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Introduction
Communities are central to online social media systems
and detecting their structure and membership is critical for
many applications. The large size of the underlying graphs
makes community detection algorithms very expensive. We
describe an approach to reducing the cost by estimating
the community structure from only a small fraction of the
graph. Our approach is based on an important assumption
that large, scale-free networks are often very sparse. Such
networks consist of a small, but high degree set of core
nodes and a very large number of sparsely connected pe-
ripheral nodes (Borgatti & Everett 2000). The insight behind
our technique is that the community structure of the overall
graph is very well represented in the core. The community
membership of the long tail can be approximated by first us-
ing the subgraph of the small core region and then analyzing
the connections from the long tail to the core.

A set of vertices can constitute a community if they are
more closely related to one another than the rest of the net-
work. Such vertices connect with a higher density within
the group and are very sparsely connected to the rest of
the network. An intuitive measure for the quality of any
clustering or community detection algorithm is the modu-
larity function (Newman & Girvan 2003). The modularity
function,Q, measures the fraction of all the edges,eii, that
connect within the community to the fraction of edges,ai

that are across communities. This measure is defined as
Q =

∑
i
(eii − a2

i
). Determining the “best” community

structure by finding the optimal modularity value has been
shown to be NP-Hard (Duch & Arenas 2005).

Recently, spectral methods have been applied to commu-
nity detection and shown to have a relation to optimizing
the modularity score (Newman 2006). Spectral clustering is
based on the analysis of eigenvectors of a graph or more gen-
erally, any similarity matrix. Most spectral clustering tech-
niques use the graph Laplacian which is a representation of
the similarity matrix that has a number of important prop-
erties (Chung 1997). The normalized version for the graph
Laplacian is given by:L = D−

1

2 WD−
1

2 whereW ∈ ℜn∗n

is the adjacency matrix andD is a diagonal matrix represent-
ing the degrees of nodes in the graph. An important prop-
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erty of the graph Laplacian is that the vector corresponding
to the second smallest eigenvalue, theFiedler vector, can
be easily used to partition the graph (Chung 1997). It has
been used to efficiently cluster data and partition graphs into
communities. Shi and Malik (Shi & Malik 2000) developed
a normalized cut (Ncut) criteria by recursively partitioning
the graph using the eigenvectors of the graph Laplacian.

Sampling Based Low Rank Approximations
Our approach is inspired by the idea of using sampling for
clustering as described by Drineaset al. (Drineaset al.
1999) and Keuchel and Schnorr (J. Keuchel 2003). We
first permute the adjacency matrix W, based on the degree.
Next, we compute the normalized Laplacian matrix associ-
ated with a given graph. Since the original adjacency ma-
trix, W, is sparse, L is also sparse. Also, it has the same
structure as W. Thus, L can be partitioned into four sub-
matrices as follows: [A B; ABT ] such thatA ∈ ℜr∗r,
B ∈ ℜk∗(n−r) andC ∈ ℜ(n−r)∗(n−r). Here, A represents
the connectivity between nodes in the core, and B the con-
nectivity of the nodes outside the core to those in the core.
Now using Singular Valued Decomposition (SVD) L can be
factorized into it’s singular values and corresponding basis
vectors:L = D−

1

2 WD−
1

2 =
∑n

i=1 ρiqip
T

i
, whereρi are

the singular values,qi andpi are the left and right singular
vector correspondingly. IfQk is a matrix of left orthonormal
singular vectors then the bestk approximation of L is given
by: L = Qk ∗ QT

k
∗ L.

The approximate value forQk (left largest singular vec-
tors) can be obtained by using the eigenvectors correspond-
ing to the k largest eigenvalues ofST ∗ S where the sub-
matrixS ∈ ℜnxs is given by [A;BT ]. Let wi be the eigen-
vectors corresponding thek largest eigenvalues of matrix
ST ∗ S. Then the approximatedQk of theL can be found
by

qi = S ∗ wi

||Swi|| = S ∗ wi√
λi

for i = 1......k

whereλi denotes the eigenvalues of the matrixST S.
Since L is a positive semi-definite matrix, the singular

values and singular vectors of L coincide with its eigenval-
ues and eigenvectors. This leads toQk approximating the
k eigenvectors needed for community detection. A different



interpretation of this approach is in terms of the Nyström
method.

Heuristic Based Approximation Method
We propose another approach that uses the structure of the
blogs graph directly. We use the head of the distribution to
first find the communities in the graph. The intuition is that
communities might form around popular nodes. So we can
use Ncut (or any of the community detection algorithms) to
find the initial communities in a graph that is much smaller
than the original one. This leaves the problem of finding
the community of the blogs that are not a part of the head.
One simple, yet effective heuristic is to look at the num-
ber of links from a blog to each community as identified
from the clustering of the nodes in the head, and declare it
to be a member of the community that it most associates
with by this measure. This heuristic can significantly reduce
the computation time, while providing a reasonable approx-
imation to the community structure that would be found by
running the same Ncut algorithm over the entire graph.

Evaluation
In order to evaluate the quality of approximation we use a
blog graph consisting of six thousand nodes. Figure 1 shows
the original sparse matrix permuted using the degree of the
node to reveal the core-periphery structure of the graph also
shows the communities detected using the heuristic method.
Since there is no ground truth available, we use the modular-
ity score, Q, as a measure of quality for the resulting com-
munities found by each of the methods. We also compare the
approximate methods with Ncut algorithm. Another possi-
ble way to approximately calculate communities would be
to cluster the singular vectors U obtained using the low-rank
approximations of the original large, sparse matrix W.

Figure 2 shows the performance of Ncut, low-rank SVD,
approximation method and heuristic method for computing
the communities. The results indicate that both the approxi-
mation and heuristic method provide high modularity scores
even at low sampling rates (10%-50%). Also, the time re-
quired to compute the communities is comparable or at times
less than that of using Ncut. In addition the memory require-
ments are much less since only a small fraction of the entire
graph is sampled.
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Figure 1:A Webgraph consisting of 6000 blogs (left) is sampled at
30% using the heuristic method. The resulting communities iden-
tified are shown on the right. The modularity score was found to
be about 0.5 using 20 communities.
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Figure 2: Modularity scores (left) and computation times (right)
for different sampling rates (10% to 50%) over 100 runs. Bars
are in the following order: SVD, Sampling Based Approximation,
Heuristic, Ncut.

In terms of running time the complexity of Ncut isO(nk)
where n is the number of nodes in the graph and k is the
number of communities. Thus the heuristic isO(rk) where
r is the number nodes in the head. On the other hand, the
complexity of low rank SVD isO(nk2) where the original
graph is approximated by its rank k basis vectors. Finally the
sub-sampling based approximation can be efficiently imple-
mented inO(r3) using the Nyström Method (Fowlkeset al.
2004).

Conclusions
In this work, we present approximate methods for commu-
nity detection in large graphs. It has the advantage of quickly
and efficiently finding a reasonable approximation to the
community structure of the overall network. We also present
an intuitive heuristic and show that it results in good perfor-
mance at a much lower costs.
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