
1A Secure Infrastructure for Service Discovery and
Access in Pervasive Computing

Je�rey Underco�er, Filip Perich, Andrej Cedilnik, Lalana Kagal, and Anupam Joshi

Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County, Baltimore, MD 21250, USA

Abstract

Security is paramount to the success of pervasive computing environments. The system presented in this paper provides a commu-
nications and security infrastructure that goes far in advancing the goal of anywhere - anytime computing. Our work securely enables
clients to access and utilize services in heterogeneous networks. We provide a service registration and discovery mechanism implemented
through a hierarchy of service management. The system is built upon a simpli�ed Public Key Infrastructure that provides for authenti-
cation, non-repudiation, anti-playback, and access control. Smartcards are used as secure containers for digital certi�cates. The system
is implemented in Java and we use Extensible Markup Language as the sole medium for communications and data exchange. Currently,
we are solely dependent on a base set of access rights for our distributed trust model however, we are expanding the model to include the
delegation of rights based upon a prede�ned policy. In our proposed expansion, instead of exclusively relying on prede�ned access rights,
we have developed a
exible representation of trust information, in Prolog, that can model permissions, obligations, entitlements, and
prohibitions. In this paper, we present the implementation of our system and describe the modi�cations to the design that are required to
further enhance distributed trust. Our implementation is applicable to any distributed service infrastructure, whether the infrastructure
is wired, mobile, or ad-hoc.

I. Introduction

As computing becomes pervasive people will live in
Intelligent Space, work in "SmartOÆces", and live in
"SmartHomes". An oÆce presents an interesting set-
ting to explore the intelligent space scenario. Often it
is one of many rooms in a building of many
oors, and
the occupants may be highly mobile within this limited
environment. Intelligent Spaces provide services and re-
sources with which the user will interact through a laptop
computer, PDA, cell phone or some other computational
device using short range wireless communications such as
Bluetooth, IEEE 802.11, or Infrared.
The ubiquitous computing paradigm calls for access to

computational and computer controlled resources at any-
time from anywhere. In furtherance of the goals of ubiq-
uitous computing, "SmartOÆces", "SmartHomes", and
Intelligent Spaces have been the focus of research e�orts
on both the academic and industrial fronts. Project Cen-
taurus [9] [8], is designed to minimize the load on portable
devices and provide a media independent infrastructure
and communication protocol for the provision of services.
Designed for operation within pre-de�ned space, users
can access services registered within that same space.
Project Centaurus is responsible for maintaining a list of
available services, and executing them on behalf of any
user requesting them. Moreover, it minimizes resource
consumption on a user's device by avoiding the need to
have the services installed on each device that wishes to
use them, which is advantageous for most resource-poor
mobile Clients.
Our work, referred to as Centaurus2, extends the work

completed in Project Centaurus by deploying decentral-
ized services throughout an enterprise. Service access

is made possible through a service management hierar-
chy that utilizes strong cryptographic controls that pro-
vide for authentication, anti-replay prevention, and non-
repudiation. Additionally, Centaurus2 uses a capability
management system to enforce access control to services,
and smart-card technology to facilitate security within
the system.
Like Project Centaurus, Centaurus2 employs Commu-

nications Managers, Service Managers, Services, and Clients
(Services and Users). In Project Centaurus a grouping
of a Service Manager, Services and Users operate as an
autonomous system at any given instance, while in Cen-
taurus2 access to services from any user to any service is
made possible even though the particular user and service
may be connected to disparate Service Managers. Cen-
taurus2 accomplishes remote access to services through
a hierarchical-based service management infrastructure.
In this hierarchy, all Service Managers are connected, via
a tree-like structure with the top-level Service Manager
de�ning the root of a given domain. The primary feature
of the hierarchical con�guration of service management is
the relegation of services on the basis of domains, build-
ings,
oors, and particular rooms or areas. Addition-
ally, Centaurus2 de�nes inter-domain relationships where
a user in her \SmartOÆce" is provided with the ability
to access services in her \SmartHome".
Communication between Users and Services is performed

via the hierarchy of Service Managers and is medium in-
dependent. Addressing is executed throughout the use of
a "handle" that uniquely identi�es placement within the
hierarchy. Additionally, Centaurus2 enables inter-domain
service access through the use of a bridge. The bridge is
established between the root Service Managers of sepa-

rate domains. This bridge allows a user in their SmartOf-
�ce to reach services running in their SmartHome. Secu-
rity is paramount to the ubiquitous computing paradigm.
Accordingly, security is fundamental to Centaurus2, which
employs the Centaurus2 Certi�cate Authority and the
Centaurus2 Capability Manager. Using a simpli�ed and
lightweight Public Key Infrastructure, trust management
within Centaurus2 is distributed across all entities within
the Centaurus2 system. Centaurus2 uses smart-card tech-
nology for digital certi�cate and key storage as well as for
cryptographic functionality.
In Centaurus2 users and services are all treated equally

as Clients enabling a user device that accesses services to
also o�er its own services. For example, a mobile de-
vice used by a delivery vehicle to access route informa-
tion could also run a GPS service. Service Managers,
through which Clients connect, broker requests and are
responsible for authenticating Clients and enforcing ac-
cess control; consequently, the Client is only concerned
with a reciprocal authentication with its Service Man-
ager. Moreover, even though a user has access to a ser-
vice and the request for service has been authorized and
delivered the service is the �nal arbiter as to who may
utilize it.
The concepts we employ are applicable across the broad

spectrum of ubiquitous and pervasive computing environ-
ments because Centaurus2 provides an infrastructure for
securely reaching resources at anytime from any place ir-
respective of the underlying communications protocol.
Though this architecture solves the issue of control-

ling access to services in a "SmartSpace", it does not
accommodate users that are foreign entities, that is enti-
ties that are not known to the system in advance. Also,
access rights tend to be rather static, as clients are not
able to receive permission to access a Service to which
they are not pre-authorized. To overcome these issues we
propose the incorporation of some of our previous work
on trust management [7] into our working model. This
prior work includes the development of policies for trust
management, including this information into an entity's
certi�cate. It also includes checking the entity's certi�-
cate to verify that it has certain rights based on the policy,
and is permitted the delegation of rights to third parties.
This is di�erent from static access control lists, because
access control only works for known entities and deferring
of access rights is not possible.
This paper is organized as follows: Section II discusses

other research and technologies brie
y comparing Project
Centaurus and Centaurus2 to similar projects. Section
III details the system design and architecture. Section
IV describes our implementation, Section V discusses our
ongoing work and describes our proposed design for in-
cluding distributed trust and we conclude the paper with
Section VI, which is a brief summary of our work.

