
Query Distribution Estimation and Predictive Caching in
Mobile Ad Hoc Networks

Sheetal Gupta
University of Maryland,

Baltimore County
1000 Hilltop Circle

Baltimore, Maryland 21250
sheetal4@cs.umbc.edu

Anupam Joshi
University of Maryland,

Baltimore County
1000 Hilltop Circle

Baltimore, Maryland 21250
joshi@cs.umbc.edu

Justin Santiago
Agnik, LLC

8840 Stanford Blvd. Suite
1300

Columbia, Maryland 21045
jsantiago@agnik.com

Anand Patwardhan
University of Maryland,

Baltimore County
1000 Hilltop Circle

Baltimore, Maryland 21250
anand2@cs.umbc.edu

ABSTRACT
The problem of data management has been studied widely
in the field of mobile ad-hoc networks and pervasive comput-
ing. The issue addressed is that finding the data required
by a device depends on chance encounter with the source
of data. Most existing research has focused on specifying
the required data by specifying the user or application in-
tentions. These approaches take the semantics of data into
account while caching data onto mobile devices from the
wired sources. We propose a scheme by which mobile de-
vices proactively increase the availability of data by push-
ing and caching the most popular data in the network. It
involves a local distributed technique for estimating global
query distribution in the network. The devices have a finite
sized cache to store the pushed data and use their estimation
of queries for prioritizing the data to cache. We implement
this technique in the network simulator, Glomosim and show
that our scheme improves data availability as well as the re-
sponse latency.

Keywords
Mobile ad hoc networks, query distribution estimation, in-
crease data availability.

1. INTRODUCTION
In mobile ad hoc networks and pervasive computing envi-

ronments, there are multiple independent sources of data.
Mobile devices can be both producers and consumers of
data. Thus the data is often distributed in these data in-
tensive environments. The mobile devices have constrained

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2008 ACM 978-1-60558-221-4 ...$5.00.

storage capacity, computing power and energy resources.
They must forage for the information they seek in their
neighborhood using the constrained resources available to
them. Obtaining the data they seek depends on serendip-
itous meeting with the source of data. A lot of work has
been done to improve data availability in mobile and perva-
sive environments. The constrained resources impose a limit
on the number of messages that the device can exchange to
get the required information. The latency of obtaining the
information is also a concern.

We focus on being able to get the needed data on demand
as well as maximizing the utility of available cache space.
We propose a scheme for estimating the query distribution
in the network. This helps in predicting which data is most
popular and likely to be queried for in future. We push fre-
quently queried data into the network, thus spreading the
data that is most wanted in the network. This scheme en-
hances the availability of reliable data in MANETs by col-
laborative data exchanges with other devices and by ascer-
taining the reliability of the aggregated information using a
validation process. We aim to use the scarce cache space
available with the mobile devices efficiently, by using it to
cache the most popular data. We illustrate the applicability
of our technique in the following two real-life scenarios.

Vehicles fitted with computing devices having wireless ca-
pabilities cache relevant data from sensors stationed by the
freeways that broadcast local conditions. The vehicular de-
vices establish network connections with the neighboring ve-
hicular devices that are passing by and form a vehicular
ad hoc network. Common well-known information useful
to such devices, are emergency related (e.g., police, medi-
cal, and fire department), traffic and road condition related,
weather related, and maintenance related (e.g., gas station,
towing service etc.). The local update about a closed lane
is received by a device and must be propagated to other
devices in a timely fashion. This must be done using the
limited bandwidth and cache space available to the devices.
The devices traveling in the opposite direction must cache
this update with a high probability, so that it is received by
other devices with low latency.

Similar functionality is achieved by the commercial ser-

vice, “Dash Express, a two-way, Internet-connected GPS
navigation system” [1] for automobiles. It works by sending
each Dash driver’s location and speed to the Dash servers.
This real-time traffic information is propagated to other lo-
cal Dash drivers through Internet connectivity. The device
can now decide on which route to take, to minimize time
required to reach the destination based on actual traffic
speeds. However it does not harness the powers of estab-
lishing mobile ad hoc links with its neighboring devices.

