
Jackal: a Java-based Tool for Agent Development �

R. Scott Cost, Tim Finin, Yannis Labrou, Xiaocheng Luan, Yun Peng, Ian Soboro�
Laboratory for Advanced Information Technology

Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County

Baltimore, Maryland

James May�eld
Research and Technology Development Center

Johns Hopkins University Applied Physics Laboratory
Laurel, Maryland

Akram Boughannam
CIIMPLEX Project O�ce

Advanced Manufacturing Solutions Development
IBM Corporation

Charlotte, North Carolina

Abstract

Jackal is a Java-based tool for communicating with the
KQML agent communication language. Some features
which make it extremely valuable to agent develop-
ment are its conversation management facilities, 
exi-
ble, blackboard style interface and ease of integration.
Jackal has been developed in support of an investiga-
tion of the use of agents in shop 
oor information 
ow.
This paper describes Jackal at a surface and design
level, and presents an example of its use in agent con-
struction.

Introduction

Jackal is a Java package that allows applications written
in Java to communicate via the KQML (Finin, Labrou,
& May�eld 1997) agent communication language. It is
designed to be used as a `tool' by other applications,
in that it does not require that applications be modi-
�ed or extend some standard shell. Additionally, Jackal
is designed so that multiple instances of it, and there-
fore multiple agents, may be run within the same Java
Virtual Machine. Jackal:

� Facilitates the sending and receipt of KQML mes-
sages.

� Implements a conversation-based approach to dia-
logue management.

� Presents a blackboard interface to the agent.

�This work is supported in part by the Advanced Tech-
nology Program, administered by the National Institute
of Standards and Technology, under agreement number:
70NANB6H2000.

� Provides portability through Java.

� Supports the use of multiple transport protocols.

� Requires no modi�cation to existing code.

� Implements a complete scheme for agent naming and
addressing.

Jackal has been developed as part of a larger e�ort
to develop an agent infrastructure for manufacturing
information 
ow. It has been used to facilitate commu-
nication among diverse agents responsible for collecting,
processing and distributing information on a manufac-
turing shop 
oor.
In next section, we introduce the application domain

in which Jackal has been developed. This is followed by
a discussion of Jackal's features and their value to the
agent development environment. Next, we expand on
Jackal's conversation management abilities. Then, the
system's design and several key components are pre-
sented. Finally, an example agent is used to illustrate
the use of Jackal in construct communicating agents.

CIIMPLEX

With matching funds from the National Institute of
Standards and Technology, the Consortium for In-
telligent Integrated Manufacturing Planning-Execution
(CIIMPLEX), consisting of several private companies
and universities, was formed, with the goal of develop-
ing technologies for intelligent enterprise-wide integra-
tion of planning and execution for manufacturing (Chu
et al. 1996; Peng et al. 1998). CIIMPLEX adopts
as one of its key technologies the approach of intelli-



gent software agents, and develops a multi-agent system
(MAS) for enterprise integration.
One of the key objectives of CIIMPLEX is to es-

tablish a monitoring/noti�cation architecture for enter-
prise integration (Dourish & Bellotti 1992). In this ar-
chitecture, an application de�nes events in which it is
interested (e.g. changes in process rates, yield, mate-
rial due dates) and requests that agents monitor these
events. When these events occur, the responsible agents
notify the appropriate applications. A natural way to
implement the monitoring/noti�cation architecture is
to use broker agents to track and identify other agents
that can provide event monitoring services.
Within the architecture of the MAS for the CIIM-

PLEX enterprise, an Agent Name Server and Broker
Agent allow agents to be located by name and adver-
tised services, respectively. In addition, several other
types of agents are required for enterprise integration.
For example, data-mining/parameter-estimation agents
are needed to collect, aggregate, interpolate and extrap-
olate the raw transaction data of the low level (shop

oor) activities, and to make this aggregated informa-
tion available for higher level analyses by other agents.
Event monitoring agents monitor, detect, and present
abnormal events that require attention. The CIIM-
PLEX Analysis Agents evaluate disturbances to the
current planned schedule and recommend appropriate
actions to address each disturbance. Scenario Coordi-
nation Agents assist human decision making for speci�c
business scenarios by providing the relevant context, in-
cluding �ltered information, actions, and well as work-

ow charts.
All these agents speak KQML, as implemented in

Jackal, and use a subset of KIF (Genesereth 1992) that
supports Horn clause deductive inference as the content
language. The shared ontology is an agreement docu-
ment established by the application vendors and users
and other partners in the consortium. The agreement
adopts the format of the Business Object Document
de�ned by the Open Application Group.