II. Related Work

Though there are several academic and commercial
projects that are aimed at realizing the SmartSpaces sce-
nario, none of them use distributed trust as a way to re-
solve the complex security issues. So, after discussing
some of the projects related to SmartSpaces, we will brie
y
describe some work done on distributed trust.

A. SmartSpaces : Related Work

Some of the projects dealing with SmartSpaces are the
joint Unisys Corporation/Orange [14] experimental house
in Hertford, England, UC Berkeley's Project Ninja [3] [4],
the University of Washington's Portolano project [2], and
Stanford's Interactive Workspaces Project [1].
As demonstrated by the Unisys/Orange project, the

concept of SmartHomes is transitioning from the purely
academic to industry oriented research. The Unisys/Orange
project is an experimental "intelligent" house that re-
sponds to voice commands to \dim the lights' or \turn
up the volume on the television". In addition to voice,
the home owner can interface with the house through
a Wireless Application Protocol (WAP) telephone, web
browser, or a Personal Digital Assistants (PDA). The
Unisys/Orange project demonstrates that as ad-hoc mo-
bile systems are developed and introduced they will be
some combination of both wired and wireless communi-
cations. Accordingly, security must also be a paramount
for success and public adoption of any system.
Another important research project is UC Berkeley's

Project Ninja [3], [4] which employs Capability Managers,
Certi�cate Authorities, and a hierarchy of Service Dis-
covery Service Servers. However, unlike Project Centau-
rus, it does not delegate state management to the Ser-
vices themselves nor does it allow the Service Manager
to serve exclusively as a cache. This approach is at a dis-
advantage because as the complexity of distributed state
management increases the fault tolerance of the system
decreases. For security and information assurance Ninja
utilizes encryption between all entities within the system.
This implies a high computational overhead on the end-
points of the communication regardless of whether the
endpoint is a PDA, cell phone, or a powerful workstation.
Centaurus2 does not make the assumption that the end
points are computationally robust and instead relies on
a simpli�ed Public Key Infrastructure (PKI). The enti-
ties in the Centaurus2 system enjoy non-repudiation, au-
thentication, and protection from replay attacks vis-�a-vis
the simpli�ed PKI while access control to services is pro-
vided by the Centaurus2 Capability Manager(s). More-
over, while Project Centaurus and Centaurus2 are pro-
tocol and communications medium independent, Ninja is
not.
The Portolano Project [2] focuses on User Interfaces,

Distributed Services, and Infrastructure. Speci�cally, the

Portolano vision of the user interface is one where the fo-
cus is away from the execution of explicit user commands,
instead making use of autonomous agents that act on
the user's behalf. Likewise, they propose that in order
to support wider applicability distributed services need
to be more openly organized into extensible horizontal
layers instead of vertical integrated monolithic services.
In Centaurus2 this extensibility is accomplished by the
ad hoc nature in which a service-Client can register with
any Service Manager within its domain making its service
available to all authorized clients regardless of location.
Stanford's InteractiveWorkspaces Project [1] which en-

deavors to provide a system for interconnecting and in-
tegrating heterogeneous COTS legacy devices and soft-
ware components. In addition, to provide interoperabil-
ity, their endpoints communicate through a mediating
infrastructure that transforms data so it will be compat-
ible from one device type to another. The concept of
data translation di�ers signi�cantly from the Centaurus
approach where XML is used as the sole format for data
exchange.
In the Centaurus project [8], the main design goal is

the development of a framework for building portals to
services using various types of mobile devices. Centaurus
provides a uniform infrastructure for access to heteroge-
neous hardware and software components. It uses a lan-
guage based on XML as the sole data exchange format
between the service requester and service provider. This
language called Centaurus Capability Markup Language
(CCML), provides an extensible and simple content de-
scription that enables the creation of a user interface.
The Centaurus Service Manager is designed to be de-

centralized where Services can dynamically join and leave
the system. A Service Requester (user of a service) can
either be an end-user or another service. This hybrid ar-
chitecture allows one service to be a composition of many
services. Figure 1, illustrates the relationship between
system components in the Centaurus model.

B. Distributed Trust : Related Work

Matt Blaze's PolicyMaker [13] is probably one of the
�rst forays into distributed trust. Though the concept
has its roots in Pretty Good Privacy (PGP) [16], Simple
Public Key Infrastructure (SPKI) [6], Simple Distributed
Security Infrastructure (SDSI) [15] and Role Based Ac-
cess Control (RBAC) [11] [12].
PGP [16] is a simple way of sending secure email using

a web of trust, without exchanging a key and without a
central authority. In PGP, a keyholder (an individual as-
sociated with a public/private key pair) learns about the
public keys of others through introductions from trusted
friends. The largest problem associated with PGP is key
distribution and management.
The Simple Public Key Infrastructure (SPKI) was the

Clients

Services

Service Managers

Communication Managers

Service Manager 1

IR Communication
Manager

Bluetooth
Communication Manager

HTTP Communication
Manager

Service Manager 2

Workstation

Lamp Service
Whiteboard

Service
Coffee Pot

ServiceRecommender
Service

Fig. 1

Centaurus System Components

�rst proposed standard for distributed trust management
[6]. This solution, though simple and elegant, includes
only a rudimentary notion of delegation, which is crucial
to the developed of distributed trust.
PolicyMaker [13] is able to interpret policies and answer

questions about access rights. Unfortunately, the devel-
opment of policy is slightly complicated and not easy for
non-programmers to use. This poses quite a problem,
as it is generally non-programmers who will de�ne the
policies.
Role Based Access Control [11] [12] is probably one of

the best known methods for access control, where enti-
ties are assigned roles where there are rights associated
with each role. Unfortunately, this is diÆcult for systems
where it is not possible to assign roles to all users and
where foreign users are common.
The above mentioned models are very powerful, how-

ever they do not meet all the requirements of trust man-
agement. Generally security systems should not only au-
thenticate users, but also allow users to delegate their
rights and beliefs to other users securely and provide a

exible mechanism for this delegation. The above sys-
tems either support only authentication ignoring dele-
gation altogether, or support delegation to some extent

without providing the
exibility needed, or do not pro-
vide suÆcient restrictions on delegation of rights.
We drew on the key points of most of the above-mentioned

schemes and designed an infrastructure that uses X.509
certi�cates and policies to enforce security. A policy con-
tains basic/axiomatic rights, rights associated with roles,
rules for delegation, and rules for checking the validity of
requests. Our system will allow an entity in the system to
delegate any right that it may have. Whether these del-
egations are honored depends on the policy. Constraints
can be added to both the actual delegation and to the
delegatee, tightening control on the rights and permis-
sions. In our model, we use a redelegatable
ag that con-
trols whether the permission can be further delegated.
We have found that these features address the main is-
sues of trust management, authentication and delegation,
successfully.

