a, b) ∈ Ind(A)× Ind(A)

dF
avg(a, b) :=

k∑

i=1

wiδi(a, b)

The choices for the weights are various. The most straightforward one is, of
course, considering uniform weights: wi = 1/k. Another one is

wi =
ui

u

where

ui =
1

|Ind(A) \ retrieval(Fk,K)| and u =
k∑

i=1

ui

It is easy to see that this can be considered as a generalization of the measure
defined in the previous section (for p = 1).

3.1 Discussion

It can be proved that function has the standard properties for semi-distances:

Proposition 3.1 (semi-distance). For a fixed choice of weights {wi}k
i=1, func-

tion dF
avg is a semi-distance.

The underlying idea for the measure is to combine the belief of the dissimi-
larity of the two input individuals provided by several sources, that are related
to the feature concepts. In the original framework for evidence composition the
various sources are supposed to be independent, which is generally unlikely to
hold. Yet, from a practical viewpoint, overlooking this property for the sake of
simplicity may still lead to effective methods, as the Näıve Bayes approach in
Machine Learning demonstrates.

It could also be criticized that the subsumption hierarchy has not been ex-
plicitly involved. However, this may be actually yielded as a side-effect of the
possible partial redundancy of the various concepts, which has an impact on
their extensions and thus on the related projection function. A tradeoff is to be
made between the number of features employed and the computational effort
required for computing the related projection functions.

The discriminating power of each feature concept can be weighted in terms
of information and entropy measures. Namely, the degree of information yielded
by each of these features can be estimated as follows:

Hi(a, b) = −
∑

A⊆Θ

mi(A) log(mi(A))



where 2Θ, w.r.t. the frame of discernment3 [16, 15] Θ = {D,D}. then, the sum
∑

(a,b)∈HS

Hi(a, b)

provides a measure of the utility of the discernibility function related to each
feature which can be used in randomized optimization algorithms.

3.2 Extensions

Following the rationale of the average link criterion used in agglomerative clus-
tering [11], the measures can be extended to the case of concepts, by recurring
to the notion of medoids.

The medoid of a group of individuals is the individual that has the highest
similarity w.r.t. the others. Formally. given a group G = {a1, a2, . . . , an}, the
medoid is defined:

medoid(G) = argmin
a∈G

n∑

j=1

d(a, aj)

Now, given two concepts C1, C2, we can consider the two corresponding
groups of individuals obtained by retrieval Ri = {a ∈ Ind(A) | K |= Ci(a)},
and their resp. medoids mi = medoid(Ri) for i = 1, 2 w.r.t. a given measure
dF

p (for some p > 0 and committee F). Then the function for concepts can be
defined as follows:

dF
p(C1, C2) := dF

p(m1,m2)

Similarly, if the distance of an individual a to a concept C has to be assessed,
one could consider the nearest (resp. farthest) individual in the concept extension
or its medoid. Let m = medoid(retrieval(C)) w.r.t. a given measure dF

p. Then the
measure for this case can be defined as follows:

dF
p(a,C) := dF

p(a,m)

Of course these approximate measures become more and more precise as the
knowledge base is populated with an increasing number of individuals.

4 Concluding Remarks

We have proposed the definition of dissimilarity measures over spaces of individ-
uals in a knowledge base. The measures are not language-dependent, differently
from other previous proposals [3], yet they are parameterized on a committee of
concepts. Optimal committees can be found via randomized search methods [8].

3 Here D stands for the case of discernible individuals w.r.t. Fi, D for the opposite case,
and some probability mass may be assigned also to the uncertain case represented
by {D, D}.



Besides, we have extended the measures to cope with cases of uncertainty by
means of a simple evidence combination method.

One of the advantages of the measures is that their computation can be
very efficient in cases when statistics (on class-membership) are maintained by
the KBMS [10]. As previously mentioned, the subsumption relationships among
concepts in the committee is not explicitly exploited in the measure for making
the relative distances more accurate. The extension to the case of concept dis-
tance may also be improved. Hence, scalability should be guaranteed as far as a
good committee has been found and does not change also because of the local-
ity properties observed for instances in several domains (e.g. social or biological
networks).

A refinement of the committee may become necessary only when a degrada-
tion of the discernibility factor is detected due to the availability of somewhat
new individuals. This may involve further tasks such as novelty or concept drift
detection.

4.1 Applications

The measures have been integrated in an instance-based learning system im-
plementing a nearest-neighbor learning algorithm: an experimentation on per-
forming semantic-based retrieval proved the effectiveness of the new measures,
compared to the outcomes obtained adopting other measures [3]. It is worthwhile
to mention that results where not particularly affected by feature selection: often
using the very concepts defined in the knowledge base provides good committees
which are able to discern among the different individuals [9].

We are also exploiting the implementation of these measures for performing
conceptual clustering [11], where (a hierarchy of) clusters is created by grouping
instances on the grounds of their similarity, possibly triggering the induction of
new emerging concepts [7].

4.2 Extensions

The measure may have a wide range of application of distance-based methods to
knowledge bases. For example, logic approaches to ontology matching [6] may be
backed up by the usage of our measures, especially when concepts to be matched
across different terminologies are known to share a common set of individuals.
Ontology matching could be a phase in a larger process aimed at data integration.
Moreover metrics could also support a process of (semi-)automated classification
of new data also as a first step towards ontology evolution.

Another problem that could be tackled by means of dissimilarity measures
could be the ranking of the answers provided by a matchmaking algorithm based
on the similarity between the concept representing the query and the retrieved
individuals.
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Abstract. Automated ontology population using information extrac-
tion algorithms can produce inconsistent knowledge bases. Confidence
values assigned by the extraction algorithms may serve as evidence help-
ing to repair produced inconsistencies. The Dempster-Shafer theory of
evidence is a formalism, which allows appropriate interpretation of ex-
tractors’ confidence values. The paper presents an algorithm for trans-
lating the subontologies containing conflicts into belief propagation net-
works and repairing conflicts based on the Dempster-Shafer plausibility.

1 Introduction

One of the approaches for ontology population considers using automatic infor-
mation extraction algorithms to annotate natural language data already avail-
able on the Web [1, 2]. Unsupervised information extraction algorithms do not
produce 100% correct output, which may lead to inconsistency of the whole
knowledge base produced in this way. Also information extracted from different
sources can be genuinely contradictory. So when performing fusion of knowledge
extracted from different sources it is important to resolve such inconsistencies
automatically or provide the user with a ranking of conflicting options estimating
how likely each statement is to be wrong. Extraction algorithms can often esti-
mate the reliability of their output by attaching confidence values to produced
statements [3]. Uncertain reasoning using these confidence values can help to
evaluate the plausibility of statements and rank the conflicting options. Most
of the ongoing research in the field of applying uncertain reasoning to the Se-
mantic Web focuses on fuzzy logic and probabilistic approaches. Fuzzy logic was
designed to deal with representation of vagueness and imprecision. This inter-
pretation is not relevant for the problem occurring during population of crisp
OWL knowledge bases, where we need to assess the likelihood for a statement
to be true or false. The probabilistic approach is more appropriate for dealing
with such problems. However, as stated in [4], axioms of probability theory are
implied by seven properties of belief measures. One of them is completeness,
which states that “a degree of belief can be assigned to any well-defined propo-
sition”. However, this property cannot be ensured when dealing with confidence
degrees assigned by extractors, because they do not always carry information
about the probability of a statement being false. The Dempster-Shafer theory of



evidence [5] presents a formalism that helps to overcome this problem. It allows
belief measurements to be assigned to sets of propositions, thus specifying explic-
itly degrees of ignorance. In this paper, we describe an algorithm for resolving
conflicts using the Dempster-Shafer belief propagation approach.

2 Related Work

There are several studies dealing with inconsistency handling in OWL ontolo-
gies, among others [6] and [7]. The general algorithm for the task of repairing
inconsistent ontologies consists of two steps:

– Ontology diagnosis: finding sets of axioms, which contribute to inconsistency;
– Repairing inconsistencies: changing/removing the axioms most likely to be

erroneous.

Choosing the axioms for change and removal is a non-trivial task. Existing algo-
rithms working with crisp ontologies (e.g., [7]) utilize such criteria as syntactic
relevance (how often each entity is referenced in the ontology), impact (the influ-
ence of removal of the axiom on the ontology should be minimized) and prove-
nance (reliability of the source of the axiom). The last criterion is especially
interesting for the automatic ontology population scenario since extraction al-
gorithms do not extract information with 100% accuracy. A study described in
[8] specifies an algorithm which utilizes the confidence value assigned by the
extraction algorithm. The strategy employed there was to order the axioms ac-
cording to their confidence and add them incrementally, starting from the most
certain one. If adding the axiom led to inconsistency of the ontology then a
minimal subconsistent ontology was determined and the axiom with the lowest
confidence was removed from it. A disadvantage of such a technique is that it
does not take into account the impact of an axiom: e.g., when an axiom vio-
lates several restrictions, it does not increase its chances to be removed. Also
it does not consider the influence of redundancy: if the same statement was ex-
tracted from several sources, this should increase its reliability. Using uncertain
reasoning would provide a more sound approach to rank potentially erroneous
statements and resolve inconsistencies.
In the Semantic Web domain the studies on uncertain reasoning are mostly
focused on two formalisms: probability theory and fuzzy logic. Existing imple-
mentations of fuzzy description logic [9, 10] are based on the notion of fuzzy
set representing a vague concept. The uncertainty value in this context denotes
a membership function µF (x) which specifies the degree to which an object x
belongs to a fuzzy class F . Probabilistic adaptations of OWL-DL include Bayes
OWL[11] and PR-OWL [12]. However, both of these formalisms do not fully
reflect the properties of the problems we are dealing with in the fusion scenario.
In [4] a framework for choosing an appropriate uncertainty handling formalism
was presented. The framework is based on the following seven properties of belief
measurements:



1. Clarity : Propositions should be well-defined.
2. Scalar continuity : A single real number is both necessary and sufficient for

representing a degree of belief.
3. Completeness: A degree of belief can be assigned to any well-defined propo-

sition.
4. Context dependency : The belief assigned to a proposition can depend on the

belief in other propositions.
5. Hypothetical conditioning : There exists some function that allows the belief

in a conjunction of propositions to be calculated from the belief in one propo-
sition and the belief in the other proposition given that the first proposition
is true.

6. Complementarity : The belief in the negation of a proposition is a monoton-
ically decreasing function of the belief in the proposition itself.

7. Consistency : There will be equal belief in propositions that have the same
truth value.

It was proven that accepting all seven properties logically necessitates the axioms
of probability theory. Alternative formalisms allow weakening of some proper-
ties. Fuzzy logic deals with the case when the clarity property does not hold,
i.e., when concepts and relations are vague. Such an interpretation differs from
the one we are dealing with in the fusion scenario, where the ontology TBox
contains crisp concepts and properties. Confidence value attached to a type as-
sertion ClassA(Individual1) denotes a degree of belief that the statement is true
in the real world rather than the degree of inclusion of the entity Individual1
into a fuzzy concept ClassA. This makes fuzzy interpretation inappropriate for
our case.
Probabilistic interpretation of the extraction algorithm’s confidence may lead to
a potential problem. If we interpret the confidence value c attached to a state-
ment returned by an extraction algorithm as a Bayesian probability value p, we,
at the same time, introduce a belief that the statement is false with a probabil-
ity 1 − p. However, the confidence of an extraction algorithm reflects only the
belief that the document supports the statement and does not itself reflect the
probability of a statement being false in the real world. Also while statistical
extraction algorithms ([13]) are able to assign a degree of probability to each
extracted statement, rule-based algorithms ([14, 15]) can only assign the same
confidence value to all statements extracted by the same rule based on the rule’s
performance on some evaluation set. Any extraction produced by a rule with a
low confidence value in this case will serve as a negative evidence rather than
simply lack of evidence. This issue becomes more important if the reliability of
sources is included into analysis: it is hard to assign the conditional probability
of a statement being false given that the document supports it. It means that
the completeness property does not always hold.
The Dempster-Shafer theory of evidence [5] allows weakening of the complete-
ness property. Belief can be assigned to sets of alternative options rather than
only to atomic elements. In the case of binary logic, it means that the degree
of ignorance can be explicitly represented by assigning a non-zero belief to the



set {true;false}. On the other hand, it still allows the Bayesian interpretation of
confidence to be used, when it is appropriate (in this case the belief assigned to
the set {true;false} is set to 0). This paper presents an algorithm for resolving in-
consistencies by translating the inconsistency-preserving subset of ontology into
the Dempster-Shafer belief network and choosing the axioms to remove based
on their plausibility. We are not aware of other studies adapting the Dempster-
Shafer approach to the Semantic Web domain.
Alternative approaches to uncertainty representation, which were not applied so
far to ontological modelling, include probability intervals [16] and higher-order
probability [17]. However, the first of these approaches uses min and max opera-
tors for aggregation, which makes it hard to represent cumulative evidence, and
the second focuses on resolving different kinds of problems (namely expressing
probability estimations of other probability estimations). There are also other
approaches to belief fusion in the Semantic Web (e.g., [18] and [19]). These stud-
ies deal with social issues of representing trust and provenance in a distributed
knowledge base and focus on the problem of establishing the certainty of state-
ments asserted by other people. These approaches, however, do not focus on
resolving the inconsistencies and just deal with direct conflicts (i.e., statement
A is true vs statement A is false). They do not take into account ontological
inference and mutual influence of statements in the knowledge base. In this way,
they can be considered complementary to ours.

