
Z. Kobti and D. Wu (Eds.): Canadian AI 2007, LNAI 4509, pp. 98–109, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Learning the Semantic Meaning
of a Concept from the Web

Yang Yu and Yun Peng

Department of Computer Science and Electrical Engineering,
University of Maryland Baltimore County, Baltimore, MD 21250, USA

{yangyu1,ypeng}@umbc.edu

Abstract. Many researchers have used text classification method in solving the
ontology mapping problem. Their mapping results heavily depend on the
availability of quality exemplars used as training data. However, manual
preparation of exemplars is costly. In this work, we propose to automatically
extract text from web pages returned by a search engine. Search queries are
formed according to the semantic information given in the ontology. We have
implemented a prototype system that automates the entire process (from search
query formation to conditional probability calculation) and conducted a series
of experiments. We assessed the effectiveness of our approach by comparing
the obtained conditional probabilities with human expectations. Our main
contribution is that we explored the possibilities of utilizing web information
for text classification based ontology mapping and made several valuable
discoveries on its usefulness for future research.

Keywords: Semantic web, ontology mapping, text classification, search engine.

1 Introduction

The semantic web is an "extension of the current web" [1], where information is
marked up by ontology languages such as OWL and RDF so that it can be understood
and processed by programs. However, it is not realistic to assume everyone shares a
single ontology. Instead, different organizations may have different ontologies for the
same domain, reflecting their designers’ own perceptions and conceptualizations of
the domain. For example, a course on neural networks may be called "Introduction to
Neural Networks" in one university's course ontology but "Introduction to
Connectionist Models" in another’s. Understanding these two courses actually
teaching similar materials will not be a problem to a computer science professor
because in the professor's knowledge base, the two course titles have the same or very
similar meaning or semantics. However, when programs based on one ontology try to
exchange information with programs based on another, problems will happen. This
so-called interoperability problem has been known for a long time in software
integration, and becomes more acute in the semantic web [2].

One of the approaches to address this interoperability problem is to map concepts
defined in one ontology to semantically identical or similar concepts in another. Text
classification is a very powerful technique some have suggested for this purpose

 Learning the Semantic Meaning of a Concept from the Web 99

[8, 9]. However, its success is highly dependent on the availability of text documents
that are exemplars of individual concepts in the ontologies. Manually preparing a
good number of exemplars for hundreds of concepts is time-consuming and very
costly. This greatly reduces the attractiveness of text classification based ontology
mapping. To address this difficulty, we propose to automatically retrieve exemplars
from the web, the largest information source available. A prototype system has been
built based on this idea, which allows us to experiment with different parameters and
methods in each step of this approach. A series of experiments have shown
encouraging results.

The rest of the paper is organized as follows. Section 2 provides background and
motives of this work; Section 3 presents the technical details of this approach and the
prototype system; Section 4 describes the experiments and results; Section 5 discusses
related works; and Section 6 concludes with suggestions to future research.

2 Background and Motivation

In computer science, an ontology is a set of concepts each of which can have
individual members, its own properties, and its relations with other concepts in the
set. For example, Fig.1 shows a simple ontology defined in OWL based on [3].

Fig. 1. Ontology for CommercialJet in OWL

From this ontology, we know, by the SubClassOf property, that Boeing-747 is a
kind of Boeing Jet, which itself is a kind of commercial jet. If we define a “made-in”
property, we can specify “Boeing-Jets are made-in WA”. If the ontology also has
information that WA is the same as Washington State, and it is a-part-of USA, then
these data can be easily used by a program to answer questions like “Find all types of
commercial jets that are made in the USA”.