III. Design

Our system is designed to control access to services
within a SmartSpace. Centaurus2 is designed as a frame-
work so that clients (users and services) can move, attach,
detach, move and re-attach at any point within the frame-
work. Additionally, we provide a bridging mechanism so
that a user in one domain can reach a service in another
domain provided that the user has the appropriate per-
missions.
There are �ve functional components within the Cen-

taurus2 system. The Centaurus2 Certi�cate Authority is
responsible for generating x.509 version 3 digital certi�-
cates for each entity in the Centaurus2 system and for
responding to certi�cate validation queries from Service
Managers. The Centaurus2 Capability Managers main-
tains a database of the group membership of Centaurus2
entities and answer requests for group membership. Next
is the Communications Managers, which provides a com-
munication gateway between a Client device and a Ser-
vice Manager. Its sole purpose is to abstract and trans-
late communications protocols. The fourth component
is the Service Manager, which brokers requests between
registered user-Clients and service-Clients. Finally, users
and services are treated equally as Clients. Access rights
of others to a particular client entity are exclusively deter-
mined by the entity itself; and set when it registers with a
Service Manager. This equality of users and services is a
minor variation from Project Centaurus original design;
however, it allows a Client to access services while at the
same time providing some of its own services to others.

A. Centaurus2 Certi�cate Authority

The Centaurus2 Certi�cate Authority is used to pro-
duce x.509 version 3 digital certi�cates [5]. In Centaurus2
certi�cate request and issuance is ancillary to the system.
When a certi�cate request from a Centaurus2 entity is

�lled, the entity receives its requested x509 v3 certi�cate
signed by the Certi�cate Authority and the Certi�cate
Authority's self signed certi�cate, which is subsequently
used to validate other entities' certi�cates. These certi�-
cates are stored and protected on a client's smartcard.
Certi�cate generation and signing is typically a one

time occurrence for any entity within the Centaurus2 Sys-
tem. In a typical PKI the Certi�cate Authority makes
its registrant's public certi�cates available in an on-line
repository and provides an on-line Certi�cate Revocation
List (CRL) where inclusion indicates that a given certi�-
cate is, for one of many possible reasons, invalid. As
previously stated, Centaurus2 uses a simpli�ed PKI. In
Centaurus2 each entity presents its certi�cate to its Ca-
pability Manager when it registers. Rather than use a
CRL to signal a problem with an entity, the entity's en-
try in the Capability Manager is blocked, consequently
preventing all access by that entity to the Centaurus2
system. This precludes the necessity of maintaining a
CRL, which must be signed by the Certi�cate Authority
each time it is modi�ed.
A Centaurus2 Service Manager veri�es the authentic-

ity of its stored copy of the Certi�cate Authority's cer-
ti�cate by sending the Certi�cate Authority a validation
query. The Certi�cate Authority replies to the query
with Eprivatekey((verifier)). In Centaurus2 the Certi�-
cate Authority's certi�cate SHA-1 message digest is used
as the veri�er. To verify the validity of its copy of the Cer-
ti�cate Authority's certi�cate the Service Manager tests
if:

(CA's certi�cate SHA-1 message digest)

= Dpublickey(Eprivatekey((veri�er))) (1)

When the test passes it assumes that the copy of Cer-
ti�cate Authority's private key is valid and any object
signed by that key is also valid.
Our Lightweight PKI, in contrast to the traditional

PKI, does not maintain a CRL, does not transmit its
key via the network, and does not distribute user's cer-
ti�cates or public keys. Rather, the Service Manager ver-
i�es that its copy of the Certi�cate Authority's certi�cate
remains valid. This is done without transferring any keys
or certi�cates via the network. In turn the Service Man-
ager will ensure that all certi�cates that it receives from
clients have been signed by the Certi�cate Authority.

B. Centaurus2 Capability Manager

The Centaurus2 Capability Manager is responsible for
maintaining and communicating group membership(s) of
all entities in the Centaurus2 system. Entities include
Service Managers and Clients (users and services). Group
membership may be as general as \umbc.edu" (meaning
that only entities in the group umbc.edu are allowed ac-

Service Manager
mctr.umbc.edu

Service Manager
umbc.edu

Service Manager
cs.umbc.edu

Service Manager
cs.lait.umbc.edu

......
Centaurus
Capability

Manager(s)

Centaurus
Certificate
Authorrity

Certificate verification

requests/responses

Group Membership requests/
responses

Fig. 2

Service Manager, Capability Manager, and Certificate

Authority Overview

cess), more restrictive as \cs.umbc.edu", or even so granu-
lar as only the named Client \ajoshi", which implies that
only the named Client is allowed to access a particular
service.
When the Centaurus2 Capability Manager is initialized

it reads its x.509 v3 digital certi�cate and its PKCS#11
[10] wrapped private key from a secure �le and stores it
into local memory. It also reads and indexes the capa-
bility �le containing the group membership of all entities
within the system, as well as storing the time stamp of
the capability �le.
When a Service Manager's group membership request

is received, the Centaurus2 Capability Manager compares
the current time stamp on the capability �le with the
time stamp of the last �le read, if they are not equal
it re-reads the capability �le. This feature allows for a
dynamic administration, to include rights revocation, of
the capability �le.
In response to a group membership request, the Cen-

taurus2 Capability Manager sends a message containing
the subject's group memberships. The response is dig-
itally signed with the Centaurus2 Capability Manager's
private key.
Figure 2 shows a high level view of the Centaurus2 Cer-

ti�cate Authority, Centaurus2 Capability Manager(s), and
Service Managers. It should be noted that there could
be multiple Capability Managers where one Capability
Manager serves a cluster of Service Managers. In the
event of multiple Capability Managers each instance will
replicate the capability database. During initialization,
each Service Manager learns the location of its Capabil-
ity Manager from its con�guration �le and communicates
with that Capability Manager directly. At the �rst com-
munication exchange between the Service Manager and
the Capability Manager, the Service Manager requests
and validates the Capability Manager's certi�cate, which
it receives encoded in a signed CCML message.