3 The Dempster-Shafer Belief Theory

Dempster-Shafer theory of evidence differs from the Bayesian probability the-
ory as it allows assigning beliefs not only to atomic elements but to sets of
elements as well. The base of the Dempster’s belief distribution is the frame of
discernment (Ω) - an exhaustive set of mutually exclusive alternatives. A belief
distribution function (also called mass function or belief potential) m(A) repre-
sents the influence of a piece of evidence on subsets of Ω and has the following
constraints:

– m(") = 0 and
–

∑
A⊆Ω m(A) = 1

m(A) defines the amount of belief assigned to the subset A. When m(A) > 0, A
is referred to as a focal element. If each focal element A contains only a single
element, the mass function is reduced to be a probability distribution. Mass also
can be assigned to the whole set of Ω. This represents the uncertainty of the
piece of evidence about which of the elements in Ω is true. In our case each mass
function is defined on a set of variables D = {x1, ..., xn} called the domain of m.
Each variable is boolean and represents an assertion in the knowledge base. For
a single variable we can get degree of support Sup(x) = m({true}) and degree
of plausibility Pl(x) = m({true}) + m({true; false}). Plausibility specifies how
likely it is that the statement is false. Based on plausibility it is possible to select
from a set of statements the one to be removed.



4 Building Belief Networks

Our algorithm consists of four steps:

1. Inconsistency detection.
At this stage we select the subontology containing all axioms contributing
to an inconsistency.

2. Constructing a belief network.
At this stage the subontology found at the previous step is translated into
a belief network.

3. Assigning mass distributions.
At this stage we assign mass distribution functions to nodes.

4. Belief propagation.
At this stage we propagate uncertainties through the network and update
the confidence degrees of ABox statements.

4.1 Illustrating Example

In order to illustrate our algorithm, we use an example from the banking do-
main. Supposedly, we have an ontology describing credit card applications, which
defines two disjoint classes of applicants: reliable and risky. In order to be reli-
able, an applicant has to have UK citizenship and evidence that (s)he was never
bankrupt in the past. For example, the TBox contains the following axioms:
T1: RiskyApplicant # CreditCardApplicant
T2: ReliableApplicant # CreditCardApplicant
T3: RiskyApplicant # ¬ReliableApplicant
T4: ReliableApplicant ≡ ∃wasBankrupt.False & ∃hasCitizenship.UK
T5: ' #≤ 1wasBankrupt (wasBankrupt is functional)
The ABox contains the following axioms (with attached confidence values):
A1: RiskyApplicant(Ind1) : 0.7
A2: wasBankrupt(Ind1, False) : 0.6
A3: hasCitizenship(Ind1, UK) : 0.4
A4: wasBankrupt(Ind1, T rue) : 0.5
As given, the ontology is inconsistent: the individual Ind1 is forced to belong
to both classes RiskyApplicant and ReliableApplicant, which are disjoint, and
the functional property wasBankrupt has two different values. If we choose to
remove the axioms with the lowest confidence values, it will require removing A3
and A4. However, inconsistency can also be repaired by removing a single state-
ment A2. The fact that A2 leads to the violation of two ontological constraints
should increase the likelihood it is wrong.

4.2 Inconsistency Detection

The task of the inconsistency detection step is to retrieve all minimal inconsistent
subontologies (MISO) of the ontology and combine them. As defined in [6], an
ontology O′ is a minimal inconsistent subontology of an ontology O, if O′ ⊆ O



and O′ is inconsistent and for all O′′ such that O′′ ⊂ O′ ⊆ O, O′′ is consistent.
OWL reasoner Pellet [7] is able to return the MISO for the first encountered
inconsistency in the ontology. To calculate all MISO O′

1, ..., O′
n in the ontology

we employ Reiter’s hitting set tree algorithm [20]. After all conflict sets were
identified, the next step involves constructing belief networks from each set. If
for two subontologies O′

i ∩ O′
j ,= " then these two subontologies are replaced

with O′ = O′
i ∪O′

j .
For our illustrating example, the conflict detection algorithm is able to identify
two conflict sets in this ontology: the first, consisting of {T3, T4, A1, A2, A3}
(individual Ind1 belongs to two disjoint classes), and the second {T5, A2, A4}
(individual Ind1 has two instantiations of a functional property). The statement
A2 belongs to both sets and therefore the sets are merged.

4.3 Constructing Belief Networks

The networks for propagation of Dempster-Shafer belief functions (also called
valuation networks) were described in [21]. By definition the valuation network
is an undirected graph represented as a 5-tuple: {Ψ, {ΩX}X∈Ψ , {τ1, ..., τn}, ↓,⊗},
where Ψ is a set of variables, {ΩX}X∈Ψ is a collection of state spaces, {τ1, ..., τn}
is a collection of valuations (belief potentials of nodes), ↓ is a marginalization
operator and ⊗ is a combination operator. In our case Ψ consists of ABox asser-
tions, every {ΩX}X∈Ψ = {0; 1} and {τ1, ..., τn} are created using rules described
below. The operators are used for propagation of beliefs and are described in the
following subsections. The network contains two kinds of nodes: variable nodes
corresponding to explicit or inferred ABox assertions and valuation nodes repre-
senting TBox axioms. Variable nodes contain only one variable, while valuation
nodes contain several variables.
Translation of an inconsistent subontology into a belief propagation network is
performed using a set of rules (Table 1). Each rule translates a specific OWL-DL
construct into a set of network nodes and links between them. Rules 1 and 2
directly translate each ABox statement into a variable node. Other rules process
TBox axioms and create two kinds of nodes: one valuation node to represent the
TBox axiom and one or more variable nodes to represent inferred statements.
Such rules only fire if the network already contains variable nodes for ABox ax-
ioms, which are necessary to make the inference. For example, a rule processing
the class equivalence axiom (Rule 4) is interpreted as the following: “If there is
a node N1 representing the type assertion I ∈ X and an owl : equivalentClass
axiom X ≡ Y , then:

– Create a node N2 representing the assertion I ∈ Y ;
– Create a node N3 representing the axiom X # Y ;
– Create links between N1 and N3 and between N3 and N2.”

If a rule requires creating a node, which already exists in the network, then
the existing node is used.
Applying the rules described above to our illustrating example (rules 1, 2, 4, 5,
6, 9, 20) will result in the following network (Fig. 1).



Table 1. Belief network construction rules

N Pre-conditions Nodes to create Links to create
1 I ∈ X N1 : I ∈ X
2 R(I1, I2) N2 : R(I1, I2)
3 N1 : I ∈ X, X " Y N2 : I ∈ Y , N3 : X " Y (N1,N3),(N3,N2)
4 N1 : I ∈ X, X ≡ Y N2 : I ∈ Y , N3 : X " Y (N1,N3),(N3,N2)
5 N1 : I ∈ X, X " ¬Y N2 : I ∈ Y , N3 : X " ¬Y (N1,N3),(N3,N2)

6 N1 : I ∈ X, X $ Y
N2 : I ∈ X $ Y , N3 : X $ Y , (N1,N3),(N4,N3),
N4 : I ∈ Y (N3,N2)

7 N1 : I ∈ X, X % Y
N2 : I ∈ X % Y , N3 : X % Y , (N1,N3),(N4,N3),
N4 : I ∈ Y (N3,N2)

8 N1 : I ∈ X, ¬X N2 : I ∈ ¬X, N3 : ¬X (N1,N3),(N3,N2)

9
& "≤ 1R, N1 : R(I, o1), N3 : & "≤ 1R (N1,N3),(N2,N3)N2 : R(I, o2)

10
& "≤ 1R−, N1 : R(I2, I1), N3 : & "≤ 1R− (N1,N3),(N2,N3)
N2 : R(I3, I1)

11 R ≡ R−, N1 : R(I1, I2) N2 : R ≡ R−, N3 : R(I2, I1) (N1,N2),(N2,N3)
12 R ≡ Q, N1 : R(I1, I2) N2 : R ≡ Q,N3 : Q(I1, I2) (N1,N2),(N2,N3)
13 R " Q,N1 : R(I1, I2) N2 : R " Q, N3 : Q(I1, I2) (N1,N2),(N2,N3)
14 R ≡ Q−,N1 : R(I1, I2) N2 : R ≡ Q−, N3 : Q(I2, I1) (N1,N2),(N2,N3)

15
Trans(R), N1 : R(I1, I2), N3 : Trans(R), N4 : R(I1, I3)

(N1,N3),(N2,N3),
N2 : R(I2, I3) (N3,N4)

16
≤ 1.R, N1 : R(I1, o1), N3 :≤ 1.R, N4 : I ∈≤ 1.R

(N1,N3),(N2,N3),
N2 : R(I1, o2) (N3,N4)

17
≥ 1.R, N1 : R(I1, o1), N3 :≥ 1.R, N4 : I ∈≥ 1.R (N1,N3),(N2,N3)N2 : R(I1, o2)

18
= 1.R, N1 : R(I1, o1), N3 : I ∈= 1.R (N1,N3),(N2,N3)N2 : R(I1, o2)

19
∀R.X, N1 : R(I1, I2), N3 : ∀R.X, N4 : I1 ∈ ∀R.X

(N1,N3),(N2,N3),
N2 : I2 ∈ X (N3,N4)

20
∃R.X, N1 : R(I1, I2), N3 : ∃R.X, N4 : I1 ∈ ∃R.X

(N1,N3),(N2,N3),
N2 : I2 ∈ X (N3,N4)

21
∃R.& " X, N1 : R(I1, I2), N3 : ∃R.& " X (N1,N3),(N2,N3)N2 : I1 ∈ X

22
& " ∀R.X, N1 : R(I1, I2), N3 : & " ∀R.X (N1,N3),(N2,N3)N2 : I2 ∈ X



Fig. 1. Belief network example (Exp1 = ∃wasBankrupt.False$∃hasCitizenship.UK,
Exp2 = ∃hasCitizenship.UK, Exp3 = ∃wasBankrupt.False)

4.4 Assigning Mass Distributions

After the nodes were combined into the network, the next step is to assign the
mass distribution functions to the nodes. There are two kinds of variable nodes:
(i) nodes representing statements supported by the evidence and (ii) nodes rep-
resenting inferred statements. Initial mass distribution for the nodes of the first
type is assigned based on their extracted confidence. If a statement was ex-
tracted with a confidence degree c, it is assigned the following mass distribution:
m(True) = c,m(True;False) = 1− c. It is possible that the same statement is
extracted from several sources. In this case, multiple pieces of evidence have to
be combined using Dempster’s rule of combination.
Nodes created artificially during network construction are only used for propa-
gation of beliefs from their neighbours and do not contain their own mass as-
signment. Valuation nodes specify the TBox axioms and are used to propagate
beliefs through the network. For the crisp OWL ontologies only mass assign-
ments of 0 and 1 are possible. The principle for assigning masses is to assign
the mass of 1 to the set of all combinations of variable sets allowed by the cor-
responding axiom. Table 2 shows the mass assignment functions for OWL-DL
T-Box axioms 1.

In our example, we assign distributions based on the extractor’s confidence
values to the variable nodes representing extracted statements: A1:(m(1)=0.7,
m({0;1})=0.3), A2: (m(1)=0.6, m({0;1})=0.4), A3: (m(1)=0.4, m({0;1})=0.6),

1 For nodes allowing multiple operands (e.g., intersection or cardinality) only the case
of two operands is given. If the node allows more than two children, then number
of variables and the distribution function is adjusted to represent the restriction
correctly



Table 2. Belief distribution functions for valuation nodes

N Node type Variables Mass distribution
1 X " Y I ∈ X, I ∈ Y m({0;0}, {0;1}, {1;1})=1
2 X ≡ Y I ∈ X, I ∈ Y m({0;0},{1;1})=1
3 X " ¬Y I ∈ X, I ∈ Y m({0;0},{0;1},{1;0})=1
4 X $ Y I ∈ X, I ∈ Y , I ∈ X $ Y m({0;0;0},{0;1;0},{1;0;0},{1;1;1})=1
5 X % Y I ∈ X, I ∈ Y , I ∈ X % Y m({0;0;0},{0;1;1},{1;0;1},{1;1;1})=1
6 ¬X I ∈ X, I ∈ ¬X m({0;1},{1;0})=1
7 & "≤ 1R R(I, o1), R(I, o2) m({0;0},{0;1},{1;0})=1
8 & "≤ 1R− R(I2, I1), R(I3, I1) m({0;0},{0;1},{1;0})=1
9 R ≡ R− R(I1, I2), R(I2, I1) m({0;0},{1;1})=1
10 R ≡ Q R(I1, I2), Q(I1, I2) m({0;0},{1;1})=1
11 R " Q R(I1, I2), Q(I1, I2) m({0;0},{0;1},{1;1})=1
12 R ≡ Q− R(I1, I2), Q(I2, I1) m({0;0},{1;1})=1

13 Trans(R) R(I1, I2), R(I2, I3), R(I1, I3)
m({0;0;0},{0;0;1},{0;1;0},{0;1;1},
{1;0;0},{1;0;1},{1;1;1})=1

14 ≤ 1.R R(I1, o1), R(I1, o2), I1 ∈≤ 1.R m({0;0;1},{0;1;1},{1;0;1},{1;1;0})=1
15 ≥ 1.R R(I1, o1), R(I1, o2), I1 ∈≥ 1.R m({0;0;0},{0;1;1},{1;0;1},{1;1;1})=1
16 = 1.R R(I1, o1), R(I1, o2), I1 ∈= 1.R m({0;0;0},{0;1;1},{1;0;1},{1;1;0})=1
17 ∀R.X R(I1, I2), I2 ∈ X, I1 ∈ ∀R.X m({0;0;1},{0;1;1},{1;0;0},{1;1;1})=1
18 ∃R.X R(I1, I2), I2 ∈ X, I1 ∈ ∃R.X m({0;0;1},{0;1;1},{1;0;0},{1;1;1})=1
19 ∃R.& " X R(I1, I2), I1 ∈ X m({0;0}, {0;1}, {1;1})=1
20 & " ∀R.X R(I1, I2), I2 ∈ X m({0;0}, {0;1}, {1;1})=1

A4: (m(1)=0.5, m({0;1})=0.5). The valuation nodes obtain their distributions
according to the rules specified in the Table 2: T3 (rule 3), T4 (rules 2, 4, 18)
and T5 (rule 7).