Jackal and Agent Development
Agents which will interact with one another require
some method of communication in order to coordinate
their activities and distribute and collect information.
To this end, several agent communication languages
(e.g., KQML (Finin, Labrou, & May�eld 1997), FIPA
ACL (FIPA 1997), ARCOL (FIPA 1997), ICL (Mar-
tin, Cheyer, & Moran 1998), AgenTalk (Kuwabara,
Ishida, & Osato 1995; Kuwabara 1995), KaOS (Brad-
shaw 1996; Bradshaw et al. 1997), AOP (Shoham
1993) and MAP (Eriksson et al. 1998)), and vari-
ous software tools for them (e.g., TKQML (Cost et al.
1997), OAA (Martin, Cheyer, & Moran 1998), JAT and
JATLite (Frost 1998; Petrie 1998), Magenta (Gene-
sereth & Katchpel 1994) and AgentBase (Eriksson et
al. 1998)), have been developed. Jackal is a tool for
the use of KQML by agents written in the Java pro-
gramming language. Java is a useful language for writ-

ing agents because it is platform independent, as an
interpreted language, and has good language support
for multi-threading. Jackal bene�ts from these prop-
erties, and relies exclusively on the core Sunsoft JDK
1.1 classes. This maximizes the likelihood that Jackal-
based agents can run without modi�cation on any plat-
form that supports Java. Not only can Jackal-based
agents run on diverse or remote environments; many
may coexist within the same Java Virtual Machine.
This is exploited by transparent protocol adapters for
shared memory message passing.
Adding communication abilities to any Java program

requires no modi�cation of existing code. This is be-
cause Jackal's functionality is accessed through a class
instance, which can be shared among agent components
like a portable two-way radio. This is in contrast to sys-
tems which require that a program subclass an agent
shell, or otherwise restructure itself. With this Jackal
instance, the agent gains more than just the ability to
send and receive messages, however. Jackal's design
is based in large part on, and implements, the KQML
Naming Scheme (KNS), an evolving standard for re-
solving agent names in a hierarchically structured, dy-
namic environment. This means that the agent appli-
cation need only deal with symbolic agent names, and
may leave issues such as physical address resolution and
alias identi�cation to the Jackal infrastructure.
Two components which work together to provide the

greatest bene�t to the agent are the conversation man-
agement routines and the Distributor, a blackboard for
message distribution. The conversation system sup-
ports the use of easily interchangeable protocols for in-
teraction, which guide the behavior of the system. The
Distributor presents a 
exible, active interface for in-
ternal message retrieval by agent components. While
the Distributor optimizes access to the message 
ow, it
is the conversation system which gives it its real value;
the next section will discuss in depth the rational be-
hind the conversation-based approach.

Conversation-Based Protocols
The study of agent communication languages (ACLs)
is one of the pillars of current agent research. KQML
and the FIPA ACL are the leading candidates as stan-
dards for specifying the encoding and transfer of mes-
sages among agents. While KQML is good for message-
passing among agents, the message-passing level is not
actually a very good one to exploit directly in build-
ing a system of cooperating agents. After all, when an
agent sends a message, it has expectations about how
the recipient will respond to the message. Those expec-
tations are not encoded in the message itself; a higher-
level structure must be used to encode them. The need
for such conversation policies is increasingly recognized
by the KQML community, and has been formally rec-
ognized in the latest FIPA draft standard (FIPA 1997;
Dickenson 1997).
It is common in KQML-based systems to provide a

message handler that examines the message performa-



tive to determine what action to take in response to the
message. Such a method for handling incoming mes-
sages is adequate for very simple agents, but breaks
down as the range of interactions in which an agent
might participate increases. Missing from the tradi-
tional message-level processing is a notion of message
context.
We claim that the unit of communication between

agents should be the conversation. A conversation is a
pattern of message exchange that two (or more) agents
agree to follow in communicating with one another.
In e�ect, a conversation is a communications protocol,
albeit one that may be initiated through negotiation,
and may be short-lived relative to the way we are ac-
customed to thinking about protocols. A conversation
lends context to the sending and receipt of messages,
facilitating more meaningful interpretation. The adop-
tion of conversation-based communication carries with
it numerous advantages to the developer, including:

� There is a better �t with intuitive models of how
agents will interact than is found in message-based
communication.

� There is also a closer match to the way that network
research approaches protocols, which allows both the-
oretical and practical results from that �eld to be
applied to agent systems.