Soldiers on the battlefront carrying mobile hand-held de-
vices with wireless capabilities is another scenario where it
is useful to cache information based on the likelihood of get-
ting queried for it. This includes information about supplies,
enemy strength, strategic planning etc. In such tactical en-
vironments a central trusted authority is lacking and connec-
tivity is volatile. The predictive caching technique improves
data availability, reliability and the answering delay for the
devices.

The remainder of the paper is organized as follows. Sec-
tion 2 contains related work in the area of data management
in mobile ad hoc networks and pervasive computing. Sec-
tion 3 describes basic system model on top of which our
system is built. The proposed algorithm for query distribu-
tion estimation and predictive caching is also described in
this section. Section 4 contains results from the simulations
that demonstrate the usefulness of our technique. We then
conclude in section 5 with ideas for future work.

2. RELATED WORK
The problem of query result size estimation has been stud-

ied in traditional database systems. In [8] the range query
result size is estimated based on data distribution and is
fine tuned using the user query pattern. However this work
does not deal with estimating the frequency of the queries
themselves.

The problem of data management has been extensively re-
searched in mobile and pervasive computing environments.
Cherniak et al. [4] introduced the concept of data recharging
based on user profiles. Mobile devices deal with disconnec-
tion from networked data sources by caching or “recharg-
ing” of data. The user profile consists of domain and utility
function. The domain specifies the data objects of interest
to the user. The integer utility function specifies the rela-
tive value of the data objects within a profile domain. The
utility function is used to cope with limited storage, band-
width and recharge time by prioritizing the data items to be
cached. The paper describes the desirable properties of the
language used to specify this highly expressive user profile
and mention the limitations of the existing languages for this
purpose. It mentions that the language must have reasoning
capabilities over the metadata properties. The Cherniak ap-
proach relies on connectivity with servers on wired networks
for data recharging. However we take the approach of also
having peer mobile devices as our sources of data. We use a
reputation management scheme to ascertain the reliability
of the data acquired from peers.

Perich et al. [6] took this concept one step further by
proposing that both the domains of data that a user needs
and its utility will change depending on the context the user
is currently in. They believe that modeling a user profile in
terms of ”beliefs,” ”desires,” and ”intentions” of the user, is
a comprehensive way of modeling and for anticipating the
future data requirements of the user. The ”intentions” of a

user, modulated by the ”beliefs” as well as contextual infor-
mation, including location, time, battery power, and storage
space, allow the information manager of each device to de-
termine what data to obtain and its relative worth. Profiles
are encoded using ontologies - DAML, a semantically rich
language. Every device maintains a subset of the global in-
formation repository that it can provide to itself and possibly
to others.

Both these approaches require a semantic description of
the user needs. This requires the user to anticipate all future
data requirements. They also focus on caching the data that
is useful to the device. Whereas in this paper, we propose
that after satisfying the device’s own requirements, we aim
to increase data availability for the peer devices. This is done
by estimating the global data requirement and then caching
data accordingly. Our focus is not on inferring future data
requirements of the user. Queries are known to the nodes
and do not change over time.

Yin and Cao [10] propose a cooperative caching scheme
for mobile ad hoc networks with finite cache using an effi-
cient cache replacement policy. Popular data is cached, or
the path to the data is cached or a hybrid approach is taken.
They use information from the underlying routing protocol
to minimize delays due to long communication paths. How-
ever their system model assumes the existence of a few data
server nodes. The data consumer nodes know the identity of
these nodes and know the mapping between the data they
need and the data source. The nodes request data from those
nodes and during transit the data is cached by the interme-
diate nodes. Either the data itself is cached or the path,
which is the final requester node identifier along with the
data identifier is cached. In contrast, our system model con-
sists of devices that communicate with their one-hop neigh-
bors for acquiring data. They estimate the popularity of
data using a formula proposed in [7]. They show that even
if this estimate is not very accurate, their cache replacement
policy is effective. They verify this by introducing noise in
their estimate and observing that the answering delay is not
significantly affected by the error noise. We think that this
is because their cache replacement policy is also a function
of the size of data. That factor alone is sufficient to make
their cache replacement policy effective. They do not focus
on accurately estimating query distribution in the network.
They do not have the concept of pushing popular data in
the network to increase its availability. Also all nodes in the
network are trusted and no validation is performed on the
data acquired from peers.