4.5 Belief Propagation

The axioms for belief propagation were formulated in [22]. The basic operators
for belief potentials are marginalization ↓ and combination ⊗. Marginalization
takes a mass distribution function m on domain D and produces a new mass
distribution on domain C ⊆ D.

m↓C(X) =
∑

Y ↓C=X

m(Y )

For instance, if we have the function m defined on domain {x, y} as m({0; 0}) =
0.2, m({0; 1}) = 0.35, m({1; 0}) = 0.3, m({1; 1}) = 0.15 and we want to find
a marginalization on domain {y}, we will get m(0) = 0.2 + 0.3 = 0.5 and
m(1) = 0.35 + 0.15 = 0.5. The combination operator is represented by the
Dempster’s rule of combination:

m1 ⊗m2(X) =
∑

X1∩X2=X m1(X1)m2(X2)
1−

∑
X1∩X2=&m1(X1)m2(X2)



Belief propagation is performed by passing messages between nodes according
to the following rules:

1. Each node sends a message to its inward neighbour (towards the root of the
tree). If µA→B is a message from A to B, N(A) is a set of neigbours of A
and the potential of A is mA, then the message is specified as a combination
of messages from all neighbours except B and the potential of A:

µA→B = (⊗{µX→A|X ∈ (N(A)− {B})⊗mA})↓A∩B

2. After a node A has received a message from all its neighbors, it combines all
messages with its own potential and reports the result as its marginal.

As the message-passing algorithm assumes that the graph is a tree, it is neces-
sary to eliminate loops. All valuation nodes constituting the loop are replaced
by a single node with the mass distribution equal to the combination of mass
distributions of its constituents. The marginals obtained after propagation for
the nodes corresponding to initial ABox assertions will reflect updated mass dis-
tributions. After the propagation we can remove the statement with the lowest
plausibility from each of the MISO found at the diagnosis stage.
Calculating the beliefs for our example gives the following Dempster-Shafer plau-
sibility values for ABox statements: Pl(A1)=0.94, Pl(A2)=0.58, Pl(A3)=0.8,
Pl(A4)=0.65. In order to make the ontology consistent it is sufficient to re-
move from both conflict sets an axiom with the lowest plausibility value (A2).
In this example, we can see how the results using Dempster-Shafer belief prop-
agation differ from the Bayesian interpretation. Bayesian probabilities, in this
case, are calculated in the same way as Dempster-Shafer support values. If we
use confidence values as probabilities and propagate them using the same valu-
ation network we will obtain the results: P(A1)=0.66, P(A2)=0.35, P(A3)=0.32
and P(A4)=0.33. In this scenario, we would remove A3 and A4 because of the
negative belief bias. Also we can see that all three statements A2, A3 and A4
will be considered wrong in such a scenario (resulting probability is less than
0.5). The Dempster-Shafer approach provides more flexibility by making it pos-
sible to reason about both support (“harsh” queries) and plausibility (“lenient”
queries).

5 Conclusion and Future Work

In this paper, we described how the Dempster-Shafer theory of evidence can be
used for dealing with ABox-level inconsistencies produced by inaccurate infor-
mation extraction. It would be interesting to investigate if the capabilities of
the Dempster-Shafer uncertainty representation (e.g., explicit representation of
ignorance) can be utilized for knowledge modelling at the TBox level. In [23] it
was shown that the Dempster-Shafer approach may lead to problems when it
is used to represent uncertainty of inferencing rules (i.e., TBox-level) and not
only of pieces of evidence (ABox assertions). These problems occur if the ontol-
ogy contains contradictory pieces of knowledge, and are caused by the fact that



the Dempster-Shafer approach does not distinguish pieces of evidence regard-
ing specific individuals from generic rules applicable to all individuals. It will
be interesting to investigate if these problems can be avoided when modelling
description logic axioms.
The algorithm described in the paper focuses on only one aspect of provenance
information: confidence values assigned by extraction algorithms. However, such
an approach has its limitations: for instance, we know that rule-based extractors
tend to repeat their errors when applied to several documents. Such reoccurring
errors lead to erroneous inconsistency resolution if interpreted as independent
pieces of evidence. In order to improve the quality of the fusion procedure, it
would be useful to take into account other kinds of provenance information,
in particular, the reliability of the extraction algorithm itself, the reliability of
sources from which statements were extracted, and the timestamp reflecting
when each statement was produced. This we consider our primary direction for
the future work.
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Abstract. Clinical Practice Guidelines (CPGs) play an important role
in improving the quality of care and patient outcomes. Although sev-
eral machine-readable representations of practice guidelines implemented
with semantic web technologies have been presented, there is no imple-
mentation to represent uncertainty with respect to activity graphs in
clinical practice guidelines. In this paper, we are exploring a Bayesian
Network(BN) approach for representing the uncertainty in CPGs based
on ontologies. Based on the representation of uncertainty in CPGs, when
an activity occurs, we can evaluate its effect on the whole clinical pro-
cess, which, in turn, can help doctors judge the risk of uncertainty for
other activities, and make a decision. A variable elimination algorithm
is applied to implement the BN inference and a validation of an aspirin
therapy scenario for diabetic patients is proposed.

1 Introduction

Clinical Practice Guidelines (CPGs) play an important role in improving the
quality of care and patient outcomes; therefore, the task of clinical guideline-
sharing across different medical institutions is a prerequisite to many EMR (Elec-
tronic Medical Record) applications including medical data retrieval [18], med-
ical knowledge management [7], and clinical decision support systems (CDSSs)
[13]. To facilitate clinical guideline-sharing, GLIF (GuideLine Interchange For-
mat) and SAGE (Standards-based Sharable Active Guideline Environment) have
been the focus of extensive research [12]. GLIF is a semantic web based standard
for representing clinical guidelines [15] and SAGE is an interoperable guideline
execution engine, which encodes the content of the clinical guideline to an on-
tology representation, and executes the ontology through the functions of a CIS
(clinical information system) [17].

Most previous approaches using GLIF and SAGE are designed to proceed
from one step to the next only if there is no uncertain data in the former step
[13]. However, this expectation is unrealistic in practice. For example, a guide-
line, which requires risk factors for heart disease to be assessed, needs to proceed
! Corresponding author: hgkim@snu.ac.kr
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even when the information about this item is uncertain. In the clinical process,
uncertain data can be (1) data stemming from unreliable sources (e.g., a pa-
tient can not remember the results of his/her last glucose test); (2) data not
obtainable (e.g., no historical data on familial diabetes); and (3) data not yet
collected (e.g., levels of serum glucose today) [14]. If data represented in CPGs
is uncertain, the activities that handle these uncertain data become uncertain as
well. For instance, in CDSS systems, when using the diabetes clinical guideline,
it is necessary to get the family history for evaluating the risk of insulin therapy.
However, in the real hospital environment, clinicians cannot easily obtain all the
needed data for his/her health care activity. Based on these issues, the goal of
this paper is to construct an approach to represent the uncertainty in CPGs and
help doctors judge the risk of these uncertainties in the clinical process. Uncer-
tainty in CPGs means that activity graphs that CPGs are composed of contain
uncertain activities.

As a model for uncertainty, Bayesian Networks (BNs) occupy a prominent
position in many medical decision making processes and statistical inference [11,
3, 2]. However, there have been few reports on applying BNs to the representation
of uncertainty in CPGs. Therefore, to address this issue, we propose an ontology-
based representation of uncertainty in CPGs by using BNs.

In this paper, we first introduce BNs, then we describe the use of BNs for the
medical domain, and review previous work on applying semantic web technology
to model CPGs in section 2; Section 3 elaborates the mechanism of encoding
uncertainty into a CPG ontology; Section 4 describes a scenario validation based
on BN inference; Section 5 discusses the conclusions and future work.

2 Background and Related Work

2.1 Bayesian Network

There are several models that are used to represent uncertainty, such as fuzzy-
logic, BNs, etc. Generally, a BN of n variables consists of a DAG (Direct Acyclic
Graph) of n nodes and a number of arcs. Nodes Xi in a DAG correspond to ran-
dom variables, and directed arcs between two nodes represent direct causal or
influential relations from one variable to the other. The uncertainty of the causal
relationship is represented locally by the CPT (Conditional Probability Table).
P (Xi|pa(Xi)) associated with each node Xi, where pa(Xi) is the parent set of
Xi. Under the conditional independence assumption, the joint probability distri-
bution of X = (X1, X2, ..., Xn) can be factored out as a product of the CPTs in
the network, namely, the chain rule of BN: P (X) =

∏
i P (Xi|pa(Xi)). With the

joint probability distribution, BNs support, at least in theory, any probabilistic
inference in the joint space. Besides the power of probabilistic reasoning provided
by BNs themselves, we are attracted to BNs in this work for the structural sim-
ilarity between the DAG of a BN and activity graphs of CPGs: both of them
are directed graphs, and direct correspondence exists between many nodes and
arcs in the two graphs. Moreover, BNs can be utilized to represent the uncer-
tainty visually, provide inference effectively and facilitate human understanding
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of CPGs. Considering the advantages of BNs, we apply BNs to represent the
uncertainty in CPGs.

2.2 Bayesian Networks for the Medical Domain

Because BNs occupy a prominent position as a model for uncertainty in decision
making and statistical inference, it has been applied to many medical decision
support systems [11, 3, 2]. Atoui [3] adopted a decision making solution based
on a BN that he trained to predict the risk of a cardiovascular event (infarc-
tion, stroke, or cardiovascular death) based on a set of demographic and clinical
data. Aronsky [2] presented the development and the evaluation of a BN for
the diagnosis of community-acquired pneumonia and he showed that BNs are
an appropriate method to detect pneumonia patients with high accuracy. With
respect to clinical guidelines, Mani [11] proposed BNs for the induction of de-
cision tables and generated the guideline by these tables. However, although
these method focus on predicting some feature or risk of disease by using BN
inference, there has been no implementation to represent the uncertainty with
respect to activity graphs in CPGs and to reason on the uncertainty to provide
the probabilities of target activities, which is the focus of our approach.

2.3 Semantic Web for Clinical Practice Guideline

A representational form of clinical guideline knowledge, which promotes com-
pleteness and minimizes inconsistency and redundancy, is essential if we want
to implement and share guidelines for computer-based applications. Semantic
Web technology offers such sharable and manageable methodology for model-
ing CPGs. GLIF [15] and SAGE [17] are two good examples. For creation and
maintenance of implementable clinical guideline specifications, an architecture
is presented in [8]. This architecture includes components such as a rules en-
gine, an OWL-based classification engine and a data repository storing patient
data. Moreover, approaches for modeling clinical guidelines are discussed and
they show that guideline maintenance is tractable when a CPG is represented in
an ontology. Here, we apply an ontology to represent the uncertainty in CPGs
because it is more extensible and maintainable than other methods such as re-
lational databases.

3 Encoding Uncertainty into a CPG Ontology

Figure 1 depicts the overall procedure of the proposed method. Firstly, the orig-
inal CPG is encoded into an ontology model that contains uncertainty features
using BNs. For this, we propose a formal model of CPG Ontology to represent
uncertainty and an algorithm to construct the CPTs (Conditional Probability
Tables) of the BN. The CPG ontology can be shared and utilized in different
clinical information systems. Then, when a user provides his/her observed evi-
dence in the clinical process, the BN inference engine will load the CPG ontology
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Fig. 1. The framework

as a BN and mark the nodes that are observed by the user in the BN. Based on
the observed evidence, the BN inference engine can reason out the probabilities
of target activities asked by the user. Given the reasoning results, the user can
judge the risk of unobserved activities and make a further decision.

Fig. 2. Clinical practice guideline of aspirin therapy for diabetic patients(ASA means
aspirin therapy)

3.1 Clinical Practice Guideline Ontology

CPGs typically include multiple recommendation sets represented as an activity
graph that show the recommended activities during a clinical process and [4].
An activity graph describes the relationship between activities in the recommen-
dation set as a process model. In this article, we use a single recommendation
set in the SAGE diabetes CPG [1], which is an activity graph of aspirin therapy
for diabetic patients, to illustrate how we represent the uncertainty in CPGs
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based on ontology (Fig. 2). Typically, an activity graph contains three kinds of
activities, i.e., context activity, decision activity, action activity. Each activity
graph segment within a guideline begins with a context activity node that serves
as a control point in guideline execution by specifying the clinical context for
that segment. A decision activity node in the SAGE guideline model represents
clinical decision logic by listing alternatives (typically subsequent action activity
nodes), and specifying the criteria that need to be met to reach those nodes. An
action activity node encapsulates a set of work items that must be performed
by either a computer system or persons.

Fig. 3. Classes representation for clinical practice guideline

To represent activities in CPGs, we create the activity class that represents
all the nodes in activity graph as shown in Figure 3. Because there are three kinds
of activities, we construct an action class, a context class, and a decision class
as sub classes of the activity class in the ontology respectively. In CPGs, activ-
ities may include internal conditions that restrict their execution. For example,
for the decision activity “Yes;check for ASA(aspirin therapy) contraindications”
(Fig. 2), there are many internal conditions, such as checking presence of family
history, checking presence of hypertensive disorder etc., to make sure the ASA
contraindications will be checked correctly. We encode these internal conditions
of activity as an activity condition class in the ontology (Fig. 3).

A CPG Ontology with uncertainty features is defined as follows:

Definition 1. (CPG Ontology) CPG Ontology O := {C, I, Ps, cinst}, with an
activity class set C, an activity instance set I, a property set Ps, and an activity
class instantiation function cinst : C → 2I .

In CPG ontology, the activity instance set I represents the set of real activi-
ties that belong to activity classes accordingly. The property set Ps is proposed
to represent the different attributes of activities in order to encode the features
of the BN into ontology. The property set Ps is defined as follows:

Definition 2. (Properties for uncertainty representation) Property Set Ps :=
{cause, hasCondition, hasState, isObserved, hasPriorProValue, hasCondiProValue},
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has a property function cause : I → I, a property function hasCondition : I →
I, a property function hasState : I → Boolean, a property function isObserved:
I → Boolean, a property function hasPriorProV alue: I → Float, and a prop-
erty function hasCondiProV alue: I → Float.