By defining relations between concepts, we effectively build a web of concepts,
potentially a huge integrated database, where information can be shared among
applications easily and more complicated reasoning can be supported. The arrival of
this semantic web requires ontologies to be developed and shared by many
organizations and individuals. However, it is hard to make ontology development a
coordinated centralized activity and it is also a fact that people can use different terms
for one concept or similar concepts, so different ontologies can be created for the

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<rdf:Class rdf:ID= "CommercialJet"></rdf:Class>
<rdf:Class rdf:ID= "BoeingJet">
 <rdf:subClassOf rdf:resource ="CommercialJet"/></rdf:Class>
<rdf:Class rdf:ID= "AirbusJet">
 <rdf:subClassOf rdf:resource ="CommercialJet"/></rdf:Class>
<rdf:Class rdf:ID= "Boeing-747">
 <rdf:subClassOf rdf:resource ="BoeingJet"/></rdf:Class>
<rdf:Class rdf:ID= "A-380">
 <rdf:subClassOf rdf:resource ="AirbusJet"/></rdf:Class>
</rdf:RDF>

100 Y. Yu and Y. Peng

same domain. For the semantic web to work, it is imperative to relate or map concepts
between such ontologies.

Different approaches to ontology mapping have been developed. Manual mappings
between large ontologies have been tried in recent years [4, 5]. The mapping is
accurate and it can be saved for future use. The problem is that the size of ontologies
can be very large and ontologies can keep growing, which requests a huge amount of
continuous human efforts in establishing and maintaining the mapping. Consequently
more researchers are looking for ways to map ontologies (semi)automatically.

String matching of concept names in two ontologies [6] is an effective alternative.
Large amount of information can be processed very quickly and with a high degree of
accuracy. For example, “meetingPlace” and “PlaceOfMeeting” can be matched. But
matching “Tank” and “Armored Motor Vehicle” would usually involve complicated
lexical analysis, and a complete dictionary such as WordNet has to be consulted.

Many researchers choose more powerful methods of machine learning, especially
text classification techniques [7, 8, 9]. Usually, text exemplars for each concept or
class in a given ontology (OntoA) are manually collected. Then a text classifier is
trained using these data. To map a concept C defined in another ontology (OntoB) to
some concept in OntoA, exemplars for C need to be collected and classified into the
classifier of OntoA. Based on the initial classification results, algorithms such as [7]
and [8] can be used to carry out the further steps of ontology mapping. Text
classification based ontology mapping is much less time-consuming than manual
mapping, and more powerful than string matching, because semantic meanings of
apparently different strings can be analyzed by processing information contained in
the provided exemplars. Here, the existence of exemplars for each concept and their
relevancy to the concept they represent are the key factors to the effectiveness of this
approach. However, finding sufficient, high-quality exemplars manually is costly, and
is thus the limiting factor of this approach.

The WWW is the richest information resource available anywhere in the world.
Collecting text exemplars from the WWW is a promising approach. To assess its
effectiveness, we designed a tool to retrieve documents from the web through a search
engine and tried a number of different ways to process the documents downloaded
before using them for text classification. We tested our tool by actually performing
some preliminary ontology mapping experiments with small-scale ontologies.

3 System Design

Here we use OntoA to refer to the ontology in which we seek a mapping for a foreign
concept and use OntoB to refer to the ontology that provides the foreign concept. The
system has the following main components:

1. A parser to parse ontology files in OWL format and to form search queries.
2. A retriever to drive a web search engine with the queries generated by the parser

and to retrieve a specified number of web pages based on the search results.
3. A processor to process the raw HTML documents obtained from the retriever to

construct text files as exemplars for concepts in the ontologies.
4. A model builder to build a probabilistic model for OntoA from its exemplars using

a text classification software. This model becomes OntoA‘s classifier.

 Learning the Semantic Meaning of a Concept from the Web 101

5. A calculator to feed the text exemplar for concepts in OntoB to OntoA‘s classifier,
collects classification outputs and calculates conditional probabilities as initial
mapping results.
We chose Google as our search engine and Rainbow [10] as our text classification

software. The structure of the system is shown in Fig.2.