Xu and Wolfson [9] examine database management for
spatio-temporal resource information in mobile peer-to-peer
networks. The database is distributed among the moving
objects and they serve as routers of queries and answers. To
address limited communication time, nodes prioritize the
resource ”reports” available to them. They adopt a hierar-
chical weighting priority structure that is set by the user
unlike our approach where priorities are determined by the
system. The paper also explores the concept of virtual cur-
rency to create incentive for peer-to-peer cooperation. The
feasibility and performance of the proposal is not backed by
actual simulations. Budiarto et al. [3] compare replication
strategies for mobile databases. Consistency is the primary
issue addressed by the paper. In our scenario the data is
not updated once it has been generated by the source. More
up-to-date data can be generated as time passes, however

the old data does not change. Thus maintaining consistency
in mobile databases is not the focus of this paper.

3. PROPOSED APPROACH

3.1 Basic Model
In prior work [5], we proposed a reputation management

scheme that is used to validate the data acquired from peer
mobile devices using accuracy and majority agreement in
the provided data. We focus on mobile ad hoc networks
where a small fraction of the nodes in the network are ini-
tially trusted, and we determine the reputation of the other
nodes. In a vehicular ad hoc network, these trusted nodes
can be the anchored sensor nodes that periodically broad-
cast current local conditions. In a battle space scenario, they
can be the mobile devices carried by the higher ranked offi-
cers. Our query estimation and predictive caching technique
is built on top of this reputation management scheme. This
scheme [5] enhances the availability of reliable data in the
MANET by collaborative data exchanges with other devices
and by ascertaining the reliability of the aggregated informa-
tion using a validation process. Thus the MANET consists
of static trusted devices and mobile devices whose reputa-
tion must be determined based on data exchanges. The
mobile devices receive the local conditions information from
the trusted devices and also serve to propagate them further.
A data packet received by a mobile device from a trusted
anchored device is immediately trusted. A data packet re-
ceived from a peer mobile device is cached, and a validation
session is created for it. The data is validated when the
same data is received from a trusted source later that hap-
pens at the serendipitous occurrence of the mobile device
passing close to the actual source of the data. A packet is
also validated if a threshold value of minimum agreement in
the data received from its peer mobile devices is reached.
If the session has been active for some time without valida-
tion being achieved, the data is timed-out and removed from
the device cache. This scheme provides timely and accurate
data to the consumer devices in a MANET and forms the
starting point for our tests.

3.2 Query Distribution Estimation
We use a local distributed algorithm for estimating the

global query distribution in the network. Each device peri-
odically broadcasts its list of queries to all other devices in
range. This is done irrespective of whether the query has
been answered. The broadcast message also contains the
information of whether the answer is known to the querying
node. The receiving devices will send the answer to those
questions if they know the answer and the querying node
indicated that it does not know the answer. In addition
to answering, the receiving devices will process the query
list message to extract counts of each type of query that its
neighbor has. Initially a device only knows about its own
queries. But as it encounters more devices and exchanges
query lists with them, it knows more about the distribution
of queries in its neighborhood. Gradually this knowledge of
query distribution converges to that of the global query dis-
tribution in the network. This knowledge helps the nodes in
predicting which queries it is likely to encounter in future.

Let ci denote the count of queries of type i seen by a device
so far. Let Tq denote the total count of all types of queries
seen so far. Then the query frequency fi of query type i is

calculated using the formula:

fi = ci/Tq

Note that the formula is entirely based on local cached data
of a node. It does not assume any global knowledge.

Given the simple formula used, the computation overhead
imposed by this algorithm is not significant in terms of en-
ergy cost as compared to the transmission costs. We follow
an abstract query model, where each query is represented by
a unique query identifier number. Thus processing the query
list message to extract counts of each query type, consists of
looking at the query identifier number and incrementing the
corresponding query count. Answers are matched to queries
by matching the answer identifier number to the query iden-
tifier number. The energy consumption is thus dominated
by transmission energy required by the query estimation al-
gorithm and pushing of data in the network.