In CPGs, if the criteria associated with an activity node are satisfied, it will
be successfully executed, which will cause the execution of subsequent nodes
in the activity graph. Therefore, the relationship between activities is called
the cause relationship. For example, in Figure 2, the context activity “Patient
21 years or older” causes the decision activity “Check for Aspirin therapy”.
To represent this relationship in the ontology, we construct the object property
cause whose domain and range are activity class and activity condition class. The
hasCondition property is proposed as inverse properties of the cause property,
which describes the “parent” activities of an activity that cause its execution.
For instance, the decision activity “Check for aspirin therapy” has the property
hasCondition with value “Patient 21 years or older” activity that causes its
execution. With the hasCondition property, users can easily figure out all the
conditions that cause the execution of any activity. The cause property plays the
role of “directed arc” and all the activity instances play the role of “node” in the
DAG of BN. Another property, the hasState property, which has a boolean value
range, is denoted as the state of the activity instance; the isObserved property
shows if the activity instances have been observed or not.

Prior probability and conditional probability are two features that represent
the uncertainty level of nodes in BNs. To encode prior probability and condi-
tional probability of activity instances into the ontology respectively, hasPrior-
ProValue property and hasCondiProValue property are employed. Let A, B be
the instances of the activity class representing two concrete activities. We inter-
pret P (A = a) as the prior probability that a value a is a state of instance A
and P (B = b|A = a) as the conditional probability that when A has state a, B
has state b. For example, when A is activity “Patient 21 years or older”, B is
activity “Check for Aspirin therapy”, P (A = true) = 0.5 can be expressed as
follows:

<Context rdf:ID="Patient_21_yo_or_older">
<hasPriorProValue
rdf:datatype="http://www.w3.org/2001/XMLSchema#float"
>0.5</hasPriorProValue>
<hasState
rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</hasState>
<cause rdf:resource="#Check_for_Aspirin_therapy"/>

</Context>

The conditional probability P (B = true|A = true) = 1.0 can be expressed
as follows:
<Decision rdf:ID="Check_for_Aspirin_therapy">

<hasCondition>
<Context rdf:ID="Patient_21_yo_or_older">
<hasState rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
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>true</hasState>
</Context>

</hasCondition>
<hasState rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"
>true</hasState>
<hasCondiProValue rdf:datatype="http://www.w3.org/2001/XMLSchema#float"
>1.0</hasCondiProValue>
<cause rdf:resource="#Check_fo_age_older_than_40"/>

</Decision>

3.2 Construction of Conditional Probability Tables

Fig. 4. Algorithm for constructing the conditional probability tables

In this section, we introduce an algorithm utilized to construct the CPTs
of activity instances. After creating the properties to represent the uncertainty
in the ontology, another important work is the construction of the CPTs for
the BN because BN inference is based on the CPTs of each node in BN. For
building the CPTs of activity instance in CPGs, we propose the encoding al-
gorithm according to the features of CPGs. Each activity Xi in a CPG η has
a corresponding activity instance Xoi in CPG Ontology O, i.e., we mark the
corresponding activity instance by adding the letter “o” to the activity variable.

This algorithm provides principles to initialize the CPTs of BNs. The in-
stances in the definition mean the activity instances in the CPGs. Firstly, we
assign prior probabilities to activity instances, i.e, only when the activity in-
stances have no “parents” in BN, they have prior probabilities. When an activ-
ity A causes the set of activities {B1, B2, ..., Bn} simultaneously, the conditional
probability P (Bi|A) = 1.0, (i = 1, ..., n) (Fig. 4(a)); when an activity A causes
one of the activities {B1, B2, ..., Bn}, the conditional probability P (Bi|A) =
1.0/n, (i = 1, ..., n) (Fig. 4(b)); when a set of activities {A1, A2, ..., An} cause
activity B together, then P (B|A1, A2, ..., An) = 1.0 (Fig. 4(c)); when one of the
activities {A1, A2, ..., An} can cause activity B, then P (B|A1, A2, ..., An) = 0.0
(Fig. 4(d)).

With the initialization of CPTs, we have finished constructing the BN from
an ontology that represents the uncertainty in CPGs, namely, the activity graphs
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containing uncertain activities are represented using a BN. When a BN infer-
ence engine loads this ontology, the ontology will be converted to a BN for BN
inference. All the instances of the activity class and the activity condition class
are translated into the node of the BN whose properties are also converted from
properties of these instances in ontology accordingly. In the BN, an arc is drawn
between nodes if the corresponding two activity instances are related by a cause
property, with the direction from the activity instance that has cause property
to the value of this property. CPTs in the BN are also easily obtained from
property hasCondiProValue and property hasPriorProValue of corresponding
activity instances.

Algorithm 1 Construct CPTs( CPG η, CPG Ontology O )
for each activity Xi in η do

if Xi can be successfully executed then
Set property hasState of activity instance Xoi in O with value true

end if
if there is no activity that causes the execution of Xi then

Set property hasCondition of activity instance Xoi in O with value null
Set property hasPriorProV alue of Xoi with value 0.5

end if
end for
if activity A in η cause the execution of activities

⋂n
i=1 Bi then

Set property hasCondiProV alue of activity instance Boi in O with value 1.0
Set activity instance Ao as the value of property hasCondition of activity instance
Boi in O
Set property hasState of activity instance Ao and Boi in O with value true

end if
if activity A in η cause the execution of activities

⋃n
i=1 Bi then

Set property hasCondiProV alue of activity instance Boi in O with value 1.0/n
Set activity instance Ao as the value of property hasCondition of activity instance
Boi in O
Set property hasState of activity instance Ao and Boi in O with value true

end if
if activities

⋂n
i=1 Ai in η cause the execution of activities B then

Set property hasCondiProV alue of activity instance Bo in O with value 1.0
Set activity instances Ao1, ..., Aon as the value of property hasCondition of ac-
tivity instance Bo in O
Set property hasState of activity instance Aoi and Bo in O with value true

end if
if activities

⋃n
i=1 Ai in η cause the execution of activities B then

Set property hasCondiProV alue of activity instance Bo in O with value 0.0
Set activity instances Ao1, ..., Aon as the value of property hasCondition of ac-
tivity instance Bo in O
Set property hasState of activity instance Aoi with value false
Set property hasState of activity instance Bo with value true

end if
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4 A Scenario Validation Based on Bayesian Network
Inference

We apply the variable elimination algorithm [9, 5] to perform BN inference. To
verify the feasibility of our approach, a scenario of aspirin therapy for a diabetic
patient is proposed. Based on this scenario, we apply our ontology-based BN
approach to represent the uncertainty in CPGs and carried out the BN inference
based on this BN.

4.1 Bayesian Network Inference

There are a lot of algorithms that manipulate BNs to produce posterior values
[16, 10]. The variable elimination algorithm [9, 5] and the bucket elimination
algorithm [6] are focused on algebraic operations. Since algebraic schemes like
variable and bucket elimination compute marginal probability values for a given
set of variables that is suitable for inference on observed evidence, we apply the
variable elimination algorithm to implement the BN inference on the uncertainty
of CPGs.

We assume all random variables have a finite number of possible values.
Set of variables are denoted in bold; for instance, X. The set of all variables
that belong to X but do not belong to Y is indicated by X\Y. The expression∑

X f(X,Y) indicates that all variables in X are summed out from the function
f(X,Y). Denoted by P (X) is the probability density of X: P (x) is the probability
measure of the event {X = x}. Denoted by P (X|Y ) is the probability density
of X conditional on values of Y .

Given a BN, the event E denotes the observed evidence in the network. De-
noted by XE is the set of observed variables. Inferences with BNs usually involve
the calculation of the posterior marginal for a set of query variables Xq. The
posterior of Xq given E is:

P (Xq|E) =
P (Xq, E)

P (E)
=

∑
X\{Xq,XE} P (X)
∑

X\XE
P (X)

(1)

The detail of variable elimination algorithm can be found in [9, 5].

4.2 A Validation of an Aspirin Therapy Scenario for Diabetic
Patients

We demonstrate the validity of our approach by applying an experiment to the
CPG of aspirin therapy for diabetic patients (Fig. 2). Let us consider a scenario:

Scenario 1 A user(medical student, nurse or physician etc. ) is trying to apply
aspirin therapy for a diabetic patient using the diabetes CPG. When he/she tries
to check the aspirin risk factors, he/she can get a few observed evidence, such as
observations of hypertensive disorder, tobacco user finding, hyperlipidemia, and
myocardial infarction. In this case, the user wants to evaluate target activities
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that he is concerned about in this CPG. In this way, he hopes the results can
help him understand the effect of the observed evidence on the target activities
during the whole clinical process.

Fig. 5. An ontology based Bayesian network of aspirin therapy for diabetic patients
derived from figure 2 (blue nodes are the observed ones)

In the scenario, the CPG of aspirin therapy for diabetic patients is used.
Since there are some uncertain activities with respect to the activity graph in
this CPG, we can apply our ontology-based BN approach to represent this uncer-
tainty. Details are described in Section 3. Figure 5 shows the ontology-based BN
representing the uncertainty in the CPG of aspirin therapy for diabetic patients.

After loading the ontology-based BN, the BN inference engine can process BN
inference when the user provides his/her observed evidence, such as observations
of hypertensive disorder, tobacco user finding, hyperlipidemia, and myocardial
infarction in this scenario (Fig. 5). If the user selects the target activities, the
BN inference engine can calculate the probability of them by using the variable
elimination.

For example, after the user got the observed evidence of some aspirin risk
factors, he wants to know the probability of activity “No ASA (aspirin therapy)
contraindications; recommend ASA” to help him to judge whether or not his ob-
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servations of aspirin risk factors are adequate. In the BN inference engine, since
the activity instance “presence of problem hypertensive disorder” is observed, its
property isObserved is set true and the property hasState is set false. Similarly,
the activities instances “presence of problem myocardial infarction”, “presence
of tobacco user finding”, and “presence of problem hyperlipidemia” are also set
in the same manner. With CPTs in this BN, equation 1 (Section 4.1) is applied
to calculate the probability of activity instance “No ASA contraindications; rec-
ommend ASA” :

P (Xq|E) =
P (Xq, E)

P (E)
=

∑
X\{Xq,XE} P (X)
∑

X\XE
P (X)

= 0.775

where Xq ={“No ASA contraindications; recommend ASA”}, and E={“presence
of problem hypertensive disorder” = false,“presence of problem myocardial in-
farction” = false, “presence of tobacco user finding” = false, “presence of
problem hyperlipidemia”= false }.

In another case, when the user wants to get the uncertain degree of activity
instance “presence of problem coagulation factor deficiency syndrome”, he can
choose this target activity instance based on the observed evidence E. Through
BN inference, we can obtain:

P (Xq|E) =
P (Xq, E)

P (E)
= 0.6425

where Xq={“presence of problem coagulation factor deficiency syndrome”} and
E is the same as the above case.

The results in the two cases show high probabilities for the target activ-
ities, which suggest the user can make a decision to go ahead based on the
observed evidence. When we consult several medical experts with this scenario,
their opinions are coincident with these results, which shows the feasibility of
our approach.

5 Conclusion and future work

In this paper, we contribute an ontology-based BN approach to represent the
uncertainty in CPGs. With this uncertain representation in ontology, comput-
ers can: (1) calculate the uncertainty of target activities in CPGs; (2) remind
users of the missing important data or event items, which should be observed in
the clinical process; (3) simulate the clinical process under uncertain situations,
which can be applied to e-learning systems in medical schools.

In the future, we are planning to combine our approach with a real CIS
environment and apply uncertain clinical data to our application. A more com-
prehensive evaluation based on real clinical data should also be carried out.
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Abstract. We are interested in replacing human processing of web resources by 
automated processing. Based on an experimental system we identify uncertainty 
issues which make this process difficult for automated processing. We show 
these uncertainty issues are connected with Web content mining and user 
preference mining. We conclude with a discussion of possible future 
development heading to an extension of web modeling standards with 
uncertainty features. 

Keywords: Uncertainty modeling, Uncertain reasoning, World Wide Web, 
Web content mining, User profile mining,  

1 Introduction 

The amount of data accessible on Web is a great challenge for web search systems. 
Using these data (and information and knowledge hidden in them) can be a 
competitive advantage both for companies and individuals. Hence Web search 
systems form a part of different systems ranging from marketing systems, competitors 
and/or price tracking systems to private decision support systems. 

The main vision of Semantic Web [3] is to automate some web search activities 
that a human is able to do personally, but they are time-consuming or tedious. Using 
this automation of human search will speed up the process of searching, find a wider 
range of resources and when necessary soften and optimize our search criteria. 

We quote the Uncertainty Reasoning for the World Wide Web (URW3) Incubator 
Group charter [22]: “…as work with semantics and services (on the Web) grows more 
ambitious, there is increasing appreciation of the need for principled approaches to 
representing and reasoning under uncertainty. In this Charter, the term «uncertainty» 
is intended to encompass a variety of forms of incomplete knowledge, including 
incompleteness, inconclusiveness, vagueness, ambiguity, and others. The term 
«uncertainty reasoning» is meant to denote the full range of methods designed for 
representing and reasoning with knowledge when Boolean truth values are unknown, 
unknowable, or inapplicable. Commonly applied approaches to uncertainty reasoning 



include probability theory, Dempster-Shafer theory, fuzzy logic, and numerous other 
methodologies.”  In this paper we are using term “uncertainty” in this wider (generic) 
understanding and we would like to contribute to these efforts (for related discussion 
see [23]). 

In this paper we concentrate especially to issues connected with replacing human 
abilities on the web by software. From this point of view, some sorts of uncertainty 
are not “human_to_machine_web” specific, like faulty sensors, input errors, data 
recorded statistically, medical diagnosis, weather prediction, gambling etc. These are 
difficult for human alone and also outside the web. 

According to Turtle and Croft [18], uncertainty in information retrieval can be 
found especially in three areas:  “Firstly, there is the problem of the representation 
and annotation of a resource (service). Difficulties arise also in case when attempting 
to represent the degree to which a resource is relevant to the task. The second 
problem is the representation of the kind of information, action, that a user needs to 
retrieve, perform (this need is especially difficult since it typically changes during the 
session). Thirdly, it is necessary to match user needs to resource concepts.” 