Ontology A

Parser

Processor HTML Docs

Queries

Text Files (A)

Links to Web Pages

Retriever

Model Builder

Mapping ResultsCalculator

Feature Model

Ontology B

Text Files (B)

Rainbow

WWW

Search
Engine

Rainbow

Fig. 2. System components overview

3.1 The Parser

We parse the ontology file to generate search queries for Google. To obtain better
results, the query should contain more semantic information than just a class name.
Because a word may have multiple senses or meanings, a query consisting of only the
words of a concept’s name may return web pages based on a more popular meaning
of the word, which sometimes is not the particular meaning intended for the concept
in the ontology. For example, in an ontology for food with a root class called “food”,
we may have a concept called apple, which is a subclass of “fruit”. If we only use
“apple” as the keyword, documents showing how to make an apple pie and
documents showing how to use an iPod may both be returned. Apparently, the
documents using apple as a computer manufacturing are irrelevant to a subclass of
fruit. To avoid this, when forming a query, we use all the terms on the path from the
root class to the class in question together as a query to send to the search engine. In
the apple example, the query would be “food+fruit+apple” instead of “apple” itself
alone. By doing so, the number of irrelevant documents returned is greatly reduced.
This kind of “word sense disambiguation” by adding additional semantically relevant
terms into the search queries can be further extended to include concept’s properties.
However, it needs to be noted that queries that include too many terms of high
specificity (e.g., those in zoology or botany) may lead to very few search results.

102 Y. Yu and Y. Peng

3.2 The Retriever

The retriever takes a file containing queries generated by the parser, initiates a
connection with a search engine, and sends a query in. It then goes through the search
result pages for the query one by one and extracts URLs from each result page. After
it collects a pre-specified number of URLs from the search results, it tries to
download web pages at these URLs. Currently, only URLs starting with http:// and
ending with .html, .htm or / are extracted because other file types, for example, doc or
pdf will be difficult for the processor to process. All the HTML files obtained through
a query for a particular class are saved in one directory and will be used by the
processor to generate exemplars for that class.

For most of the experiments, we retrieved documents using Google as the search
engine, because it is the easiest one to be integrated into our system and it is generally
considered the best. Although Google provides a programming API to obtain search
results, we decided to develop our own retriever program. This gives us the flexibility
to experiment with search engines other than Google (for example, Clusty.com) in
some of our experiments.

3.3 The Processor

Documents collected by the retriever are HTML files. These raw data have to be
processed before being used as exemplars. The processor will remove all HTML tags,
image files, script programs, etc. Also removed are hyperlinks, which may contain
some useful semantic information, but more often are just links to other irrelevant
pages or websites. Since the retriever can easily retrieve a huge amount of relevant
documents from the web, we can afford to be more selective in the process.

After the above steps, we have a large number of pure text files for each concept.
The processor can perform some optional tasks: keeping only the sentences where a
word in the query appears in each text file. Since not every part of a text file is
necessarily relevant to the concept in question, this step may help remove irrelevant
information and keep only the most closely relevant text. Text files processed with
and without this option are both used in our experiments and the results are compared.
The processor can also choose to keep paragraphs, rather than sentences in which
query words appear.

3.4 The Model Builder

The system takes Naïve Bayes text classification approach to build a probabilistic
model for concepts in OntoA. In a text classification problem, we need to decide
among a set of mutually exclusive categories C1, C2, C3 … Cn, to which category a
new document d should belong. This can be determined by which category has the
greatest posterior probability, given d, i.e., maxi(P(Ci | d)| i = 1, …, n), or
equivalently, maxi(P(d | Ci) * P(Ci)) since only thing that matters here is the ranks
among these categories.

Naïve Bayes approximates P(d | Ci) as follows. Let d contain m distinct words d =
{w1, …, wm}, where wi is the frequency of the ith word in d. Then assuming that
whether a word appears in a category is independent of other words in that category,
we have the Naïve Bayes rule

 Learning the Semantic Meaning of a Concept from the Web 103

)|()|,...,()|(11 ij
m
jimi CwPCwwPCdP =Π==

Note that the independence assumption does not hold in general. Despite of this, good
performance is still achieved. Details of this method can be found in [11].

A Naïve Bayes classifier requires the predefined categories C1, C2, C3 … Cn to be
mutually exclusive and exhaustive, so that the probability results can be correct and
sum to 1. In our system, classification categories are closely related to ontology
concept classes. Our model builder allows one to select concept classes in different
ways when forming these classification categories.

For simplicity, this work only considers OWL ontology files that can be viewed as
a concept tree based on the subClassOf property. The leaf classes in such a tree are
assumed to be mutually exclusive and exhaustive regarding to the root class. By leaf
classes, we mean those classes that do not have a subclass. The default behavior of the
model builder is to use all the leaf classes in an ontology as the classification
categories. Then Rainbow is called to build a probabilistic model for these categories.