3.3 Predictive Caching
The knowledge about global query distribution in the net-

work is utilized by the mobile devices to push data corre-
sponding to the queries that have a query frequency greater
than a user defined threshold frequency, into the network.
This is done by broadcasting the data packets that have
been validated, either by receiving the data directly from
the source node or by attaining a majority agreement in
the data obtained from peers and has subsequently been
cached by the mobile node. Only the data packets that sat-
isfy the condition of having a requirement in the network
above the threshold query frequency are broadcast by the
mobile nodes. This pushing of popular data in the network
facilitates the dissemination of required data and increases
the availability of data in the network.

We experimented with different cache replacement policies
for caching of the pushed data. Firstly the data that cor-
responds to the queries that the node has is cached. Other
data they encounter is due to the seeding of current data
in the network by anchor sensor devices and as a result of
pushing of popular data by the mobile nodes. This data is
either cached or discarded based on the cache replacement
policy. We studied the performance of the algorithm with
FIFO and priority-based cache replacement policy. With
FIFO the mobile nodes cache the latest data that has been
pushed towards them. With priority-based cache replace-
ment scheme, the priority of data is determined by the cor-
responding query frequency calculated for that data by the
node. Thus the data that is predicted to be queried for the
most, is cached with a higher priority and the data that is
least queried is removed from the cache when more popular
data is pushed towards it.

We compare the performance of these caching schemes
with the performance using a simple cache for the nodes
wherein they only cache the data corresponding to the queries
that they have. Thus there is no predictive caching of the
data in the hope that they will be asked for in future. We
also studied the comparison of the performance of these
caching schemes with the performance of the system when
nodes have an infinite sized cache.

We also experimented with the system by modifying it so
that there is no pushing of data in the network based on the
query estimation. This is to determine the effect of pushing
on the network performance. In this scenario the nodes still
perform query estimation and use priority-based caching to

Table 1: Simulation Parameters
Spatial Dimensions 700 m x 900 m
Simulation period 30 min
Mobiles devices 50,100,150,200

Stationary devices 38
Transmission range 99.472 m
Routing Protocol AODV
Mobility pattern Vehicular trace

cache the data that they encounter. However they do not
use the query distribution estimate to broadcast popular
data in the network, thus being less effective in increasing
the availability of data.

The baseline for performance comparison is the case where
the nodes have a simple cache and do not push data. This
represents a typical mobile ad hoc network environment
where answers are obtained only on serendipitous encoun-
ters with the data source. The results are presented in the
simulation section.

4. SIMULATION
We implemented the query estimation and predictive caching

algorithm using the Glomosim [11] simulator. The infor-
mation in this section was generated using the simulation
parameters mentioned in Table 1.

The experiment was run with 50, 100, 150 and 200 mo-
bile nodes and 38 ”pre-trusted” anchor nodes, for a duration
of 30 minutes. A mobility pattern of vehicular movement
was chosen, with speeds ranging from 15 m/s to 25 m/s and
pause times of 0 to 30 s. Most existing work use random
waypoint motion in their simulations. We chose to use ve-
hicular movement since it is more representative of real-life
scenarios. We modeled the actual road network around the
Dupont Circle area in Washington DC as described in [5].
Each anchor node has a list of 5 answers that it will seed
into the network. Every 2 minutes one of the 5 answers
at each node is chosen and broadcast to all mobile nodes
within range. Each mobile node has a set of 5 queries that
it wishes to get answered and broadcasts to all nodes in
range after every 1 minute. The mobile nodes are assigned
queries and anchor nodes are assigned answers in a random
uniform distribution pattern. The exchange of query list is
used in building an estimate of the global query distribu-
tion. The mobile nodes that receive the query will send the
answer to the querying node if they have it. The mobile
nodes will also send out cached, validated data packets they
have once every minute, in accordance with the minimum
query threshold frequency that is set up at the beginning of
the simulation. The mobile devices have a cache size of 10,
so that they can cache 5 answers in addition to the answers
that they need. There are 50 unique queries and answers
in the network. The experiment was run 5 different times
using a different vehicular trace path for each node in the
simulation every time it was run.