� Conversation structure is separated from the actions
to be taken by an agent engaged in the conversa-
tion. This allows the same conversation structure to
be used by more than one agent, in more than one
context. In particular, two agents can use the same
conversation structure to ensure that they will engage
in the same dialogue.

� The standard advantages of the underlying ACL ac-
crue, including language-independence and ontology-
independence.

To date, little work has been devoted to the prob-
lem of conversation speci�cation and implementation
for mediated architectures. Strides must be taken in
the following directions:

� Potential conversations must be easy to specify.

� Conversation speci�cations must be easy to reuse.

� Libraries of standard conversations should be devel-
oped.

� An ontology of conversations must be developed.

To achieve these goals, we must solve three main
problems:

1. Conversation speci�cation: How can conversations
best be described so that they are accessible both
to people and to machines?

2. Conversation sharing: How can an agent use a con-
versation speci�cation standard to describe the con-
versations in which it is willing to engage, and to
learn what conversations are supported by other
agents?

3. Conversation aggregation: How can sets of conversa-
tions be used as agent `APIs' to describe classes of
capabilities that de�ne a particular service or capa-
bility?

Conversation speci�cation

A speci�cation of a conversation that could be shared
among agents must contain several kinds of information
about the conversation and about the agents that will
use it. First, the sequence of messages must be speci-
�ed. We advocate the use of deterministic �nite-state
automata (DFAs) for this purpose; DFAs can express a
wide variety of behaviors while remaining conceptually
simple. Next, the set of roles that agents engaging in
a conversation may play must be enumerated. For ex-
ample, a conversation that allows a sensor to report an
unusual condition to all interested agents would have
two roles: sensor and broker (which would in turn be
specializations of sentinel and sentinel-consumer roles).
Most conversations will be dialogues, and will specify
just two roles; conversations with more than two roles
are perfectly acceptable though, and represent the co-
ordination of communication among several agents in
pursuit of a single common goal.
DFAs and roles dictate the syntax of a conversa-

tion, but say nothing about the conversation's seman-
tics. The ability of an agent to read a description
of a conversation, then engage in such a conversa-
tion, demands that the description specify the con-
versation's semantics. To be useful though, such a
speci�cation must not rely on a full-blown, highly ex-
pressive knowledge representation language. We be-
lieve that a simple ontology of common goals and ac-
tions, together with a way to relate entries in the on-
tology to the roles, states, and transitions of the con-
versation speci�cation, will be adequate for most pur-
poses. This approach sacri�ces expressiveness for sim-
plicity and ease of implementation. It is nonetheless
perfectly compatible with attempts to relate conversa-
tion policy to the semantics of underlying performa-
tives, as proposed for example by (Bradshaw 1996;
Bradshaw et al. 1997).
These capabilities will allow the easy speci�cation of

individual conversations. To develop systems of conver-
sations though, developers must have the ability to ex-
tend existing conversations through specialization and
composition. Specialization is the ability to create new
versions of a conversation that are more detailed than
the original version; it is akin to the idea of subclass-
ing in an object-oriented language. Composition is the
ability to combine two conversations into a new, com-
pound conversation. Development of these two capa-
bilities will entail the creation of syntax for expressing
a new conversation in terms of existing conversations,
and for linking the appropriate pieces of the component
conversations. It will also demand solution of a variety
of technical problems, such as naming con
icts, and the
merger of semantic descriptions of the conversations.



Conversation sharing

A standardized conversation language, as proposed
above, dictates how conversations will be represented;
however, it does not say how such representations are
shared among agents. While the details of how conver-
sation sharing is accomplished are more mundane than
those of conversation representation, they are never-
theless crucial to the viability of dynamic conversation-
based systems. Three questions present themselves:

� How can an agent map from the name of a conversa-
tion to the speci�cation of that conversation?

� How can one agent communicate to another the iden-
tity of the conversation it is using?

� How can an agent determine what conversations are
handled by a service provider that does not yet know
of the agent's interest?

Conversations Sets as APIs

The set of conversations in which an agent will partici-
pate de�nes an interface to that agent. Thus, standard-
ized sets of conversations can serve as abstract agent
interfaces (AAIs), in much the same way that standard-
ized sets of function calls or method invocations serve
as APIs in the traditional approach to system-building.
That is, an interface to a particular class of service can
be speci�ed by identifying a collection of one or more
conversations in which the provider of such a service
agrees to participate. Any agent that wishes to pro-
vide this class of service need only implement the ap-
propriate set of conversations. To be practical, a nam-
ing scheme will need to be developed for referring to
such sets of conversations, and one or more agents will
be needed to track the development and dissolution of
particular AAIs. In addition to a mechanism for es-
tablishing and maintaining AAIs, standard roles and
ontologies, applicable to a wide variety of applications,
will need to be created.
There has been little work on communication lan-