Besides the default behavior, the model builder has an option to build a model for
each class in OntoA except the root. Two categories A+ and A- are created by the model
builder for class A in OntoA. A+ is associated with exemplars for that class, and A- is
associated with exemplars for the complement of that class, which are taken from
classes that are not A, not A’s ancestors nor A’s successors in the ontology tree. The
model builder then builds a model using the exemplars for the two categories. This
option is not applicable to the root class, because the root’s complement is empty. For
example, the exemplars for “not CAT” in the ontology tree shown in Fig.3 would
include those found for all classes except “CAT” and its ancestors, “ANIMAL” and
“LIVING_THINGS”.

3.5 The Calculator

Rainbow and other naïve Bayes text classifiers tend to produce extreme values (0 or 1)
because of the independence assumption. This is certainly good enough if one only
wants to get a right classification. However, our purpose is to use the classifier to obtain
P(A | B) of concept A in OntoA, given concept B in OntoB, and hope to use this value as
a basis to measure the semantic similarity between A and B. The calculator solves this
problem by providing estimates of true conditional probabilities. It works as follows:
(1) feeds all exemplars of concept B of OntoB one by one to Rainbow, which performs
classification using the model of OntoA, (2) keeps records of the classification results
for each exemplar, (3) calculate average results grouped by categories in the model as
the conditional probability, and (4) write a summary report. It can also perform some
additional calculations like estimating conditional probabilities for mapping involving
non-leaf classes.

To see how classification results for a concept is averaged, suppose that APC is a
class of OntoB, a weapons ontology. For simplicity, suppose OntoA, another weapons
ontology, has three leaf classes: TANK-VEHICLE, AIR-DEFENSE-GUN, and
SAUDI-NAVAL-MISSILE-CRAFT. We build a model using these three classes as
classification categories. To calculate the conditional probability given class APC, we
classify each exemplar of APC against the model. Suppose we have 200 exemplars of
class APC, and the numbers of exemplars giving result of 1 to the three categories are

104 Y. Yu and Y. Peng

170, 20, and 10, respectively. Then by taking the average, the conditional probability
P(TANK-VEHICLE | APC) = 170 /200= 0.85, P(AIR-DEFENSE-GUN | APC) = 0.1,
and P(SAUDI-NAVAL-MISSILE-CRAFT | APC) = 0.05.

4 Experiments and Results

A large number of ontologies of different sizes have been used in many of our
experiments. Due to the page limit, we only report some representative experiments,
which involved two sets of ontologies. The first involves a small ontology whose
structure is shown in Figure 3. We performed text classification between classes
within this ontology and also with some foreign classes. The second set,
WeaponsA.n3 and WeaponsB.n3, were taken from I3Con2004 [14].

LIVING_THINGS

ANIMAL PLANT

HUMAN

MAN

CAT

WOMAN

TREE

ARBOR

GRASS

FRUTEX

Fig. 3. Structure of LIVING_THING ontology

The system was implemented on Linux and different components developed in perl
or Java are glued together by shell scripts. The whole process from parsing,
generating queries, to collecting exemplars, building models and calculating results is
fully automated.

4.1 Results for Weapons Ontologies

Usually to generate a query for a class, the parser will use all the classes along the
path from the root to the class in question. For weapons ontologies, because of their
high specificity, to insure that sufficient web pages are returned, we decided to let the
parser generate shorter queries, using only the class itself and its parent class.

OntoA, WeaponsA.n3 has more than 60 leaf classes. The model builder ran in
default mode, and built a model using these leaf classes as classification categories.
The retriever collected 100 exemplars on average for each class. The processor was
invoked in two different ways and the results were compared. One is the default mode
in which the entire text body of a web page is retained as a pure text exemplar; the
other is to only keep sentences containing any of the search keywords as exemplars.

There are 9 classes in WeaponsB.n3 that do not appear in WeaponsA.n3. We try to
find a mapping for each of them in WeaponsA.n3. These 9 classes and the manually
selected desired mapping leaf classes in WeaponsA.n3 are listed in Table 1.