Figure 1 shows a plot of the average estimated query dis-
tribution by the mobile nodes after a simulation run time of
5 minutes and the actual query distribution. We see that the
estimated distribution has almost converged with the actual
distribution.

More formally we measure the Kullback-Leibler divergence
[2] or relative entropy between the two actual and estimated

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Query type

Q
ue

ry
 fr

eq
ue

nc
y

%

Actual
Estimated

Figure 1: Query distribution plot of the actual and
estimated distributions after 5 minutes of simulation
run time

0 5 10 15 20 25 30
0

0.005

0.01

0.015

0.02

0.025

Simulation run time(minutes)

K
−

L
di

ve
rg

en
ce

50 nodes
100 nodes
150 nodes
200 nodes

Figure 2: Kullback-Leibler divergence between the
average estimated and actual query distributions

query distributions. We see in figure 2 that the divergence
reaches a low value of 0.023 for a network size of 50 nodes
after only 5 minutes of simulation run time from a value of
infinity at time t=0. We also observe that the convergence
of the query estimation algorithm is faster in case of a denser
network. So the convergence is sooner for a network size of
200 nodes than that for a network size of 50 nodes.

Figure 3 shows the results for a simulation run with a
network size of 50 nodes and with a priority based caching
scheme, where priority is determined by the query estima-
tion algorithm. The average number of queries answered
is shown along with the variations. The y-axis scale is ex-
panded to see the exact nature of the graph. A threshold
frequency of 0% implies that all cached data is pushed in

−1 0 1 2 3 4 5 6
165

170

175

180

185

190

195

200

% Threshold frequency

A
ve

ra
ge

 n
um

be
r

of
 q

ue
rie

s
an

sw
er

ed

Figure 3: Variation of number of queries answered
as the threshold frequency is varied from 0-5%

the network. Thus the query estimation is not being used
to push the required data. It is only being used for cache
replacement decisions. We observe that at threshold fre-
quencies 0%,1%,2%,3% and 4% the total number of queries
answered remains about the same. At a low threshold fre-
quency of say 1%, the nodes do not distinguish between data
that has a query frequency of 1% and data with a query fre-
quency of 4% while pushing it. The receiving nodes filter
out the data by only caching the 4% frequency data and
discarding the 1% frequency data. Thus the effect of push-
ing is canceled by filtering by cache. Hence the number
of queries answered remains the about the same at thresh-
old frequencies of 0%,1%,2%,3% and 4%. The number of
queries answered seems to increase slightly with increase in
the threshold frequency to 5%.

−1 0 1 2 3 4 5 6
650

700

750

800

850

900

950

% Threshold frequency

A
ve

ra
ge

 a
ns

w
er

in
g

la
te

nc
y(

se
co

nd
s)

Figure 4: Variation of average query answering de-
lay as the threshold frequency is varied from 0-5%

The average time to answer a query clearly increases as
the percentage threshold frequency increases as seen in figure
4. This is because since at high threshold frequencies nodes
only push the most accessed data, proper dissemination of
data does not take place. Thus the available node cache
space is not utilized completely in case of high threshold
frequency. On the other hand, at low threshold frequencies,
the nodes do a better job of disseminating required data in
the network resulting in increased availability. Thus answer-
ing delay is least in case of a threshold frequency of 0% and
worst in case of a threshold frequency of 5%.

−1 0 1 2 3 4 5 6
0

50

100

150

200

250

300

A
ve

ra
ge

 to
ta

l n
um

be
r

of
 s

eg
m

en
ts

 s
en

t p
er

 n
od

e

% Threshold frequency

Figure 5: Variation of average total segments sent
per node as the threshold frequency is varied from
0-5%

Figure 5 shows that the number of segments or answers
transmitted per node decreases significantly with increase
in threshold frequency. This is because as the threshold fre-
quency increases, fewer cached data satisfy the condition of
having a frequency above the threshold frequency and hence
do not qualify for being pushed in the network. This de-
creases the overall traffic in the network at higher threshold
frequencies. With decrease in number of transmissions per
node, the energy consumption per node is also minimized.