In our opinion, these areas of uncertainty apply also to our case, when replacing 
human activities on the web by software. Specific tasks connected to these three 
problems are depicted in Figure 1 and we will discuss them in this paper. 
  

Web
Web Content 

Mining Middleware User Profile Mining

 
Fig. 1. Schema of an automated process connecting Web and User 

 
Our goal is to discuss uncertainty issues based on a system integrating the whole 

chain of tools from the Web to the user. The uncertainty problem here appears as a 
problem of two inductive procedures. Two types of data mining that appear in these 
systems will be discussed here. One is Web content mining and second is user profile 
(preference) mining. Middleware will do the matching part and query evaluation 
optimization.   

1. 1 Motivating example  

As a motivating example, assume that we have users looking for a hotel in a certain 
region. The amount of data is huge and they are distributed over several sites. 
Moreover users have different preferences which are soft and difficult to express in a 
standard query language. 

From the middleware point of view, there is no chance to evaluate user’s query 
over all data. For middleware we have decided to use Fagin threshold algorithm [10], 



which can find best (top-k) answers without looking to all objects. Fagin algorithm 
works under following assumptions. First, we have the access to objects (in our case 
hotels) in different lists ordered by user particular attribute ordering, equipped by a 
numerical score ranging from 0 to 1, e.g. f1(x) = cheap(x), f2(x) = close(x),… Second, 
we have a combination function computing total fuzzy preference value of an object 
based on preference values of attributes, e.g. @(x) = ((3*cheap(x) + close(x))/4).  

In the practical application we have to consider different users with possible 
different attribute orderings f1

u, f2
u and combination functions @u. These represent the 

overall user preference @u(f1
u, f2

u) and the user profile for this task. The task for the 
user profile mining part is to find these particular attribute orderings and the 
combination function (using user’s ranking of a sample of hotels). 

On the web side of our system, the information of vendors, companies or 
advertisement is very often presented using Web pages in a structured layout 
containing data records. These serve for company presentation and are assumed to be 
mainly visited by a potential customer personally. 

Structured data objects belong to very important type of information on the Web 
for systems dealing with competitor tracking, market intelligence or tracking of 
pricing information from sources like vendors.  

We need to bring this data to our middleware. Due to the size of Web, the 
bottleneck is the degree of automation of data extraction. We have to balance the 
tradeoff between the degree of automation of Web data extraction and the amount of 
user (administrator) effort which is needed to train data extractor for a special type of 
pages (increasing precision). 

 First restriction we make is that we consider Web pages containing several 
structured data records. This is usually the case of Web pages of companies and 
vendors containing information about products and services and, in our case, hotels. 
Main problem is to extract data and especially attribute values to middleware. 

Although we use a system which has the modules in experimental implementation, 
we do not present this system here. Our main contributions are 

! Identification of some uncertainty issues in web content mining system 
and extracting attribute values from structured pages with several records 

! Identification of some uncertainty issues in user profile model and using 
profile mining methods 

! Discussion of coupling of these systems via a middleware based on Fagin 
threshold algorithm complemented by various storage and querying 
methods 

We point to uncertainty issues by inserting (UNC) in the appropriate place in the text.  

2 Uncertainty in Web Content Mining 

In this section we describe our experience with a system for information extraction 
from certain types of web pages and try to point out places where uncertainty 
occurred.  



Using our motivation as a running example, imagine a user looking for a hotel in a 
certain location. A relevant page for a user searching for hotels can look as on 
Figure 2. Comparing more similar pages would increase the chance of finding the best 
hotel. An automated tool would enhance this search. 

 

 
 

Fig.2. A typical Web page containing several records 
 
For structured Web data extraction it is possible to use semiautomatic systems like 

Lixto [1], Stalker [16] or WIEN [15]. These require user preannotated pages, which 
are used in the training process. Moreover, they are most suitable for pages, which 
have dynamic content, but relatively fixed structure.  

Our solution is based on different approach. Instead of training techniques we use 
the automatic discovery of data regions which encompass multiple similar data 
records on the page. This is supported by an extraction ontology [9], which is used to 
extract the values from data records. There are many ways how to search for similar 
records in source tree. The system IEPAD [4] uses the features of Patricia tree (radix 
tree) to find the repeating sequences. This system is outperformed by the MDR 
system [5] which operates directly on the DOM tree of input in which it searches for 
repeating node sequences with same parent. However, both methods search for 
objects of interest in the whole web document. This can be time consuming and, as 



we have experienced, it surprisingly decreases precision. Furthermore, these systems 
do not extract attribute values from data records.  

In this paper we consider a system as a sequence of both data record extraction and 
attribute value selection, with possibility of ontology starting almost from scratch 
(e.g. user search key words). 

The system will be described in several phases, which are described in the 
following sections. 

2.1 Data Regions and Data Records Discovery  

The first step in the extraction process is the retrieval of relevant web pages. For 
automatic localization of such resources we use the system Egothor (see [11], [12] 
and [24]), which is an open-source, high-performance, 
full-featured text search engine. This system is used for 
downloading the HTML source codes of relevant pages. 

In the next step we build a DOM model [21] of the 
web page under considerations. This model is used for 
both data region and data records extraction. Figure 2 
shows an example of relevant web page. This page 
contains summary information about three hotels, i. e. 
three data records. All of them form a single data region. 
Our goal is to automatically discover this data region 
and records within. (It should be noted that the 
discovery process is not limited to the single-region 
pages). 

To reduce the search space and to increase precision, 
we prune the input DOM tree, omitting elements which 
do not contain any textual information in their subtrees. 
An example of such tree is shown on the Figure 3 –  the 
numbers in black circles represent the relevance of the 
particular node. Zero-weighted nodes are omitted from 
the data record search. (UNC1) To identify nodes with 
relevant information in the sub-tree is the first 
uncertainty problem we point out in our system. 

Next, we use breadth first partial tree alignment to 
detect data regions and records by taking element tuples, 
triples etc. and comparing their corresponding subtrees 
by various metrics (e. g. the tree Levenshtein distance) (UNC2) To tune the similarity 
measures for discovery of similar tags is another 
uncertainty problem in our system.  

Fig.3. DOM subtree 

Most often every repeated sequence of tags discovered in section 2.1 makes up a 
real data record (a single hotel). All attributes of this record can be found in one sub-
tree and we can proceed to the attribute extraction using the ontology. However, the 
non-contiguous data records can pose a problem in the region discovery phase. 



Typically a data record constitutes a single visual region, nevertheless in the HTML 
code can two or more records occur in a single table, which means that attributes of 
these records have a common subtree. It is therefore necessary to identify non-
contiguous data records and separate attributes of these records (UNC3). 

2.2 Attribute Values Extraction  

As we have mentioned before, we use an ontology to extract the actual attribute 
values of product in the page. This ontology is dynamic – it starts from the scratch, 
containing user search keywords, and subsequently it evolves with new key words 
and typical values (using standard vocabularies). It is represented in OWL syntax with 
additional annotation properties and allows the specification of values extraction 
parameters: e. g. a regular expression which can be used to match the attribute values, 
an explicit enumeration of possible attribute values, or the tuning parameters (such as 
maximum or minimum attribute value length). It is evident, that the richer ontology 
leads to better results in the extraction process. An example of ontology specification 
can be seen on Figure 4: 

 
<owl:DatatypeProperty rdf:ID="hasPrice"> 

 <rdfs:domain rdf:resource="#Hotel"/> 
 <p1:maxLength  
     rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 
     10 
 </p1:maxLength> 
<p1:pattern rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 
   (\$)? ?[\d]{1,10} ?(.){1,3} 
 </p1:pattern> 
  <rdfs:label rdf:datatype="http://www.w3.org/2001/XMLSchema#string"> 
    PRICE 
  </rdfs:label> 

</owl:DatatypeProperty> 

 
Fig.4. An example of ontology 

 
The extraction process can be improved in various ways. We have experimented with 
data extraction from the detail page (which is usually linked to the summary page), 
including OCR usage and a special technique based on text difference algorithm and 
style sheet analysis for better attribute value extraction. Additionally it is possible to 
employ the approximate regular expression matching, which allows to detect and 
repair mistyped or mismatched attribute values. 
 



3 Middleware 

3.1 Semantic Web infrastructure 

User preference mining is done locally and assumes the extracted data are stored in 
middleware. Extracted data have to be modeled on an OWA (open world assumption) 
model, and hence traditional database models are not appropriate. We are compatible 
with a semantic web infrastructure described in [20]. The storage is based on the ideas 
of Data Pile described in [2]. A typical schema of record resembles a RDF statement 
with some statements about this statement (nevertheless we do not need reification 
here). 

 
resource attribute value Extracted_from Extracted_by Using_Ontology 
Hotel1 Price V1 URL1.html Tool1 O1 
Hotel1 Distance D1 URL1.html Tool1 O1 

 
If a value of an attribute is missing, for our middleware system it means that a 

record is missing (thus implementing OWA). Note that we have records without any 
uncertainty degree attached. Any application can evaluate it according to the 
remaining values (e. g. it can be known that Tool1 is highly reliable on extracting 
price, but less on distance). 

To know what we are looking for and which attribute values to extract we need to 
know user interest. For middleware we moreover need to know the ordering of 
particular attributes and the combination function. 

3.2 Usage of user profiles as the user preference model 

One possibility to model user preferences is to use user profiles. We work with the 
assumption that we have a set of user profiles P1,…,Pk and we know the ideal hotel 
for each profile. These profiles may be created as the clusters of users or manually by 
an expert in the field (a hotel-keeper in our example). Manual creation is more 
suitable because we will know more details about user, but it is often impossible. 
Independently of the way profiles are created, we have ratings of hotels associated 
with each profile, thus knowing the best and worst hotels for that profile. 

We propose computing the distance di of user User1 profile U1 from each profile Pi 
in following way  
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Equation (1) represents the average difference between the user’s rating of an 

object oj and profile’s Pi’s rating. 
The ideal hotel for the user can be computed as an average of ideal hotels for each 

profile Pi, weighted by the inverse of distance di (see (2)). The average is computed 
on attributes of hotels.  Formally, 
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Then, IdealHotel(User1) is the weighted centroid of profiles’ best hotels. An 

example of data, user profiles’ best hotel and user’s best hotel is on Figure 5. User’s 
best hotel is clearly closest to Profile 3. 
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Fig. 5.  Positions of best hotels for the user profiles and for the user 

 
After the computation of the ideal hotel for the user, we will use it for computing 

ratings of remaining hotels. Disadvantage of this user model is that it cannot be used 
in the Fagin threshold algorithm. 

4 Uncertainty in User Preference Mining 

In our meaning, user preferences are expressed in the form of classification rules, 
where the values of attributes are assigned their grades corresponding to the orderings 
of the domains of these attributes. The higher the grade is, the more appropriate 
(preferable) the value of an attribute is for the given user. This form of grading 
corresponds to truth values well-known in fuzzy community and thus the orderings 
correspond to fuzzy functions. 

The combination function can be represented by a fuzzy aggregation function (see 
[10]). Fuzzy aggregation functions are monotone functions of n variables, with the 
range of the unit interval [0, 1] of real numbers (in practical applications we use only 
a finite part of it). 

Main assumption of our learning of the user preferences is that we have a 
(relatively small) sample of objects (hotels) evaluated by the user. We would like to 
learn his/her preferences from this sample evaluation. The point is to use this learned 
user preference to retrieve top-k objects from a much larger amount of data. 
Moreover, using the user sample evaluation, we do not have to deal with the problem 
of matching the query language and document language. These ratings are a form of 



QBE – querying by example. 
There are many approaches to user modeling, one of the most used is collaborative 

filtering method [28]. Our method is content based filtering – it uses information 
about attributes of objects. 

4.1 Learning Local Preferences 

In [7] and [8] we have described several techniques of learning user’s preferences 
of particular attributes (UNC5) represented by fuzzy functions f1, f2, … on attribute 
domains. These techniques use regression methods. A problem occurs here. There can 
be potentially a big number of hotels of one sort (e.g. cheap ones) but the detection of 
user preference (cheap, medium or expensive) should not be influenced by the 
number of such hotels. Regression typically counts number of objects. We have 
introduced a special technique of discretization to get the user’s true local preference 
(for details see [7] and [8]). 

Another approach not using regression is the following. The view of the whole 
domain of attribute Price is in Figure 6. We can see that with increasing price, the 
rating is decreasing. This can be formalized (details are out of the scope of this paper)  

number of objects
 

[70,100)
 

[35,70)
 

[100,150)  

rating
 

price  
Fig. 6.  Ratings for whole attribute domain 

 
and we have experimented also with this possibility. These methods also give local 
preference in the form of a fuzzy function (here small, cheap,…) and hence are usable 
for Fagin Threshold algorithm. 

4.2 Learning Combination Function 

Second assumption of the Fagin’s model [10] is to have a combination function @, 
which combines the particular attribute preference degrees f1, f2, … (local 
preferences) to an overall score – @(f1, f2, …) - according to which the top-k answers 
will be computed. 

There are several ways to learn (UNC6) the combination functions and several 
models. It is an instance of classification trees with monotonicity constraints (see 
[17], more references to ordinal classification are presented).  



We learn the aggregation function by the method of Inductive Generalized 
Annotated Programming (IGAP) described in [13, 14]. The result of IGAP is a set of 
Generalized Annotated Program rules in which the combination function has a form 
of a function annotating the head of the rule – here the quality of hotel: 

 
User1_hotel(H) good in degree at least @( f1(x), f1(y), …) 
IF User1_hotel_price(x) good in degree at least f1(x) AND   
   User1_hotel_distance(y) good in degree at least f2(y) 

 
Note that these are rules of generalized annotated programs [25]. 

5 The Implementation and Experiments 

Our Web content mining system has a modular implementation which allows 
additional modules to be incorporated (e. g. querying with preference-based 
querying). Communication between modules is based on the traditional 
Observer/Listener design pattern. All modules, which require communication with 
other ones, have to implement a Listener interface. All listeners are bound to the 
central Bus, which manages the communication between them. Each listener can 
specify a range of broadcasted and received events, which will be supported by it. 