C. Centaurus2 Service Manager

The Service Manager is responsible for processing Client
Registration/De-Registration requests, responding to reg-
istered Client requests for a listing of available services,
for brokering Subscribe/Un-Subscribe and Command re-
quests from user-Clients to service-Clients, and for send-
ing Service Updates to all subscribed users whenever the
state of a particular service is modi�ed.
Service Managers are arranged in tree-like structure

and form the core of the Centaurus2 system. Service
Managers are identi�ed by their \locations", or handles.
With the exception of Group Membership requests to the
Capability Manager and certi�cate validation requests to
the Certi�cate Authority all messages are sent and routed
through the hierarchy of Service Managers using the han-
dle to determine where to forward each message.
All Clients (users and services) rely upon the Service

Manager to which they are registered to enforce security,
access control, and to broker requests for services. Conse-
quently, each Client is only concerned with the trust rela-
tionship with its immediately connected Service Manager.
In turn, Service Managers establish trust relationships
with each other. Consequently, trust between Clients
is transitive through the Service Managers. Figure 3 il-
lustrates the relationship between a Client-User, Service
Manager, and Client-Service within the context of single
Service Manager. The Communication Manager is hid-
den in the cloud labeled \Any Medium".
When a Service Manager initializes, it reads its handle,

its parent's handle, its Capability Manager's address, the
Centaurus2 Certi�cate Authority's address, and the han-
dle of pre-selected subset of Service Managers from a con-
�guration �le. In our implementation, handles are of the
form \umbc.edu", \cs.umbc.edu", or \lait.cs.umbc.edu",
etc. Each Service Manager starts with its own digital
certi�cate and corresponding private key, and the digital
certi�cate of the Centaurus2 Certi�cate Authority. Upon
start up the following sequence of events occur:
1. Send a certi�cate veri�cation request to the Centau-
rus2 Certi�cate Authority to ascertain that the local copy
of the Certi�cate Authority's certi�cate is valid.
2. Receive a signed certi�cate veri�cation response from
the Centaurus2 Certi�cate Authority. Verify the signa-
ture of the response using the stored certi�cate of the
Centaurus2 Certi�cate Authority; since we use the certi�-
cate SHA-1 message digest as a veri�er, verify the value
of the SHA-1 message digest contained in the returned
message to that stored in the Certi�cate Authority's cer-
ti�cate for equality.
3. Send a certi�cate request to its Capability Manager.
4. Receive a certi�cate response from the Capability Man-
ager, verify that the certi�cate contained in the message
was signed by the Centaurus2 Certi�cate Authority and
also verify that the signature of the message is valid.

5. If the Service Manager is not the root Service Manager
of the domain (handle 6= parent's handle) register with
the parent Service Manager by sending a CCML registra-
tion message that contains a copy of the registering Ser-
vice Manager's digital certi�cate that has been converted
from its ANS.1 encoding to hexadecimal string. The en-
tire message is signed as shown by Equation (3), which
is also converted to hexadecimal string and inserted into
the CCML message.
6. The receiving Service Manager extracts the certi�cate,
veri�es the signature and veri�es the expression using
Equation (4) to prevent replay attacks. Here � is the
maximum round trip time of any message in the Centau-
rus2 system. When all points are successfully performed,
the receiving Service Manager registers the sending Ser-
vice Manager in its database of pending Clients and sends
a group membership request to the Capability Manager.

SHA-1(CCML message) (2)

Eprivatekey(SHA-1

(Registration Request CCML message)) (3)

T imeStamp(Registration Request) +

� �= T imeStamp(Service Manager) (4)

7. Once the group membership response is received from
the Capability Manager the Client registration is changed
from pending to registered and a digitally signed registra-
tion acknowledgment containing the parent Service Man-
ager's digital certi�cate is sent to the registrant. Note:
the Capability Manager's entry for a Service Manager's
group memberships only contains the Service Manager's
own handle.
8. Once a registration acknowledgment has been received
the registering Service Manager accepts communications
from Clients.
9. Each Client registers with any Service Manager in a
similar fashion. This process is covered in detail under
the Client subsection.
Generally in a PKI system, certi�cates are made avail-

able in an on-line repository. Consequently, when a user
needs an entity's digital certi�cate it is requested from
such a repository and assumed to be valid once it is re-
ceived and has veri�ed the certi�cate signing chain along
the entire path to the top level signature authority. In
the general PKI implementation certi�cate repositories
and CRLs have a high degree of administrative overhead.
This overhead and the accompanying network traÆc im-
posed by certi�cate acquisition and the signature veri�-
cation is mitigated in Centaurus2 by its simpli�ed PKI
framework. As previously stated, each Centaurus2 entity
possess its certi�cate and presents that certi�cate upon

Any MediumUser Service

CCML

CCML CCML

Any Medium

CCML

Service Manager

CCML

Fig. 3

Clients within the context of a single Service Manager

registration. All entity's attributes, to include the valid-
ity of its certi�cate, are validated through a single query
to the Capability Manager. In addition, the authenticity
of the presented certi�cate is veri�ed by ensuring that the
certi�cate was signed by the Certi�cate Authority.
The Service Manager maintains a database of Client

pro�les for all entities registered with it. Information
contained in the pro�le includes the Client's certi�cate (or
the certi�cate of the Client's Service Manager if the Client
did not initially register with the Service Manager), group
memberships, location (the Service Manager to which it
is immediately connected), name, and permissible access
groups.

D. Client

A client may be a provider of a service, a consumer of
a service, or a combination of the two. Examples of a
service include, but are not limited to: an interface to a
controller for lighting, a service that provides a weather
forecast, or a GPS locator. User clients simply are con-
sumers of those services. We �rst provide a synopsis of
the user/service interaction and follow with a more de-
tailed explanation.
When a Service-client registers with a Service Manager

it transmits a list of group memberships that are required
for access to the service. Although our system does not
impose location speci�c restrictions, services tend to be
statically located such as a light controller or printer at a
particular location. When a User-client enters a location
she is given an graphical user interface (GUI) displaying
all of the Service Managers that have services registered
to it to which she has access. By selecting, for example,
the service manager in the LAIT laboratory the user is
presented a list of services to which she has access and
are registered to the service manager for the LAIT lab-
oratory. Notably, services that the user does not have
access to are not displayed on the user's device.
Client registration and subsequent access to services

occurs on an ad hoc basis. All Clients must register with
a Service Manager prior to accessing any services or mak-
ing its services available. At registration, a Client will,
in addition to sending its digital certi�cate, transmit a
list of group memberships required for other Clients to
access its services. The Service Manager will store the
Client's certi�cate, list of access memberships, and the
list of group memberships (acquired from the Capability