From the graphs we see that a threshold frequency of 5%
works best, in terms of number of queries answered and
energy consumption per node if the answering delay is not
a concern. Selecting a threshold frequency midway like 3%
seems to be a good compromise if answering delay is also an
important factor.

Figure 6 characterizes the behavior of the query estima-
tion and caching algorithm for different caching schemes for
a threshold frequency of 3% and a network size of 50 nodes.
In the no cache case nodes only have space to store answers
to their own questions. As expected the total number of
queries answered is the largest in the case of infinite cache
and least in the base case. The base case consists of no
cache and no pushing of data. In the infinite cache case,
nodes have unlimited cache space to store all the answers
that were pushed to it. This increases the data availability
in the network. Conversely in the base and no cache case,
nodes do not cache any data that is pushed to it in the net-

 Base case No cache FIFO Priority Priority/no push Infinite cache
0

50

100

150

200

250

A
ve

ra
ge

 to
ta

l n
um

be
r

of
 a

ns
w

er
ed

 q
ue

rie
s

Figure 6: Average total number of queries answered
for different caching schemes for a threshold fre-
quency of 3%

work. This results in decreased total number of answered
queries. The number of answered queries increases slightly
for the priority-based caching scheme as compared to that
for FIFO caching scheme. This can by attributed to the
fact that at 3% threshold frequency, most of the data that
is pushed in the network is highly popular data and thus
even FIFO caching results in higher availability of required
data and thus good performance. In the case of no push-
ing of answers in the network by the mobile nodes based on
query estimation, the only means of data dissemination are
the data broadcast by the source anchor nodes. The nodes
use a priority-based caching scheme based on its query es-
timation. Here the only way of getting a query answered is
by a chance encounter with the source anchor node having
the answer. It is observed that this case performs as good as
the FIFO cache and priority-based caching schemes in terms
of total number of queries answered. However it performs
badly in terms of query answering delay as seen in figure 8.

FIFO cache Priority cache
171

172

173

174

175

176

177

178

179

A
ve

ra
ge

 n
um

be
r

of
 q

ue
rie

s
an

sw
er

ed

Figure 7: Average total number of queries answered
for priority and FIFO caching schemes for a thresh-
old frequency of 1%

Figure 7 shows that the priority-based cache replacement
scheme results in greater number of queries getting answered
than using a FIFO cache for a threshold frequency of 1%.
This is because although a lot of the data qualifies for push-
ing with a low threshold frequency of 1%, the priority-based
caching scheme is better able to cache only the most popular
data than the FIFO caching scheme which discards old data,
even if it was estimated to be more popular than the new
data. We also observed that the answering delay was 11s
less in case of priority caching scheme than for FIFO cache.
However the number of segments/answers sent per node was
greater in case of priority caching scheme than FIFO caching
scheme by 18 segments since most of the highly popular data
in its cache qualified for pushing and so greater number of
answers were pushed in the network.

Base case No cache FIFO Priority Priority/no push Infinite cache
780

790

800

810

820

830

840

850

860

870

A
ve

ra
ge

 a
ns

w
er

in
g

la
te

nc
y(

se
co

nd
s)

Figure 8: Average query answering delay for dif-
ferent caching schemes for a threshold frequency of
3%

As seen in figure 8 the average time to answer a query
is the worst in the case of no pushing of answers in the
network because of its dependence on chance encounter with
the source nodes to have its query answered. The no cache
case also performs poorly as expected since there is no cache
in the mobile nodes for storage of the pushed data in the
network. The performances of the FIFO and priority cache
schemes are about the same due to the same reason that
the data dissemination is almost the same for a threshold
frequency of 3%.