 Learning the Semantic Meaning of a Concept from the Web 105

The conditional probabilities obtained are given in Table 2. For space limitation,
here we only list the classes that have the highest probability instead of the complete
results over 60 leaf classes for each of the 9 classes. The first column contains classes
from WeaponsB.n3. The second and the third columns are the classes in
WeaponsA.n3 with the highest conditional probability obtained by using a whole file
as an exemplar. The last two columns are results obtained by using only sentences
containing keywords as an exemplar.

If we simply judge the mapping accuracy by looking at the class that has the
highest conditional probability, it is easy to see that when a whole text document is
used as an exemplar, the accuracy is 11% (only LIGHT-AIRCRAFT-CARRIER is
correctly mapped). However, the results are improved significantly if we use
sentences containing keywords, as exemplars. The accuracy is 56% in this case. There

Table 1. Classes and their desired mappings

Classes from WeaponsB.n3 Desired leaf class mappings
LIGHT-AIRCRAFT-CARRIER AIRCRAFT-CARRIER

APC TANK-VEHICLE

SUPER-ETENDARD-FIGHTER SUPER-ETENDARD

FIGHTER-ATTACK-PLANE SUPER-ETENDARD

PATROL-WATERCRAFT PATROL-CRAFT

PATROL-BOAT-RIVER PATROL-CRAFT

PATROL-BOAT PATROL-CRAFT

LIGHT-TANK TANK-VEHICLE

FIGHTER-PLANE SUPER-ETENDARD

Table 2. Classes with highest conditional probability

New Classes Whole file Prob
Keywords
Sentences Prob

LIGHT-AIRCRAFT-
CARRIER

AIRCRAFT-
CARRIER 0.65 AIRCRAFT-ARRIER 0.57

APC
SILKWORM-
MISSILE-MOD 0.46

SELF-PROPELLED-
RTILLERY 0.36

SUPER-ETENDARD-
FIGHTER

SILKWORM-
MISSILE-MOD 0.66

(BALLISTIC-
MISSILE) RBM 0.51

FIGHTER-ATTACK-
PLANE

SILKWORM-
MISSILE-MOD 0.83

(BALLISTIC-
MISSILE) RBM 0.38

PATROL-
WATERCRAFT

SILKWORM-
MISSILE-MOD 0.28 PATROL-CRAFT 0.52

PATROL-BOAT-RIVER
SILKWORM-
MISSILE-MOD 0.65 PATROL-CRAFT 0.54

PATROL-BOAT
SILKWORM-
MISSILE-MOD 0.51 PATROL-CRAFT 0.66

LIGHT-TANK
SILKWORM-
MISSILE-MOD 0.56 TANK-VEHICLE 0.3

FIGHTER-PLANE
AIRCRAFT-
CARRIER 0.49

(BALLISTIC-
MISSILE) RBM 0.38

106 Y. Yu and Y. Peng

are four classes, APC, FIGHTER-PLANE, FIGHTER-ATTACK-PLANE, and
SUPER-ETENDARD-FIHTER, whose desired mapping classes do not have the
highest conditional probability. We can see that by keeping only sentences containing
keywords in an exemplar, noisy information in some web pages can be filtered out,
which results in a better classification.

We further looked into those classes that did not get a correct mapping. For class
APC, its desired mapping class TANK-VEHICLE has the second highest conditional
probability (0.28). We also notice that the one with the highest conditional
probability, SELF-PROPELLED-ARTILLERY is also closely related to APC
(Armored Personnel Carrier). Text classification method and conditional probability
can tell how related two concepts are, but the fact that two concepts are closely
related does not mean that they are identical or similar semantically. This case is an
example of an interesting problem for future research. For class SUPER-
ETENDARD-FIGHTER, its desired mapping class SUPER-ETENDARD also has the
second highest conditional probability (0.21). For the other two FIGHTER classes,
the results are not good at all. We think one reason is SUPER-ETENDARD is the
only leaf node in WeaponsA.n3 that represents a plane (violation of exhaustive
assumption for categories). It is possible that it is indeed not a perfect mapping for
some plane classes from WeaponsB.n3. To test this, we added a class WARPLANE-
OTHER under the class WARPLANE in WeaponsA.n3, containing exemplars
retrieved with a search query “WARPLANE+-SUPER+-ETENDARD” and
performed the classification process again. Class FIGHTER-PLANE was mapped to
its desired WARPLANE-OTHER with the highest conditional probability of 0.41.
While class FIGHTER-ATTACK-PLANE still got a wrong mapping. This shows that
adding a complement class helps. Moreover, FIGHTER-PLANE is a super class of
the other two. The fact that a super class can be correctly mapped will make the
mapping of its sub classes easier.