Manager) for the Client in the Service Manager's user
pro�le database. Generally, a user-Client will send an
empty access list indicating that no other Client may be
granted access to it, whereas a service-Client will include
a list of groups where membership in one of the listed
groups is required for access to that Client's service.
The following process enumerates the sequence of events

during Client registration to a Service Manager:
1. When a Client initially registers with a Service Man-
ager, the Source Location and Destination Location �elds
of the registration message are blank. Otherwise the
Source Location will contain the name of the Client's im-
mediately connected Service Manager and the Destina-
tion Location will contain the location of the additional
Service Manager to which the Client wishes to register.
2. Additionally, during initial registration, the Client reg-
istration message will include a copy of the Client's digital
certi�cate. The initial and all subsequent registration re-
quests contains a list groups wherein membership allows
access. This message is digitally signed by the Client.
3. Upon receipt by the Service Manager, if the Source
Location and Destination Location �elds are blank the
Service Manager will follow the same sequence of steps
that a parent Service Manager follows when registering
one of its child Service Managers. If the Source Location
and Destination Location �elds are not blank the Service
Manager will verify the message, place its own digital cer-
ti�cate into the message, re-sign the message and forward
the registration message toward the destination Service
Manager.
4. When a Service Manager receives the registration mes-
sage described in the previous step, it follows the same
sequence of steps that a parent Service Manager follows
when registering one of its child Service Managers.
5. When a registration response message from a non im-
mediately connected Service Manager is received by the
Client's immediately connected Service Manager the Ser-
vice Manager will verify the distant Service Manager's
certi�cate and create a pro�le for the distant Service
Manager in its user database.
6. Included in the response to its initial registration mes-
sage, the client receives a copy of the Service Manager's
digital certi�cate. Recall that all entities in the Centau-
rus2 system receive both their requested certi�cate and a
copy of the Certi�cate Authority's certi�cate in response
to a certi�cate request. The client uses the copy of the
Certi�cate Authority's certi�cate to authenticate the cer-
ti�cate received from the Service Manager.
Once a Client has successfully registered, it is given

an interface to all services to which it has rights to and
which are also registered to the same Service Manager.
This includes an interface to all other Service Managers
that the Client's Service Manager is aware of.
Figure 4 depicts the Client located at Service Manager

Service Manager
cs.umbc.edu

Any
MediumUser Service

CCML

CCML

Any
MediumUser

CCML

CCML

CCML to Parent's Socket

Any
Medium

Service
Any

Medium
Service Manager
gavl.cs.umbc.edu

Service Manager
lait.cs.umbc.edu

CCML

Fig. 4

Multiple Service Manager registrations

Service Manager 1
cs.umbc.eduUser 2

USR1: cert,
acc. grps,
mbr. grps

Service
2

Service Manager 3
gavl.cs.umbc.edu

Service Manager 2
lait.cs.umbc.edu

UserList

SM2: cert,
acc. grps,
mbr. grps
SM3: cert,
acc. grps,
mbr. grps

SRV2: cert,
acc. grps,
mbr. grps

UserList

SM1: cert,
acc. grps,
mbr. grps

USR1: SM3's
cert, acc.
grps, mbr.

grps

USR2: cert,
acc. grps,
mbr. grps

UserList

SM2: cert,
acc. grps,
mbr. grps

SM1: cert,
acc. grps,
mbr. grps

User 1

Fig. 5

Example of Multiple Service Manager Registration

showing Service Manager UserList entries

cs.umbc.edu as also registered with the Service Manager
lait.cs.umbc.edu and using the service registered there.
Note that a Communications Manager logically resides
within the area labeled \Any Medium".
Figure 5 illustrates a scenario where: User-1 is regis-

tered with both Service Manager-3 and Service Manager-
2. Communications from User-1 to Service Manager-2
will pass through Service Manager-1, however, Service
Manager-1 will not verify those messages. The Service
Manager to which the Service is registered veri�es all
messages from a user to a Service.

E. Entity Communication and Service Discovery in Cen-
taurus2

Clients (users and services) are able to communicate
irrespective of the underlying communications medium.
Accordingly, to ensure communication through the hier-
archy of Service Managers, Centaurus2 uses handles for
addressing. For example, a User registered to the Service
Manager at LAIT.CS.UMBC.EDU wishing to subscribe
to a Service registered at MCTR.UMBC.EDU would send
the request addressed as follows:

Source name: User
Source Location: LAIT.CS.UMBC.EDU
Destination Name: Service
Destination Location: MCTR.UMBC.EDU

The CCML message (registration, subscribe, or com-
mand) will be sent to the Client's Service Manager who
in turn will re-sign it and forward the request up or down
the hierarchy of Service Managers or to a directly con-
nected Client. Forwarding is based upon comparing the
handle of the destination location to the handle of the
present location. The response will be returned in the
same manner.
As previously stated when a Client (service) registers

in Centaurus2 it transmits a list of groups where mem-
bership in those groups implies that another Client (user)
is permitted access to the service. Additionally, the Ser-
vice Manager requests a list of group memberships from
the Capability Manager to assure that the service is per-
mitted to connect to the Service Manager.
Although a user-Client is only given an interface to

services to which the user is authorized, all requests to
access Clients are re-veri�ed to ensure that the user does
possess the necessary rights. This validation for access
rights is shown on Equation (5).

Client:groupmembership\

OtherClient:accessgroups (5)

Inter-Domain Communication is the interaction be-
tween Clients, each of which fall under separate root Ser-
vice Managers. Inter-Domain communication is based
upon an agreement between the two communicating Do-
mains. When two domains agree to bridge, one root Ser-
vice Manager (SM-A) will register to the corresponding
root Service Manager (SM-B), and will exchange accept-
able access groups in its CCML registration message.
The Capability Manager for SM-A will include SM-B

in its pro�le list, which includes the requisite group mem-
berships needed for access. Consequently, SM-B will only
be visible to those users operating within the domain of
SM-A who have access rights to SM-B. When a Client un-
der SM-A with rights to some resource on SM-B registers
with the SM-A it will see SM-B, and upon registration to
SM-B it will see all of SM-B's attendant services. SM-A
will resign any messages destined for the domain rooted
at SM-B, in turn SM-B will verify the signature, resign
the message and forward it to the appropriate Service
Manager within its domain.

F. Client/Service Example

As an example, suppose that a printer Service-client
registers in the LAIT laboratory and it allows members
of the LAIT group to access it. During registration the

printer service will transmit its digital certi�cate and list
of allowable groups to the LAIT Service Manager. The
LAIT Service Manager will verify the certi�cate and cre-
ate an entry for the printer Service in its User List. Sup-
pose Bob, who is a member of the LAIT access group,
walks into the CS building and turns on his computing
device. He will register with the CS Service Manager as
previously described. Bob will be given a GUI provid-
ing an interface to all of the services registered to the CS
service manager to which he is entitled as well as to all
other Service Managers that have services registered to
them to which he has access. If Bob wants to print to
the printer located in the LAIT lab he selects the LAIT
service manager from his GUI and is shown all services
registered with the LAIT service manager to which he is
authorized. Bob will then register with the printer ser-
vice located in the LAIT lab. This scenario of multiple
service manager registrations is illustrated in �gure 4.