Figure 9 shows that the number of segments/answers trans-
mitted per node is least in the base case, no pushing of
answers and in the case where nodes do not have any ex-
tra cache space. The number of segments sent per node is
slightly more in priority cache case than FIFO cache case,
since the priority cache will lead to more in-cache data to
qualify for pushing in the network. The number of segments
sent is the highest in infinite cache case, since it can cache
more data that qualifies for pushing in the network. This
graph indicates the traffic overhead caused due the query
estimation algorithm and pushing of data in the network.

5. CONCLUSION AND FUTURE WORK
Data management in mobile ad hoc networks is an impor-

tant issue, with each mobile device carrying only a fraction
of the data. Instead of relying on chance encounter to get the

Base case No cache FIFO Priority Priority/no push Infinite cache
0

50

100

150
A

ve
ra

ge
 n

um
be

r
of

 s
eg

m
en

ts
 s

en
t p

er
 n

od
e

Figure 9: Average total number of segments sent per
node for different caching schemes for a threshold
frequency of 3%

answers to its queries, we proposed that the mobile devices
dynamically estimate the global query distribution. They
use this estimate of global query distribution to predict and
cache the most popular data in the hope of being able to
provide it to other devices when asked by them. This in-
creases the data availability in the network and decreases
latency of obtaining required data.

From our preliminary simulation results we observed that
the threshold frequency should be set low enough for data
dissemination to take place and high enough to limit the
traffic and thus energy consumption in the network. Using
this query estimation technique, we are able to make bet-
ter utilization of available cache space to increase the data
availability in the network.

For future work we are investigating how to assign a confi-
dence level to each answer obtained by majority agreement
in a mobile ad hoc network. We will use statistical tech-
niques to achieve this. We will improve on [5] by taking into
account the reputations of the source devices while obtain-
ing majority agreement. If an application knows the cer-
tainty it desires, and its trust in the neighbors, it can decide
what number of neighbors must agree on the information
to achieve the given certainty bound. We will use Cher-
noff’s bound to determine the lower bound on the number
of neighbors that must agree on the information.

6. ACKNOWLEDGMENTS
This project has been supported by US Army Contract

W15P7T-07-C-P447. The authors would like to thank Dr.
Hillol Kargupta, UMBC for his help during discussions.

7. REFERENCES
[1] http://dash.net.

[2] http:

//mathworld.wolfram.com/RelativeEntropy.html.

[3] Budiarto, S. Nishio, and M. Tsukamoto. Data
management issues in mobile and peer-to-peer
environments. Data Knowl. Eng., 41(2-3):183 – 204,
June 2002.

[4] M. Cherniack, M. J. Franklin, and S. Zdonik.
Expressing user profiles for data recharging. Personal
Communications, IEEE, 8(4):32–38, August 2001.

[5] A. Patwardhan, A. Joshi, T. Finin, and Y. Yesha. A
data intensive reputation management scheme for
vehicular ad hoc networks. 3rd Annual International
Conference on Mobile and Ubiquitous Systems -
Workshops, pages 1–8, July 2006.

[6] F. Perich, S. Avancha, D. Chakraborty, A. Joshi, and
Y. Yesha. Profile driven data management for
pervasive environments. Proceedings of the 13th
International Conference on Database and Expert
Systems Applications, pages 361 – 370, September
2002.

[7] J. Shim, P. Scheuermann, and R. Vingralek. Proxy
cache algorithms: Design, implementation, and
performance. IEEE Trans. Knowledge and Data Eng.,
11(4):549–562, July/August 1999.

[8] Y.-L. Wu, D. Agrawal, and A. E. Abbadi. Query
estimation by adaptive sampling. Proceedings of the
ICDE Conference, pages 639–648, February 2002.

[9] B. Xu and O. Wolfson. Data management in mobile
peer-to-peer networks. 2nd International Workshop on
Databases, Information Systems, and Peer-to-Peer
Computing (DBISP2P’04), August 2004.

[10] L. Yin and G. Cao. Supporting cooperative caching in
ad hoc networks. IEEE Transactions on Mobile
Computing, 5(1):77–89, January 2006.

[11] X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: A
library for parallel simulation of large-scale wireless
networks. Workshop on Parallel and Distributed
Simulation, pages 154–161, July/August 1998.