We proposed and implemented the middleware system for performing top-k 
queries over RDF data. As a Java library, our system can be used either on the server 
side, for example in a Web service, or on the client side. In both cases, it gathers 
information from local or Web data sources and combines them into one ordered list. 
To avoid reordering each time a user comes with different ordering, we have designed 
a general method using B+ trees to simulate arbitrary fuzzy ordering of a domain ([6]). 
There are several implemented classes for standard user scoring functions, and Fagin 
TA and NRA algorithms. 

Detailed description of experiments is out of the scope of this paper. We can 
conclude that experiments have shown this solution is viable. 

6     Conclusions and Future Work 

Using an experimental implementation, in this paper we have identified several 
uncertainty challenges, when  

(UNC1) identifying HTML nodes with relevant information in the sub-tree, 
(UNC2) tuning similarity measures for discovery of similar tag subtrees, 
(UNC3) identifying single data records in non-contiguous html source, 
(UNC4) extracting attribute values  
(UNC5) learning user’s preferences of particular attributes     
(UNC6) learn the user preference combination function. 
 



We have experimented with some candidate solutions.  
 
Models and methods in these experiments can be based on models of fuzzy 

description logic (FDL).  
One possibility is to use a FDL with both concepts and roles fuzzified (see e. g. 

[26]). One problem of embedding FDL with fuzzy roles into OWL is that they consist 
of subject, predicate, object and the fuzzy value. This cannot be directly modeled by 
RDF data.  

Second possibility is to use a FDL where only concepts are fuzzified and roles 
remain crisp (and hence both roles and fuzzy concepts can be modeled by RDF data). 
One such example is fEL@ introduced in [27]. 
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Abstract.  When deployed in practical applications, Ontologies and KBs often 
suffer various kinds of inconsistency, which limit the applications performances 
significantly. In this paper, we propose a framework to reason inconsistency 
between Ontology and KB and refine the inconsistency accordingly. To make 
our framework efficient, we only focus on reasoning a part responsible for the 
inconsistency, rather than the whole structures of Ontology and KB. Moreover, 
to improve the execution speed of algorithms employed in the framework, we 
also discuss an axiom-oriented strategy to reason on a reduced space of formula 
to be inferred in Ontology and KB. 

 
1    Introduction 
The Semantic Web [1] is developed as a concept of how computers, people, and the 
Web can work together more effectively than it is possible now. Ontology and 
Knowledge Base (KB) are two significant elements of the Semantic Web. However, 
when used in practical applications, Ontologies and KBs always suffer inconsistencies 
due to various reasons. In recent literature, there are two emerging approaches 
following this direction: to diagnose and repair inconsistency in Ontology by finding 
minimal inconsistent subset [2] ; and to reason in inconsistent Ontology and KB based 
on maximum consistent subset constructed [3] .  

In this paper, we propose a framework to handle inconsistency between Ontology 
and KB. It is done by reasoning to find the part responsible for the inconsistency and 
then refining the detected inconsistencies accordingly. In addition, to reduce the 
complexity cost of algorithms employed in the framework, we also develop an axiom-
oriented strategy to isolate and detect the axioms responsible for the inconsistency. 
The rest of the paper is organized as follows. Section 2 presents formal definitions of 
Ontology and Knowledge Base. Section 3 discusses inconsistency between Ontology 
and KB. In Section 4, the general framework for inconsistency detecting and repairing 
is given. Section 5 gives discussion of the axiom-oriented strategy to deal with 
inconsistency. Finally, Section 6 concludes the paper. 

 
2   Ontology and Knowledge Base 
Definition 1 (Ontology). An ontology is a structure O = (C; T; R; A; !C; !T; !R; !A; "T; SA). 
It consists of disjoint sets of concepts (or classes) C, types T, relations R, attributes A, and 
values V. The partial orders !C (on C) and !T (on T) define a concept hierarchy and a type 
hierarchy, respectively. The function !R: R ! C2 provides relation signatures (i.e., for each 
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relation, the function specifies which concepts may be linked by this relation); while the 
function !A: A # C x T provides attribute signatures (for each attribute, the function specifies to 
which concept the attribute belongs and what is its data type); and "T: T2V  is the assignment of 
values to types. SA is a set of axioms, restrictions between concepts and attributes. 
Example 1.   We define Football Ontology O = (C; T; R; A; !C; !T; !R; !A; "T; SA) 
where 
C =   {football-player, person, club, city } 
!C  =  {football-player ! person} 
T =    {integer} 
R =    {live-in, locate-in, play-for, has-wife} 
A =    {age, height, weight} 
!R  =   {live-in " football-player x city,live-
in " person x city,locate-in " club x city, 
play-for " football-player x club, has-wife 
" football-player x football-player} 
!A  =   {age"football-playerx 
integer,height " football-player  x integer, 
weight " football-player  x integer} 
SA  =  {(O1)  football-player(x) # club(y) # 
city (z) # play-for(x, y) # locate-in(y, z) " 

live-in(x, z) // football player plays for club 
will live in the cty that the club locates. 
(O2) football-player(x) # city(y) # city (z) 
# live-in(x, y) # live-in(x, z) " y = z  // 
football player is not living in more than one 
city. 
(O3)  football-player(x) # has-wife(x, 

y)#city(z) # live-in(y, z) " live-
in(x,z) // football player who 
has wife will lives in the city will live 
in the same city as her wife’s. 

(O4) club(x) # locate-in(x, z) # club(y) # 
locate-in(y, z) " x = y // each city has not 
more than one club.} 

Definition 2 (Knowledge Base). A Knowledge Base (KB) is a structure K = (C; R; A; I; V; 
"C; "R; "A). It consists of disjoint sets of concepts (or classes) C, relations R, attributes A, 
individuals I and values V. The function "C: C2I  is the assignment of instances to concepts), the 
function "R: R # 2I x I  defines relations between instances, and "A: A # 2I x V defines attributes 
of instances. 
Example 2.  We define Football KB as K = (C; R; A; I; V; "C; "R; "A) where: 
I  =  {Beckham, MU, Manchester, 
Liverpool, Chelsea, Maria) 
"C  =  {(K5)   football-player (Beckham), 
(K6)   club (MU), (K7)   city (Manchester), 
    (K8)   city (Liverpool), (K9)   club 
(Chelsea)} 
"R  =  {(K10)  live-in (Beckham, Liverpool), 
(K11)  play-for (Beckham, MU),  (K12)  

locate-in (MU, Manchester), (K13)  has-wife 
(Beckham, Maria),  (K14)  live-in 
(Maria, Manchester), (K15)  locate-in 
(Chelsea, Manchester)} 
"A  = { (K16)  age (Beckham, 30), (K17)  
height (Beckham, 180),(K18)  weight 
(Beckham,80)}

 
3   Inconsistency between Ontology and KB 
Although KB (containing concrete data) is always encoded with respect to an 
ontology (containing a general conceptual model of some domain knowledge), people 
may find it difficult to understand the logical meaning of the underlying ontology. 
Hence, people may fail to formulate precisely axioms, which are logically correct, or 
may specify contradictory statements.  
Example 3.  Between in Football Ontology and Football KB defined respectively in 
Example 1 and Example 2, from (K5), (K10), (K13), and (K14), we can infer that 
Beckham lives in Liverpool but has wife living in Manchester. However, from (O3) 
we can see that Beckham must live in the same city with his wife. Thus, Football 
Ontology and Football KB are inconsistent. 
 
4   Framework for Diagnosing and Repairing Inconsistency 
Between Ontology and KB 
In this section, we present a framework to reason inconsistency between Ontology 
and KB. The framework is conducted by incorporating the algorithm for debugging 



inconsistency proposed in [2]  and the basic theory of finding the inconsistency 
introduced in [3] . As shown in Figure 1, the proposed framework consists of three 
steps as follows: 

 
Figure 1. Framework for diagnosing and repairing inconsistency between Ontology 

and KB 
" Step 1: It finds all unsatisfied concepts. An unsatisfied concept is a concept 

that does not have any individual for all models of Ontology and KB.  
" Step 2: For every unsatisfied concept, we identify a minimal subset axioms 

and facts that are responsible for an inconsistency, called Minimal 
Unsatisfied Preserving Sub Ontology and KB (MUPS).  

" Step 3: From the set of MUPS, we diagnose the smallest subsets of axioms 
and facts responsible for all inconsistencies, or Minimal Inconsistent 
Preserving Sub Ontology and KB (MIPOK). Finally, relying on this MIPOK, 
we will repair this Ontology and KB.    

Example 4.  We apply the proposed framework to deal with inconsistency between 
Football Ontology and Football KB given in Example 1 and Example 2. As a result, 
Refined Football Ontology is redefined as OR = (C; T; R; A; !C; !T; !R; !A; "T; SA), 
where: 
C =   {football-player, person, club, city } 
!C  =  {football-player ! person} 
T =    {integer} 
R  =    {live-in, locate-in, play-for, has-wife} 
A  =    {age, height, weight} 
!R  =   {live-in " football-player x city, live-
in " person x city, locate-in " club x city, 
play-for " football-player x club, has-wife 
" football-player x football-player} 
!A  =   {age " football-player  x integer, 
height " football-player  x integer,  weight 
" football-player  x integer} 

SA  =  {(O1)  football-player(x) # club(y) # 
city (z) # play-for(x, y) # locate-in(y, z) " 
live-in(x, z) // football player plays for club 
will live in the city that the club locates. 
(O2) football-player(x) # city(y) # city (z) 

# live-in(x, y) # live-in(x, z) " y = z 
 // football player is not living in 
more than one city. 

(O3)  football-player(x) # has-wife(x, y) # 
city (z) # live-in(y, z) " live-in(x, z) // 
football player who has wife will lives in the 
city will live in the same city as her wife’s.} 
 

Refined Football KB is redefined as KR = (C; R; A; I; V; "C; "R; "A) where: 
 
I  =  {Beckham, MU, Manchester, 
Liverpool, Chelsea, Maria) 
V = {30, 80, 180} 
"C  =  {(K5)   football-player (Beckham), 
(K6)   club (MU), (K7)   city (Manchester), 
(K8)   city (Liverpool), (K9)   club (Chelsea)}  
"R  =  {(K11)  play-for (Beckham, MU), 

(K12)  locate-in (MU, Manchester), (K13)  
has-wife (Beckham, Maria), (K14)  live-in 
(Maria, Manchester),(K15)  locate-in 
(Chelsea, Manchester)} 
 "A  =  {(K16)  age (Beckham, 30), 
(K17)  height (Beckham, 180),  (K18)  weight 
(Beckham, 80)} 

 
5    Axiom-oriented Construction of MUPS 
In [2] and [3] , the authors have proposed an algorithm to find MUPS, as presented in 
Figure 2. However, because we only focus on solving the inconsistency between 
Ontology and KB, i.e. inconsistency occurs in the relations between facts and axioms, 
so we can apply an axiom-oriented strategy in the selection function.  It is carried out 
using the following selection rules. 
Rule 1 (Axiom-Related Selection). Only add to the final_set mentioned in Algorithm 1 
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formulae that are not only directly relevant to this set but also directly relevant to at least an 
axiom in Ontology.  
Rule 2 (Onto-KB Selection). Only consider the subset S1 and subset T1 mentioned in 
Algorithm 1 if the formulae in them occur in both Ontology and KB. 
Algorithm 1. Finding MUPS of an unsatisfied concept c. 
 
Input: Unsatisfied concept c with set of formulae $. 
Output: set MUPS corresponding to c. 
Process: 

1: set S = {c}, final_set = Ø. 
2: from S find set of formulae S’ that is directly relevant to S.  
3: if  S’ is consistent then 
4:     set S = S’. 
5:     repeat 
6:         Find new set of formulae S’ that is direct relevant to S  
7:         if  S’ is consistent then S = S’ 
8:     until c is inconsistent in S’   
9: end if 
10: set T = S’ – S  
11: for all subset T1 of T and all subset S1 of S  
12:     if c is inconsistent in {T1 U S1} then final_set = final_set U {T1 U S1} 
13: end for 
14: MUPS($ , c) := Minimality-Checking(final_set) 
15: return MUPS($ , c) 

Figure 2. Algorithm for finding MUPS of an unsatisfied concept c. 
Example 5.  Consider Football Ontology and Football KB given in Example 1 and 
Example 2. The effectiveness of using axiom-oriented approach is demonstrated, as 
the numbers of subsets generated when calculated MUPS(", football-player) are 232 
and 226 - 221 in non axiom-oriented and axiom-oriented methods, respectively. 
 
6    Conclusion 
In this paper, we first introduced inconsistency occurring between Ontology and KB. 
Then, we proposed some refinements and improvements for an effective framework 
to solve the inconsistency between Ontology and KB in the reasonable complexity 
and time. Generally, our proposed framework only focuses on axioms, rather than the 
whole structure of ontology. Hence, our approach is highly potential in terms of 
reducing computational cost, as compared to similar existing work. 
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Abstract. Mapping ontologies with high precision on the Semantic Web
is a challenging problem that needs to be addressed in various domains.
One of the main problems with any mapping process, which needs to
be applied on different domains is that it always has a certain degree
of uncertainty associated with it. In this paper we introduce a method
based on Dempster-Shafer theory that use uncertain reasoning over the
possible mappings in order to select the best possible mapping without
using any heuristic or domain specific rules.

1 Introduction

The problem of mapping two ontologies effectively and efficiently is a necessary
precondition to integrate information on the Semantic Web. In recent years
different research communities have proposed[1] a wide range of methods for
creating such mappings. The proposed methods usually combine syntactic and
semantic measures by introducing different techniques ranging from heuristics
to machine learning. While these methods perform well in certain domains the
quality of the produced mappings can differ from domain to domain depending
on the specific parameters defined in the methods e.g. tuning similarity threshold.