IV. Implementation

Our goal of instantiating security, speci�cally: authen-
tication, authorization, non-repudiation, and anti-playback,
as a primary component of Centaurus2 was heavily in
u-
enced by the desire to make security as unobtrusive as
possible. We believe we have designed a system that is
both highly secure and where security is nearly transpar-
ent to the user. We accomplished such task through the
use of following tools and mechanisms:
1. A simpli�ed Public Key Infrastructure
2. X.509 version 3 Digital Certi�cates
3. Smart Cards
4. PKCS #11 containers for private keys stored on com-
puting devices
5. Capability Matrix
The sole action required of the individual entity (i.e.,

Service Manager, Service, Centaurus2 Capability Man-
ager, or Client) to ensure secure operation is the one-time
entry of their pass phrase during system initialization
to enable the reading of their private key into memory.
Accordingly, if the entity fails to enter the correct pass
phrase any and all messages sent by that entity will be
ignored. Moreover, the entity is only provided feedback
from the system once they have been positively identi�ed
and veri�ed.

A. Simpli�ed Public Key Infrastructure and X.509 ver-
sion 3 Digital Certi�cates

Typically a Public Key Infrastructure consists of a Cer-
ti�cation Authority (CA) to include Registration Author-
ities (RA), certi�cate holders, users that validate digi-
tal signatures and their certi�cation paths from a known
public key of a trusted CA, and repositories that store
and make available certi�cates and Certi�cate Revoca-
tion Lists (CRLs).

Accordingly, our simpli�ed Public Key Infrastructure
consists of the Centaurus2 Certi�cate Authority having a
self-issued and self-signed certi�cate containing its public
key, and a certi�cate issued to each entity (Service Man-
ager, Client, and Centaurus2 Capability Manager) in the
system. That is each entity in the system is a certi�cate
holder.
Rather then implementing certi�cate repositories and

a Certi�cate Revocation List (CLR), each entity has its
own certi�cate and each Service Manager has copy of the
Certi�cate Authority's certi�cate. Upon start up, and
optionally at con�gurable intervals, a Service Manager
veri�es the Certi�cate Authority's certi�cate that it pos-
sesses. In turn this certi�cate is used to verify that each
certi�cate presented to the Service Manager has been
signed by the Certi�cate Authority. In addition, instead
of maintaining a CRL, the Capability Manager(s) has an
entry for each valid user on the system. The absence of an
entry in the Capability Manager's capability matrix for
any entity blocks that entity from any and all accesses to
the system.
Smart Cards are used as a security provider for a Client's

cryptographic functionality as well as storage for the digi-
tal certi�cate and private key. At initialization the Client
unlocks the card by entering a Card Holder Veri�cation
Value (CHV) gaining access to the card. The digital cer-
ti�cate is exported from the card and is available for pre-
sentation whenever the Client registers to a Service Man-
ager. The Client then makes an SHA-1 message digest
of CCML messages. This digest is imported to the card
where it is digitally signed using the private key, and the
signature is exported for placement into the CCML mes-
sage.
PKCS #11 describes syntax for private-key informa-

tion. Private-key information includes a private key for
some public-key algorithm and a set of attributes. The
PKCS #11 standard also describes syntax for encrypted
private keys. A password-based encryption algorithm, as
described in PKCS #5, is used to encrypt the private-
key information. The private key of Service Managers,
the Centaurus2 Capability Manager, Services and those
Clients that do not have smart cards, is stored in a PKCS
#11 container in a regular File System.

B. Client Capabilities

The Centaurus2 Capability Manager is responsible for
responding to requests for group membership from Ser-
vice Managers. Accordingly, the Capability Manager main-
tains a database of all users (including Service Managers)
and their group memberships. Group membership can be
of the form \gavl.cs.umbc.edu", \perich.net", or may be
as granular as the individual Client, i.e.: \ajoshi". Each
Service Manager determines the entity's access rights based
upon group membership and forwards requests to Clients

based on those rights. The Client trusts the Service Man-
ager to only send commands from Clients having the ap-
propriate rights. The Client, however, has ultimate ju-
risdiction on responding to those commands and may,
for some reason, choose to ignore the other Client's com-
mand. Moreover, during registration the Client sends the
Service Manager a list of groups wherein membership is
required in order to access its service.

C. Security Protocol

The Service Manager is responsible for ensuring the in-
tegrity of the Centaurus2 system. Each Service Manager
has a copy of the Centaurus2 Certi�cate Authority's cer-
ti�cate. As will be explained below, the Service Manager
to which a Service is registered is then responsible for au-
thorizing CCML messages destined to the Service. The
following describes the security protocol implemented in
Centaurus2.
Upon receiving a Client certi�cate verify the certi�cate

by ensuring that the certi�cate was digitally signed by the
Certi�cate Authority's private key. When signing a mes-
sage, compute the signature using Equation (3), convert
it to hexadecimal string and insert it into the message.
When verifying the message compare the message digest
from Equation (2) with the decrypted signature from the
Equation (3), and verify the timestamp using Equation
(4).
If it is the initial registration the registrant generates

a Registration Request that includes a copy of the reg-
istrant's digital certi�cate. The certi�cate is converted
from ANS.1 to hexadecimal string and inserted into the
registration message. The message is then signed by the
sender. Upon receipt of the Registration Request one of
the following �ve cases will hold and the Service Manager
will respond accordingly.
1. If the registration request is from a child Service Man-
ager. The parent Service Manager veri�es the certi�cate
and the message signature, and requests the group mem-
bership from the Capability Manager. Once everything
is veri�ed, it establishes a Client pro�le for the child Ser-
vice Manager. The pro�le contains the registrant's digi-
tal certi�cate, which has been converted from hexadeci-
mal to string to ANS.1 encoding, access groups, member
groups, name, and location. It then transmits a registra-
tion response message containing the registering Service
Manager's digital certi�cate. In turn the child Service
Manager follows the same steps to verify its parent.
2. If the Service Manager is both the source and destina-
tion Service Manager, then the originator of the message
is one of its immediately connected clients. The Service
Manager veri�es the certi�cate and the message's signa-
ture and requests the registrant's group membership from
the Capability Manager. Once everything is veri�ed, it
establishes a Client pro�le storing the pro�le in its user