4.2 Results for Living_things Ontology

To obtain further insights of this approach, we conducted the following additional
experiments using the “living_things” ontology shown in Fig.3.

1. Calculate P(MAN | HUMAN) and P(WOMAN | HUMAN), both expected to be
around 0.5.

2. Given a new, foreign class GIRL, build a model with classes ANIMAL and
PLANT as the classification categories and perform classification. If class GIRL is
mapped to class ANIMAL, then repeat this process by building a model with Class
HUMAN and CAT, and so on.

The system performed these experiments automatically with at most 500 exemplars
for each class. Extensive experiments were done with varying parameters. The typical
results are reported in Table 3 and 4 (all using sentence-based exemplars).

What is disturbing is that Class CAT has a comparatively high conditional
probability given GIRL. This was present during all the experiments we performed
for this set of ontology. One reason for this anomaly is that words like human, man,

 Learning the Semantic Meaning of a Concept from the Web 107

Table 3. Results of experiment 1

P(MAN | HUMAN) 0.62
P(WOMAN | HUMAN) 0.38

Table 4. Results of Experiment 2

P(ANIMAL | GIRL) 0.76
P(PLANT | GIRL) 0.23
P(HUMAN | GIRL) 0.70
P(CAT | GIRL) 0.30
P(MAN | GIRL) 0
P(WOMAN | GIRL) 1

woman and girl often appear in web pages associated with class CAT because cats
have such close relations with human beings (sometimes cat is even used to describe a
human). Manual inspection of the exemplars supports this reason.

The “cat” problem shows that even with the best parameters, the exemplars
obtained with our system may still be far from perfect. This problem was further
confirmed by an additional experiment in which DOG (another domesticated animal)
and PYCNOGONID (a kind of sea spider) were added into the ontology as subclasses
of ANIMAL. Most of the exemplars of GIRL went to Dog, and none to
PYCNOGONID as shown in Table 5.

Table 5. Results with additional classes

P(DOG | GIRL) 0.57
P(CAT | GIRL) 0.03
P(HUMAN | GIRL) 0.40
P(PYCNOGONID | GIRL) 0

We conjecture that, although all exemplars for CAT taken as a whole are closely
related to GIRL, it is different at the level of individual exemplars, some are close but
others are not. The CAT problem can then be solved if we can separate exemplars that
truly reflect the intended semantics of CAT from those that are not. As a first step, we
have tried to perform clustering on exemplars of each class in the hope that one of the
clusters would contain those truly relevant exemplars. We replaced Google with a
clustering search engine Clusty.com that automatically clusters search results based
on some text clustering algorithm. Then the largest cluster for each class returned by
Clusty.com is used as exemplars. Results are a lot better as shown in Table 6.

We also tried to cluster exemplars obtained by Google search with clustering
package in WEKA [15]. Taking the largest cluster does not yield good results this
time. These limited experiments indicate that clustering of exemplars is promising in
resolving the “CAT” problem, provided we find a way to identify the right clusters.

108 Y. Yu and Y. Peng

Table 6. Results by applying clustering on exemplars

P(ANIMAL | GIRL) 0.83
P(PLANT | GIRL) 0.17
P(HUMAN | GIRL) 0.92
P(CAT | GIRL) 0.08
P(WOMAN | GIRL) 0.63
P(MAN | GIRL) 0.37

5 Related Work

Many people have used text classification methods to solve the ontology mapping
problem, they include, for example, OntoMapper [9], CAIMEN [7], and GLUE [8].
Although differing in technical details, one thing in common for these methods is that
they all require the text exemplars for each concept class be given, and in their
experiments, these exemplars are all manually collected. To our knowledge, no one
has tried to automatically retrieve text exemplars from the web for this purpose.