We have developed a multi agent ontology mapping framework [2–4] in the
context of Question-Answering over heterogeneous sources, where each agent
can build mapping between a user’s query and the ontology concepts. Our ob-
jective was to produce a ontology mapping method that does not depend on any
fine tuned internal parameters for a specific domain or does not assume having
large amount of data samples a-priory for machine learning or Bayesian proba-
bility assessment. Our hypothesis is that the correctness of different similarity
mapping algorithms is always heavily dependent on the actual content and con-
ceptual structure of these ontologies which are different even if two ontologies
have been created on the same domain but with different purpose. Therefore



from the mapping point of view these ontologies will always contain inconsisten-
cies, missing or overlapping elements and different conceptualisation of the same
terms, which introduces a considerable amount of uncertainty into the mapping
process. In this paper we introduce a novel method how these uncertainties can
be harnessed in order to improve the correctness of the mappings.

2 Similarity

In order to assess similarity we need to compare all concepts and properties from
Ontology1 to all concepts and properties in Ontology2. Our similarity assess-
ments, both syntactic and semantic produce a sparse similarity matrix where
the similarity between Cn from Ontology1 and Cm in Ontology2 is represented
by a particular similariy measure between the i and j elements of the matrix as
follows:

SIM := (si,j)n×m

1 ≤ i ≤ n and 1 ≤ j ≤ m

where SIM represents a particular similarity assessment matrix, s is a degree
of similarity that has been determined by a particular similarity e.g. Jaccard
or semantic similarity measure. We consider each measure as an ”expert” which
assess mapping precision based on its knowledge. Therefore we assume that each
similarity matrix is a subjective assessment of the mapping what needs to be
combined into a coherent view. If combined appropriately this combined view
provides a more reliable and precise mapping that each separate mapping alone.
However one similarity measure or some technique can perform particularly well
for one pair of concepts or properties and particularly badly for another pair of
concepts or properties, which has to be considered in any mapping algorithm.

3 Belief over the mapping

In our ontology mapping method we assume that each expert carries only par-
tial knowledge of the domain and can observe it from its own perspective where
available prior knowledge is generally uncertain and subjective. In order to rep-
resent these subjective probabilities in our system we use the Dempster-Shafer
theory of evidence [5], which provides a mechanism for modeling and reasoning
uncertain information in a numerical way, particularly when it is not possible to
assign belief to a single element of a set of variables. Missing data (ignorance) can
also be modeled by Dempster-Shafer approach and additionally evidences from
two or more sources can be combined using Dempster’s rule of combination. The
combined support, disbelief and uncertainty can each be separately evaluated.
The main advantage of the Dempster-Shafer theory is that it provides a method
for combining the effect of different learned evidences to establish a new belief
by using Dempster’s combination rule.



The following elements have been used in our system in order to model
uncertainty:

Frame of Discernment(Θ) :finite set representing the space of hypoth-
esizes. It contains all possible mutually exclusive context events of the same
kind.

Θ = {H1, ...,Hn, ...HN} (1)

In our method Θ contains all possible mappings that have been assessed by the
particular expert.

Evidence :available certain fact and is usually a result of observation. Used
during the reasoning process to choose the best hypothesis in Θ. We observe
evidence for the mapping if the expert detects that there is a similarity between
Cn from O1 and Cm in O2.

Belief mass function (m): is a finite amount of support assigned to the
subset of Θ. It represents the strength of some evidence and

∑

A⊆Θ

mi(A) = 1 (2)

where mi(A) is our exact belief in a proposition represented by A that be-
longs to expert i. The similarity algorithms itself produce these assignment based
on different similarity measures. In practice we assess up to 8 inherited hyper-
nyms similarities with different algorithms (considered as experts) which can be
combined based on the combination rule in order to create a more reliable map-
ping. Once the combined belief mass functions have been assigned the following
additional measures can be derived from the available information.

Belief : amount of justified support to A that is the lower probability func-
tion of Dempster, which accounts for all evidence Ek that supports the given
proposition A.

beliefi(A) =
∑

Ek⊆A

mi(Ek) (3)

An important aspect of the mapping is how one can make a decision over
how different similarity measures can be combined and which nodes should be
retained as best possible candidates for the match. To combine the qualitative
similarity measures that have been converted into belief mass functions we use
the Dempster’s rule of combination and we retain the node where the belief
function has the highest value.

Dempster’s rule of combination :Suppose we have two mass functions
mi(Ek) and mj(Ek′) and we want to combine them into a global mij(A). Fol-
lowing Dempster’s combination rule

mij(A) = mi ⊕mj =
∑

EkEk′

mi(Ek) ∗mj(Ek′) (4)

where i and j represent two different experts.
The belief combination process is computationally very expensive and from

an engineering point of view, this means that it not always convenient or possible



to build systems in which the belief combination process is performed globally
by a single unit. Therefore, applying multi agent architecture is an alternative
and distributed approach to the single one and in this case there is no more a
single agent having the global view of the system, but each agent has partial
view of it. This allows that the computational load can be divided among the
agents of the group. Our algorithm takes all the concepts and its properties from
the different external ontologies and assesses similarity with all the concepts and
properties in the query graph.

4 Conclusions

Inconsistency and incompleteness are important problems that affect the Seman-
tic Web therefore ontology mapping systems that operate in this environment
should have the appropriate mechanisms to cope with these issues. The main
contribution of our research is the use of Dempster-Shafer theory for assessing
whether similar terms in different ontologies refer to the same or similar con-
cepts. Our preliminary results have shown that using Dempster-Shafer theory is
a promising approach and needs to be investigated further in ontology mapping
context since in this form and context has not been done so far. We believe that
this is because Dempste-Shafer combination rules can be unfeasible in domains
with large number of variables. In our future research we will investigate how
these optimization methods can be adapted and applied in our scenario with a
dynamic multi agent environment where each agent has partial knowledge of the
domain.
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Abstract. This paper shows how a Fuzzy Ontology based approach can improve
semantic documents retrieval. After formally defining a Fuzzy Knowledge Base,
it is discussed a special type of new non-taxonomic fuzzy relationships, called
(semantic) correlations. These correlations, first assigned by experts, are updated
after querying, or when a document has been inserted into a database. It is then
introduced an Information Retrieval algorithm that allows to derive a unique path
among the entities involved in the query in order to obtain maxima semantic
associations in the knowledge domain.

1 Introduction: Fuzzy Ontology and Fuzzy Knowledge Base

Ontologies in the sense of a formal, explicit specification of a shared conceptualisation
[1], constitute a key component of the Semantic Web, facilitating a machine process-
able representation of information. Two-valued-based logical methods are insufficient
to handle ill-structured, uncertain or imprecise information encountered in real world
knowledge. A tolerance for imprecision, by a positive use of Fuzzy Logic may be ex-
ploited to enhance the power of the Semantic Web [2, 3]. It has been shown that Fuzzy
Logic allows to bridge the gap between human-understandable soft logic and machine-
readable hard logic. Indeed there has been a natural integration of Fuzzy Logic in On-
tology in order to define a new theoretical paradigm called Fuzzy Ontology [4, 5, 6].

Recently, an increasing number of approaches to Information Retrieval have pro-
posed models based on concepts rather than on keywords. So that, in this work, on-
tologies have been combined to objects (stored in a database) in order to search new
documents semantically correlated to user’s query.

In this paper, the notion of Fuzzy Concept Network (FCN), introduced in [7], is
extended incorporating Database Objects so that, concepts and documents can simi-
larly be represented in the network. It is then introduced and described an Information
Retrieval algorithm using an Object-Fuzzy Concept Network (O-FCN). This algorithm
allows to derive a unique path among the entities involved in the query in order to obtain
the maximum semantic associations in the knowledge domain.



It will now be introduced a formal Fuzzy Ontology (see also [4, 5]). This approach
depends purely on an application choice. Indeed, we consider a formal Fuzzy Ontology
as a quadruple OF = {C,R,F,A} where C is a set of fuzzy concepts, or entities
indifferently. The set of entities of the fuzzy ontology will be indicated by E.R is a set
of fuzzy relations. Each R ∈ R is a n-ary fuzzy relation on the domain of entities R :
En "→ [0, 1]. In particular,R = T ∪ Tnot where T is the set of the taxonomic relations
and Tnot is the set of the non-taxonomic relations. F is a set of fuzzy relations on the
set of entities E and a specific domain contained in D = {integers, strings, ...}, and
A is a set of axioms expressed in an proper logical language.

Note that even an OWL ontology “may” only include instances: we separated them
in our approach, the advantage is that we can have one ontology and multiple instances
that conform to it. Using this definition, it is possible to introduce the notion of Fuzzy
Knowledge Base. Our definition is based on the vision of an ontology for the Semantic
Web where knowledge is expressed in a Description Logic-based ontology as a triple
〈T ,R,A〉 where T , R and A are respectively a TBox, RBox and ABox [8]. Thus, by
using a fuzzy ontology the knowledge of a domain is defined in order to correspond to
a Description Logic (DL) knowledge base.

Definition 1. A Fuzzy Knowledge Base is a couple defined as:

KBF = (OF , I)

where OF is a Fuzzy Ontology as previously defined and I is a set of instances asso-
ciated with the fuzzy ontology. Furthermore, every concept C ∈ C is a fuzzy set on the
domain of the instances defined as C : I "→ [0, 1].

In this context the set I is identified with the objects stored in the database, i.e.
ODB = I and C : ODB "→ [0, 1]. In particular the set of objects can consist of docu-
ments, digital pictures, notes and so on, i.e.ODB = {D,P,N , . . . }whereD is a set of
documents, P is a set of digital pictures, and N is a set of notes, etc.

A new fuzzy relationship: Correlation. In the Semantic Web area of research, a crucial
topic is to define a dynamic knowledge of a domain adapting itself to the context. In
order to achieve this aim, it is needed to handle the trade off between the correct def-
inition of an object (given by the ontology structure) and the actual meaning assigned
to the artifact by humans (i.e. the experience-based context assumed by every person
according to his specific knowledge).

In [7] it has been proposed a system that allows to achieve these objectives. It con-
sists in the determination of a semantic correlation among the entities that are searched
together, for example, in a query or when a document has been inserted into the database.
In particular, a fuzzy weight on the correlations is also assigned during the defini-
tion of the ontological domain by an expert according to his/her experience. A cor-
relation is a binary non-taxonomic fuzzy relation: corr : E × E "→ [0, 1], where
E = {e1, e2, . . . , en} is the set of the entities contained in the ontology. This defines
how the entities are linked semantically. The closer to 1 is the corr value, the more the
two considered entities are semantically associated.

In this way, the fuzzy ontology gives a solution to the trade off of the knowledge
base and allows to dynamically adapt itself to the context in which it is introduced.



2 Information Retrieval Algorithm using O-FCN and its
Evaluation

In [7] we introduced a Fuzzy Concept Network (FCN) to represent the dynamical be-
haviour of the fuzzy ontologies. In particular, the FCN representation lets us introduce
a new semantic network based on the correlations defined in the fuzzy ontology. But an
ontology allows to handle a complete knowledge base and so to make reasoning on the
instances. In this work we extend this possibility by inserting directly in the FCN the
objects of the domain stored into the database. In this way, we can reason directly with
the elements of the specific application only visiting the FCN graph. In the following
an extended FCN definition is given in order to insert the objects of the domain:

Definition 2. An Object-Fuzzy Concept Network (O-FCN) is a weighted graphNfo =
{ODB,Nf}, where ODB is the set of the objects stored in the database and Nf =
{E, F, m} is a Fuzzy Concept Network (FCN). Each object is described by the entities
of the FCN , i.e. ∀oi ∈ ODB oi = {e1, . . . , en} where ei, . . . , en ∈ E.

The setODB identifies all the information that is contained into the database, such
as documents, digital pictures, videos, and so on.

Fig. 1. A graphical representation of an Object-Fuzzy Concept Network.

In Fig. 1 it is given a 3D graphical representation of the prototype of a small O-FCN.
The different thickness of the links identifies how strongly the entities are correlated.
The thicker the link the more correlated are the two entities (i.e. the closer to 1 is the
fuzzy value).

A recent application of Information Retrieval System (IRS) is the Semantic Web
area of research. Indeed, the necessity of a better definition of IRS emerged in order to
retrieve semantic information considered useful to a user query. Information Retrieval
is a domain that involves the organization, storage, retrieval and display of information
[9]. In order to extend the query vector it has been proposed a new algorithm based on



fuzzy ontology. When navigating the O-FCN it is possible to find semantic links among
the concepts: for each term specified in the query, a unique path is defined at each step,
corresponding to the maximum value correlation. A step-by-step brief description of
this new algorithm is given below (see also Fig. 2):

’O-FCN’-IR Search ( Eq : word vector )
1: ’O-FCN’-based Eq extension (pruning phase)
2: ’O-FCN’-based documents extraction
3: ’O-FCN’-based relevance calculation (cosine distance)
return ranking of the documents

Fig. 2. New Information Retrieval Algorithm using O-FCN

The O-FCN has been involved in all the steps of the algorithm in order to semanti-
cally enrich the results that were obtained. In this way, to retrieve documents it is easier
to process than from the previous one that used only FCN [7]. The algorithm input is a
vector Eq identifying the terms in the query. The first step (1) uses these terms to locate
the unique path finding maximum correlation value among them. Eq is extended nav-
igating the O-FCN recursively. Now, the “pruning phase” is directly inserted into the
query extension algorithm. In this way, it is possible to find immediately the important
entities, which are more semantically correlated w.r.t. the Eq set. In step (2) the O-FCN
has been involved in order to directly extract the documents by the network. Whereas
in the last step, O-FCN is used to calculate the relevance of the documents in order to
sort them in decreasing order. The final score of a document is evaluated through a co-
sine distance among the weights of each entity. This is done for normalisation purposes.
Such a value is finally sorted in order to obtain a ranking among the documents.