database, and transmits a registration response message
containing its digital certi�cate.
3. If the Service Manager is the source Service Manager
but is not the destination Service Manager, this indicates
that the registering Client has already registered with its
nearest Service Manager. The source Service Manager
veri�es the digital signature of the message, places its
certi�cate into the message, re-signs the message, and
forwards it to the destination Service Manager.
4. If the Service Manager is neither the source nor the
destination Service Manager, it forwards the message to
either its parent or one of its children based upon a sub-
string match of the destination handle and its handle.
5. If the Service Manager is the destination Service Man-
ager and is not the source Service Manager, it veri�es
the certi�cate to ensure it was signed by the Certi�cate
Authority, veri�es the signature of the message, and re-
quests the registrant's group membership from the Ca-
pability Manager. Once everything is veri�ed, it adds
the registrant's pro�le to its user database, and sends
a registration response to the registrant containing its
digital certi�cate. When the registrant's Service Man-
ager receives the registration response it adds the send-
ing Service Manager to its Client database, resigns the
registration response, and forwards the response to the
Client.
Note that if the source of a message is immediately

connected to the Service Manager the Client's pro�le will
contain a copy of the Client's digital certi�cate otherwise
it will contain a copy of the Client's immediately con-
nected Service Manager. All subsequent messages (de-
registration, subscription request, command or update)
will be veri�ed using the certi�cate stored in the Client's
pro�le in the destination Service Manager's Client database.
Each Service Manager will ensure that a message for-
warded to any of its immediately connected Clients is
signed with the Service Manager's private key.

D. Operational Protocol

The following enumerates Centaurus2 message types,
the initiator, the receiver and their resultant action:
1. Registration Request From: Client-Service Manager To:
Service Manager. Contains the registrant's digital certi�-
cate and is signed by the registrant. If the registrant is
already registered, it is �rst de-registered and access to
all previously subscribed services are terminated and the
registrant is re-registered.
2. Registration Response From: Service Manager To: Client.
Signed by the sender. Transmitted once the group mem-
berships are received from the Capability Manager.
3. De-RegistrationRequest From: Client To: Service Man-
ager. Signed by sender. The senders pro�le is deleted
from the Service Manager, and all subscriptions are re-
moved from Client-services.

4. De-Registration Response From: Service Manager To:
Client. Signed by the sender, it is assumed that the des-
tination does not receive this message.
5. Group Membership Request From: Service Manager
To: Capability Manager. Sent to the Capability Man-
ager from a Service Manager requesting the group mem-
berships of some entity.
6. Group Membership Response From: Capability Man-
ager To: Service Manager. Signed by the Capability
Manager. Contains group memberships of the subject.
7. Service List Request From: Client To: Service Man-
ager. Signed by the sending user-Client requesting a list-
ing of available services.
8. Service List Response From: Service Manager To: Client
(user). Signed by the sender, informs the Client of avail-
able services registered with that Service Manager.
9. Subscription Request From: Client (user) To: Service
Manager. Signed by the sending user-Client requesting
subscription to a particular service. In addition to veri-
fying the signature the Service Manager veri�es that the
user has access rights to the requested service.
10. Subscription Response From: Service Manager To:
Client (user). If the user has access rights to the requested
service a subscription response is signed and sent to the
user.
11. Command From: Client (user) To:Client (service).
A request to some Client to change state. Signed by the
user and received by the services Service Manager where
both the signature and the user's access rights to the
service are veri�ed. Re-signed by the Service Manager
and transmitted to the Service for �nal arbitration.
12. Update From: Client (service) To: Client (user). Signed
by the Service and sent to the user via the Service Man-
ager. The Service Manager veri�es the signature, re-signs
the message and forwards it to the User. Additionally,
the Service Manager sends an update to all other users
subscribed to the Service.

E. Con�guration

Centaurus2 was implemented using Java. All Service
Managers are initialized from the same class. All clients
are subclasses of a common client class that provides call-
backs for event noti�cation and methods for triggering
events.
Within one domain there were six Service Managers

con�gured in a hierarchy approximating the laborato-
ries in computer science department at the University
of Maryland Baltimore County. A second domain was
established using a Service Manager in a SmartHome.
We had service-clients and user-clients registered to each
Service Manager in this system. Service-clients consisted
of light services with controls for power on/o�, inten-
sity, and hue, a music service with controls for selection
and volume, and a weather service that broadcast current

weather conditions.
The Centaurus2 system performed without error in this

con�guration.

V. Ongoing Work

In this section, we will describe our future system that
incorporates our augmented distributed trust model at
its core.
Every entity will have a web page that contains all

its trust information, eg. the delegations that it has re-
ceived, or certain rules that it wants to abide by, etc.
Every certi�cate contains the URL of the entity's trust
information.
Each domain follows a certain set of rules for autho-

rization, delegation, controlling access to Services, etc.
called a policy. This policy consists of authorization poli-
cies and delegation policies. Authorization policies deal
with the rules for checking the validity of requests for ac-
tions. An example of a rule for authorization would be
checking the identity certi�cate of an agent and verifying
that the agent has an axiomatic right. Delegation policies
describe rules for delegation of rights. A rule for delega-
tion would be checking that an agent has the ability to
delegate before allowing the delegation to be approved. A
policy also contains basic or axiomatic rights, and rights
associated with roles. We introduce the concept of primi-
tive or axiomatic rights, which are rights that all individ-
uals possess and that are stored in the global policy. For
example, every student has the right to access the school
library, and anyone who owns a database has the right to
delegate the right to read from/write to that database.
These are basic rights that are not often expressed, but
used implicitly. All policies are described in Prolog. A
policy can be viewed as a set of rules for a particular do-
main that de�nes what permissions a user has and what
permissions she/he can obtain.
Users of the system will be assigned roles. A role is de-