On the other hand, some researchers in other applications do treat the WWW as a
big sampling pool. For example, [16] also uses Google search results to estimate
conditional probabilities. For example, P(MAN | HUMAN) would be calculated as
the ratio of the number of results for “man” and that for “human+man” (result
changes as the number of pages found changes). This method depends on how likely
MAN appears on web pages where HUMAN appears; while our method depends on
the similarity of pages containing MAN, pages containing HUMAN and pages
containing “NOT HUMAN”, which brings more semantic information in the contexts
and ensures that the probabilities of all the leave classes sum to 1.

6 Conclusions

We proposed to automatically retrieve exemplars from the web for text classification
based ontology mapping. We designed and implemented a fully automated system to
collect exemplars and calculate conditional probability of two concepts as an initial
similarity mapping. The tool can be very useful for ontology mapping tools and
frameworks like [7, 8, 9, 12, and 13] and other researches using such a conditional
probability [16].

Although our experiment results are mixed, they are in general encouraging and
shed lights to the insight of this approach and further work. Two factors probably are
most responsible for the less-than-ideal results. The first is the noise in the search
results as revealed by the “cat” problem. This may be because that many search
results are not really semantically relevant to the keywords, or they are relevant but
not semantically close to keywords. The second is that a search is not really a random
sampling of the web because all search engines return results according to their own
ranking algorithms. How to address these problems and how to best utilize the
imperfect exemplars in ontology mapping are the directions for future research.

 Learning the Semantic Meaning of a Concept from the Web 109

References

1. Berners-Lee T.: The Semantic Web. Scientific American, 284(5), (2001) 35-35.
2. Wiesman F., Roos N.: Domain Independent Learning of Ontology Mappings. Proc of

AAMAS (2004).
3. Ushold M., Menzel C.: Achieving Semantic Interoperability & Integration Using RDF and

OWL. http://cmenzel.org/w3c/SemanticInterop.html.
4. Reed S.L., Lenat D.: Mapping Ontologies into Cyc. Proc of AAAI (2002).
5. Niles I., Pease A.: Mapping WordNet to the SUMO Ontology, Proc of the IEEE

International Knowledge Engineering conference (2003).
6. Li J.: LOM a lexicon based ontology mapping tool. http://reliant.teknowledge.com/

DAML/I3con.pdf.
7. Lacher M., Groh G.: Facilitating the Exchange of Explicit Knowledge through Ontology

Mappings. Proc of the 14th International FLAIRS conference (2001).
8. Doan A., Madhavan J. et al: Learning to Match Ontologies on the Semantic Web. Proc.

WWW2002 (2002).
9. Sushama P., Peng Y., Finin T.: A Tool for Mapping between Two Ontologies Using

Explicit Information. AAMAS 2002 Workshop on Ontologies and Agent Systems (2002).
10. McCallum A.: Bow: A toolkit for statistical language modeling, text retrieval,

classification and clustering. http://www.cs.cmu.edu/~mccallum/bow (1996)
11. Mitchell T.: Machine Learning, McGraw Hill. (1997)
12. Ding Z., Peng Y., Pan R.: BayesOWL: Uncertainty Modeling in Semantic Web

Ontologies. Soft Computing in Ontologies and Semantic Web. Springer-Verlag, December
(2005)

13. Ding Z., Peng Y., Pan R., Yu Y.: A Bayesian Methodology towards Automatic Ontology
Mapping. Proc of AAAI C&O-2005 Workshop. (2005)

14. http://www.atl.lmco.com/projects/ontology/i3con.html.
15. http://www.cs.waikato.ac.nz/~ml/.
16. Perkowitz, M., Philipose, M. et al: Mining models of human activities from the web. In

Proceedings of WWW-04. (2004) 573–582.

	Introduction
	Background and Motivation
	System Design
	The Parser
	The Retriever
	The Processor
	The Model Builder
	The Calculator

	Experiments and Results
	Results for Weapons Ontologies
	Results for Living_things Ontology

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