Evaluation A creative learning environment is the context chosen to test the new Infor-
mation Retrieval algorithm based on O-FCN. In particular, the ATELIER (Architecture
and Technologies for Inspirational Learning Environments) project has been involved.
ATELIER is an EU-funded project that was part of the Disappearing Computer initia-
tive. The aim of this project was to build a digitally enhanced environment, supporting
a creative learning process in architecture and interaction design education. In this con-
text, it emerges that the evolution of the O-FCN is mainly given by the words of the
documents inserted in a hyper-media data base (HMDB) and from the entities written
during the definition of a query by the students.
We have studied the dynamic evolution of the O-FCN examining 485 documents and
200 queries of the students. For each query a user had the opportunity to include up to
5 different concepts and the possibility to semantically enrich his/her requests using the
following list of concept modifiers: little, enough, moderately, quite, very, totally.
The algorithm has been tested in two different situations: classical and fuzzy approaches.
In the first case, the crisp situation has been reported assigning value 1.0 to the correla-
tions values and without taking the concept modifiers into the queries of the students.
Instead, in the last case, all the parameters described in this paper have been considered.



Fuzzy recall and fuzzy precision measures [10] are the parameters used in order to
evaluate retrieval algorithms in these two different situations: crisp and fuzzy cases. In
Table 1 it is reported the average values of fuzzy precision and fuzzy recall for the 200
queries performed in the two approaches. Retrieved documents are ranked up to a theta
threshold (θ). In particular, we have chosen three values of θ (0.35, 0.50 and 0.75), to
validate the algorithm in different situations.

Table 1. Average values of Fuzzy Precision and Fuzzy Recall in the fuzzy and crisp cases.

Fuzzy Case Crisp Case
θ value F. Precision F. Recall F. Precision F. Recall
0.35 0.573 0.612 0.590 0.622
0.50 0.602 0.523 0.604 0.593
0.75 0.912 0.221 0.942 0.234

In Table 1, apparently, crisp approach is similar to the fuzzy one and the relevance
of the obtained documents is more or less the same. Instead, in the fuzzy case it has
been observed a better accuracy of relevant documents. Indeed, this result was derived
from the analysis of coefficient variance based on fuzzy precision measure (here CVP ).
In detail, CVP := ( σ

PF
) · 100 where σ is the standard deviation calculated on the

relevance of the documents and PF is the fuzzy precision, and it is a useful statistic for
comparing the degree of variation from one data series to another. In general, the larger
this number, the greater the variability in the data. Figure 3 depicts the trend of CVP

between fuzzy and crisp approaches, for each query. In the fuzzy case we can observe
higher CVP values for the fuzzy case, for all the queries analysed. This means that the
fuzzy case approach identifies more refinement and accuracy than the crisp case.
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3 Conclusion

It has been shown how the introduction of Fuzzy Ontologies, derived models and new
structures, can improve an Information Retrieval System. More extensive developments
will be shown in a forthcoming journal paper. The methodology allows to handle a
trade off between the correct definition of an object, taken in the ontology structure,
and the actual meaning assigned by individuals. So that it offers the opportunity to
exploit an additional knowledge hidden in entities-documents relationships, or semantic
correlations, after querying a database, but also to enrich the semantics of the system.
After analysis, the obtained results for relevance presented a better accuracy in the fuzzy
case than in the crisp one.
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Abstract. We discuss the specific type of uncertainty deriving from the
non-uniform trustworthiness of Semantic Web style metadata sources,
arguing toward the feasibility of modal possibilistic reasoning based on
trust assertions expressing such uncertainty.

1 Introduction

A cornerstone of the Semantic Web vision is the notion that resource de-
scriptions can be modeled as Description Logics (DL) assertions. Indeed,
many innovative applications enabled by the Semantic Web are based on
the idea of reasoning on knowledge about network resources made avail-
able as Semantic Web-style metadata. However, intuition suggests that
generalized manual annotation of Web resources is simply not feasible;
and while automatic metadata generation is of paramount importance,
manually validating (semi-)automatically generated assertions would re-
quire an effort comparable to manually writing metadata from scratch.
In this scenario, performing approximate reasoning on Semantic Web
metadata requires solving two major open problems related to their ex-
pressive power:
– Non-uniform representation of uncertainty. Current Semantic Web

description languages cannot specify neither uncertainty degrees nor
their semantics. Two main reasons motivate the introduction of ex-
plicit representation of uncertainty of Semantic Web metadata: (i)
representing each assertion’s degree of fulfillment on the part of the
Web resource it describes (e.g., “the image at URL so-and-so is a
high resolution one”) [1], or (ii) each assertion’s importance w.r.t.
other assertions regarding the same resource. In principle, this type
of uncertainty can be represented by stating the assertions in some
kind of fuzzy description logics (fuzzy DL). Several fuzzy extensions
to DLs are have been proposed [5], whose decidability property and
deduction algorithms widely differ; choosing the right formalization
for performing reasoning a given setting would require all the as-
sertions involved to have a uniform semantics, quite a tall order for
heterogeneous Web environments.

– Lack of support for modalities. Semantic Web description languages
cannot express assertions belonging to different modalities, includ-
ing alethic or deontic ones. Alethic rules are used to model necessi-
ties (e.g. implied by physical laws) which cannot be violated, even



in principle. For example, an alethic rule may state that an image
file has a (single) date of creation. Deontic rules are used to model
obligations (e.g., resulting from company policy) which ought to be
obeyed, but may be violated in real world scenarios. For example,
a deontic rule may state that all landscape images must carry the
indication of the country where they were taken .

2 A Possibilistic Approach

While the two problems outlined above are hard to tackle in a gener-
alized setting, they can be successfully approached in a restricted case,
i.e. the specific type of uncertainty deriving from the non-uniform trust-
worthiness of Semantic Web metadata sources[2]. In a typical Semantic
Web setting, assertions about network resources can be generated by dif-
ferent sources, including automatic extraction by autonomous software
agents, as well as manual annotation by the data owner or other users.
The degree associated to the assertions provided by a data source rep-
resents the trustworthiness of that source w.r.t. the specific assertion.
We propose to express such a degree by stating a special purpose trust
assertion expressing the level of trustworthiness of an ordinary Semantic
Web assertion. Trust assertions follow the pattern “the (reified) assertion
so-and-so has a level of trustworthiness of X”, are built using their own
reserved vocabulary (expressed as a suitable task ontology). More im-
portantly, their associated degree has a uniform semantics which can be
modeled as a possibility. Trust assertions can be used to rank assertions
about a specific resource; also, the uniform semantics of the associated
degree enables formalization using possibilistic fuzzy logics. More specif-
ically, a modal possibilistic logics formulation can capture both the the
missing modalities[4]; also, reasoning can be carried out using extensions
of the tableaux methods available for ordinary modal logics[3].
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Abstract. Classical ontologies are not suitable to represent imprecise
nor uncertain pieces of information. As a solution we will combine fuzzy
Description Logics with a possibilistic layer. Then, we will show how to
perform reasoning by relying on classical existing reasoners.

Description Logics (DLs for short) are a family of logics for representing struc-
tured knowledge which have proved to be very useful as ontology languages.
Nevertheless, it has been widely pointed out that classical ontologies are not
appropriate to deal with imprecise, vague and uncertain knowledge, which is
inherent to several real-world domains and Semantic Web tasks (e.g. the in-
tegration or merging of ontologies). Fuzzy and possibilistic logics have proved
to be suitable formalisms to handle imprecise/vague and uncertain knowledge
respectively. Fuzzy and possibilistic logics are orthogonal, the former handling
degrees of truth and the latter handling degrees of certainty.

There exist several fuzzy and possibilistic extensions of DLs in the litera-
ture (see [1] for an overview). These extensions are appropriate to handle either
vagueness or uncertainty, but handling both of them has not received such at-
tention. An exception is [2], where every fuzzy set is represented using two crisp
sets (its support and core) and then axioms are extended with necessity de-
grees. Although for some applications this representation may be enough (and
the own authors suggest to consider more α-cuts), there is a loss of information
which we will overcome here. Another related work combines fuzzy vagueness
and probabilistic uncertainty with description logic programs [3].

We propose to build a layer to deal with uncertain knowledge on top of a
fuzzy Knowledge Base (KB) defined as in [4], by annotating the axioms with
possibility and necessity degrees, and to reduce it to a possibilistic layer over
a crisp ontology. Interestingly, this makes possible to perform reasoning tasks
relying on existing classical reasoners e.g. Pellet (http://pellet.owldl.com).

Syntax. A possibilistic fuzzy knowledge base pfK is a fuzzy KB where each
fuzzy axiom τ (see [4] for details) is equipped with a possibility or necessity
degree, (τ,Π α) or (τ,N α) respectively with α ∈ (0, 1]. If no degree is specified,
N 1 es assumed. Necessity degrees express to what extent a formula is necessary
true, whereas possibility degrees express to what extent a formula is possible.

Semantics. Let I be the set of all (fuzzy) interpretations. A possibilistic in-
terpretation is a mapping π : I → [0, 1] such that π(I) = 1 for some I ∈ I. The
intuition here is that π(I) represents the degree to which the world I is possible.



I is impossible if π(I) = 0 and fully possible if π(I) = 1. The possibility of an
axiom τ is defined as Poss(τ) = sup{π(I) | I ∈ I, I |= τ} (where sup ∅ = 0), and
the necessity is defined as Nec(τ) = 1−Poss(¬τ). A possibilistic interpretation
π satisfies a possibilistic axiom (τ,Πγ), denoted π |= (τ,Πγ), iff Poss(τ) ≥ γ
and a possibilistic axiom (τ,N γ), denoted π |= (τ,N γ), iff Nec(τ) ≥ γ.

Reasoning. B. Hollunder showed that reasoning within a possibilistic DL
can be reduced to reasoning within a classical DL [5]. We will reduce here our
possibilistic fuzzy DL to a possibilistic DL. A fuzzy KB fK can be reduced
to a crisp KB K(fK) and every axiom τ ∈ fK is reduced to K(τ), which
can be an axiom or a set of axioms [4]. Adding degrees of certainty to fK
formulae is equivalent to adding degrees of certainty to their reductions, as long
as we also consider axioms preserving the semantics of the whole process (which
are assumed to be necessarily true and do not have any degree of certainty
associated). For every axiom (τ,Πγ) ∈ pfK, Poss(τ) ≥ γ iff Poss(K(τ)) ≥ γ.
Similarly, (τ,Nγ) ∈ pfK, Nec(τ) ≥ γ iff Nec(K(τ)) ≥ γ.

Example 1. The axiom (〈tom : High ≥ 0.5〉, N 0.2) means that it is possible
with degree 0.2 that tom can be considered a High person with (at least) degree
0.5. It is reduced into (〈tom : High≥0.5〉, N 0.2), meaning that it is possible with
degree 0.2 that tom belongs to the crisp set High≥0.5. The final crisp KB would
also need some additional axioms (consequence of the reduction of the fuzzy
KB): High≥0.5 ( High>0,High>0.5 ( High≥0.5 and High≥1 ( High>0.5. )*

Final remarks. [4] reduces a fuzzy KB to a crisp KB and reasoning is per-
formed by computing a consistency test on the crisp KB. Our case is more diffi-
cult and needs to perform several entailment tests. Moreover, how to represent
the possibilistic DL using a classical DL remains an open issue.
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Abstract. We present a novel approach to representing uncertain in-
formation in ontologies based on design patterns. We provide a brief
description of our approach, present its use in case of fuzzy information
and probabilistic information, and describe the possibility to model mul-
tiple types of uncertainty in a single ontology. We also shortly present
an appropriate fuzzy reasoning tool and define a complex ontology ar-
chitecture for well-founded handling of uncertain information.

Motivation for our research is the CARETAKER project4 which comprises
advanced approaches to recognition of multimedia data, which led us to problems
of representing uncertain information.

Although fuzziness isn’t, exactly said, type of uncertainty, we will in this
example consider representing fuzzy information in the form of facts, i.e. A-Box
from description logic (DL) point of view. The key principle of our approach
to representing fuzzy information is the separation of crisp ontology from fuzzy
information ontology. We allow the fuzzy ontology to be OWL Full and only
suppose that the base ontology is OWL DL compliant. Regular OWL DL crisp
reasoning tools can be applied to the base ontology, fuzzy reasoning tools (i.e.
FiRE5) to fuzzy ontology.

Instantiation axioms in Fuzzy OWL [1] are assertions of form 〈a : C !" n〉 –
facts saying that individual a belongs to class C, n is level of certainty (0, 1) and
!" is one of {≤, <,≥, >}. We introduce a few constructs that enable us to model
such axioms with uncertainty by ontology patterns. For each crisp axiom of base
ontology we create a new individual belonging to class fuzzy-instantiation, which
will have several properties attaching it to that crisp axiom in base ontology
and implementing uncertainty. Properties fi-instance and fi-class characterize the
membership of an individual person-1 to class problem-person. Property f-type
defines the type of uncertainty relation (!") and datatype property f-value defines
the level of uncertainty n (Fig. 1, individuals are grayed and classes are bright).
4 http://www.ist-caretaker.org/
5 http://www.image.ece.ntua.gr/∼nsimou



problem-person

person-1

fuzzy-instantiation

-f-value : float = 0.8
fi-instance-1

fi-class

fi-instance

fuzzy-type

ft-greater-or-equal

fi-type

Fig. 1. Instantiation pattern

One of major advantages of our modeling approach is that it enables us to
model various kinds of uncertainty in same ontology at the same time. Using
approach described above we can define well-founded architecture of ontology
that fully supports handling uncertainty – Uncertainty Modeling Framework
(UMF): crisp ontology is aligned to foundational ontology (i.e. DOLCE) while
fuzzy and i.e. probabilistic ontology are based on appropriate patterns of UMF.
Such architecture is modularized, so these parts of ontology are separated to
independent modules. On top of these ontologies there can be number of different
specialized reasoners operating (Fig. 2).
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Reasoner
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Fig. 2. Ontology architecture supporting reasoning with uncertainty.
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supported by the EU FP6 project CARETAKER (no.: FP6-027231).

References

1. G. Stoilos, G. Stamou, V. Tzouvaras, J. Z. Pan, and I. Horrocks. Fuzzy OWL:
Uncertainty and the Semantic Web. In Proc. of the OWL-ED 2005).

6 http://keg.vse.cz/ papers/2007/framew.pdf