�ned as a collection of rights and duties [11] [12]. Roles
are arranged in a hierarchy, so that rights can be inher-
ited. An entity has a right if it is mentioned in the policy
or if the right has been delegated to it by another en-
tity that has the ability to delegate. Delegations gener-
ally
ow downward in the role hierarchy, and are from a
higher role to a lower role. However our framework does
not strictly adhere to role based access, and allows rights
and delegations to be assigned to individuals and groups.
This overcomes the drawbacks of static Access Control
Lists and Role Based Access Control.
The Capability Manager will be augmented by the Ac-

cess Control Agent, which is primarily responsible for
trust management in this system. On initialization, it
reads the policy and stores it in a Prolog knowledge base.
All requests are translated into Prolog, and the knowl-
edge base is queried. The policy consists of permissions

which are access rights associated with roles, and prohibi-
tions which are interpreted as negative access rights. The
policy also contains rules for delegation and role assign-
ments. A Client has the ability to access a Service if the
Client has not been prohibited from accessing the Service
by an authorized entity and if it has the pre-de�ned ac-
cess right, role based access right or if some authorized
entity has delegated this right to it. An entity can only
delegate an access right that it has the ability to dele-
gate. For example, client1 could have the ability to use
service1, but not the ability to delegate the right to access
service1 to any other client. This would be part of the
delegation rules that are contained in the policy. The Ser-
vice Manager sends the Access Control Agent a Client's
certi�cate. The Access Control Agent gets the role of the
Client and the URL of the web page containing its trust
information. It reads the trust information and validates
and veri�es this information before adding it to its knowl-
edge base. Afterwards the Access Control Agent will be
able to decide which Services the Client has the right to
access.
When a Client needs to access a Service that it does

not have the permission to access, it requests another
Client, who has the right, for the permission to access
the Service. If the latter Client does have the permis-
sion to delegate the access to the Service, the Client can
send a delegate message, signed by its own certi�cate, to
the requester. The requesting Client, adds this delegate
statement to its web page containing all its trust related
information. Then the requesting Client sends its certi�-
cate to the Service Manager. The Service Manager sends
the certi�cate to the Certi�cate Manager to be checked.
Then the Service Manager sends the certi�cate to the Ac-
cess Control Agent. The Access Control Agent reads the
role of the Client and the URL of the trust web page from
the certi�cate. It reads all the delegate statements on the
web page and validates and veri�es them. It makes sure
that the delegator has the right to delegate, then it adds
the permission for the Client to access the Service, but
sets a very short period of validity for the permission.
Once this period is over, the Access Control Agent in-
forms the Service Manager, which has to go through the
entire process of validation and veri�cation again. This
is very useful in case of revoked certi�cates, delegations
or rights. If any one entity in the delegation chain loses
the permission, then it is propagated down the chain very
quickly, until everyone appearing in the chain after the
entity loses the ability.
We are also looking at distributed belief as a way for

the Access Control Agent to garner the required trust
information. It is not always possible for a agent or entity
to know its role in advance. The policy could include rules
for belief as well. For example, the Access Control Agent
would believe that entity1 had role1 in aÆliation1, if two

registered Clients said that this was the case.

VI. Conclusion

Centaurus2 extended Project Centaurus through the
organization of a hierarchy of service management which
enabled making services available across an enterprise.
This extension was accomplished while retaining the goal
of a distributed system where users and services may at-
tach to the system at will. The process of making ser-
vices available to a broad spectrum of users necessitated
the addition of security architecture. Services, like any
resource of value, are vulnerable to exploitation and mis-
use if access to them is not adequately governed.
Centaurus2 utilized a simpli�ed public key infrastruc-

ture that minimized run time key and certi�cate admin-
istration while at the same time provided a high degree
of assurance to the process of authenticating users and
services. Additionally, the Centaurus2 Capability Man-
ager was utilized so that once a Client was authenticated
the Client's access would be limited to those services to
which the Client was entitled.
We also described the model for enhancing our dis-

tributed trust management. We are in the process of
implementing this portion of the system. The end result
of this e�ort will be an infrastructure for a ubiquitous
computing environment that incorporates delegated trust
to control access to a dynamic set of Services by an ever
evolving group of entities.

References

[1] George Candea and Armando Fox. Using dynamic mediation
to integrate cots entities in a ubiquitous computing environ-
ment. In Second International Symposium on Handheld and
Ubiquitous Computing 2000, pages 248{254, 2000.

[2] Mike Esler, Je�rey Hightower, Tom Anderson, and Gaetano
Borriello. Next century challenges: Data-centric networking
for invisible computing. In Fifth Annual ACM/IEEE Inter-
national Conference on Mobile Computing and Networking
(MobiCom-99, pages 256{262, N.Y., August 15{20 1999. ACM
Press.

[3] Ian Goldberg, Steven D. Gribble, David Wagner, and Eric A.
Brewer. The ninja jukebox. In Proceedings of the 2nd USENIX
Symposium on Internet Technologies and Systems (USITS-
99), pages 37{46, Berkeley, CA, October 11{14 1999. USENIX
Association.

[4] Steven D. Gribble et al. The Ninja architecture for robust
Internet-scale systems and services. Computer Networks (Am-
sterdam, Netherlands: 1999), 35(4):473{497, March 2001.

[5] R. Housley, W. Ford, W. Polk, and D. Solo. RFC 2459 Internet
X.509 Public Key Infrastructure Certi�cate and CRL Pro�le,
Janaury 1999.

[6] IETF. Simple public key infrastructure (spki) charter:
http://www.ietf.org/html.charters/spkicharter.html.

[7] Lalana Kagal, Tim Finin, and Yun Peng. A framework for
distributed trust management. In To appear in proceedings of
IJCAI-01 Workshop on Autonomy, Delegation and Control,
2001.

[8] Lalana Kagal, Vladimir Korolev, Sasikanth Avancha, Anupam
Joshi, Timothy Finin, and Yelena Yesha. Highly Adaptable In-
frastructure for Service Discovery and Management in Ubiq-
uitous Computing Technical Report, TR CS-01-06. In Tech-
nical Report, TR CS-01-06, Department of Computer Science

and Electrical Engineering. University of Maryland Baltimore
County, Baltimore, MD, 2001.

[9] Lalana Kagal, Vladimir Korolev, Harry Chen, Anupam Joshi,
and Timothy Finin. Project Centaurus: A Framework for
Indoor Services Mobile Services. In Proceedings of Interna-
tional Workshop on Smart Appliances and Wearable Comput-
ing IWSAWC, in the The 21st International Conference on
Distributed Computing Systems (ICDCS-21), 2001, Depart-
ment of Computer Science and Electrical Engineering. Uni-
versity of Maryland Baltimore County, Baltimore, MD, April
2001.

[10] RSA Laboratories. PKCS 11-Cryptographic Token Interface
Standard, January 1994.

[11] E. Lupu and M. Sloman. A policy based role object model,
1997.

[12] E. C. Lupu, D. A. Marriott, M. S. Sloman, and N. Yialelis. A
policy based role framework for access control, 1995.

[13] M.Blaze, J.Feigenbaum, and J.Lacy. Decentralized trust man-
agement. IEEE Proceedings of the 17th Symposium, 1996.

[14] Orange and unisys build the house that listens.
[15] Ronald L. Rivest and Butler Lampson. SDSI { A simple dis-

tributed security infrastructure. Presented at CRYPTO'96
Rumpsession, 1996.

[16] Philip R. Zimmermann. The OÆcial PGP User's Guide. MIT
Press, Cambridge, MA, USA, 1995.