guages from a practitioner's point of view. If we set
aside work on network transport protocols or protocols
in distributed computing (e.g., CORBA) as being too
low-level for the purposes of intelligent agents, the re-
mainder of the relevant research may be divided into
two categories. The �rst deals with theoretical con-
structs and formalisms that address the issue of agency
in general and communication in particular, as a dimen-
sion of agent behavior (e.g., AOP (Shoham 1993)). The
second addresses agent languages and associated com-
munication languages that have evolved to some degree
to applications (e.g., TELESCRIPT (White 1995)). In
both cases, the bulk of the work on communication lan-
guages has been part of a broader project that commits
to speci�c architectures.
Agent communication languages like KQML pro-

vide a much richer set of interaction primitives (e.g.,
KQML's performatives), support a richer set of com-
munication protocols (e.g., point-to-point, brokering,

recommending, broadcasting, multicasting, etc.), work
with richer content languages (e.g., KIF), and are more
readily extensible than any of the systems described
above. However, as discussed above, KQML lacks orga-
nization at the conversation level that lends context to
the messages it expresses and transmits. Limited work
has been done on implementing conversations for soft-
ware agents, and almost none has been done on express-
ing those conversations. As early as 1986, Winograd
and Flores (Winograd & Flores 1986) used state tran-
sition diagrams to describe conversations. The COOL
system (Barbuceanu & Fox 1995) has perhaps the most
detailed current �nite state automata model to describe
agent conversations. Each arc in a COOL state transi-
tion diagram represents a message transmission, a mes-
sage receipt, or both. One consequence of this policy is
that two di�erent agents must use di�erent automata
to engage in the same conversation. We believe that a
conversation standard should clearly separate message
matching from actions to be carried out when a match
occurs; doing so will allow a single conversation speci�-
cation to be used by all participants in a conversation.
This, in turn, will allow conversation speci�cations to
describe standard services, both from the viewpoint of
the service provider, and from that of the service user.
COOL also uses an :intent slot to allow the recipient

to decide which conversation structure to use in under-
standing the message. This is a simple way to express
the semantics of the conversation. We argue below that
more general descriptions of conversation semantics will
be needed if agents are to acquire and engage in new
conversations on the 
y. The challenge will be to de-
velop a language that is general enough to express the
most important facts about a conversation, without be-
ing so general that it becomes an intellectual exercise,
or is too computationally expensive to implement.
Other conversation models that have been developed

include those of Parunak (Parunak 1996), Chauhan
(Chauhan 1997), who uses COOL as the basis for
his multi-agent development system, Kuwabara et al.
(Kuwabara, Ishida, & Osato 1995; Kuwabara 1995),
who add inheritance to conversations, Nodine and Un-
ruh (Nodine & Unruh 1997), who use conversation
speci�cations to enforce correct conversational behav-
ior by agents, Bradshaw (Bradshaw 1996), who intro-
duces the notion of a conversation suite as a collection of
commonly-used conversations known by many agents,
and Labrou (Labrou 1996), who uses de�nite clause
grammars to specify conversations. While each of these
makes contributions to our general understanding of
conversations, none show how descriptions of conver-
sations might be shared by agents and used directly by
them in implementing conversations.

De�ning common agent services via
conversations

A signi�cant impediment to the development of agent
systems is the lack of basic standard agent services that
can be easily built on top of the conversation architec-



ture. Examples of such services are: name and address
resolution; authentication and security services; broker-
age services; registration and group formation; message
tracking and logging; communication and interaction;
visualization; proxy services; auction services; work
ow
services; coordination services; and performance mon-
itoring services. Services such as these have typically
been implemented as needed in individual agent devel-
opment environments. Two such examples are an agent
name server and an intelligent broker.

Agent Name Server At �rst blush, the problem of
mapping from an agent name to information about that
agent (such as its address) seems trivial. However, solv-
ing this problem in a way that can easily scale as the
number of users and amount of data to be processed
grows is di�cult. We believe that development of a suc-
cessful symbolic agent addressing mechanism demands
at least two advances:

1. A simple naming convention to place each role an
agent might play in an organization at a unique point
in a namespace for that organization. Currently there
is no widely-accepted mechanism for universal unique
agent naming (in the way that there now is, e.g., for
Internet hosts or web documents).

2. An e�cient, scalable name service protocol for map-
ping from symbolic role names to information about
the agents that �ll those roles.

To a large extent, the desired techniques can be
modeled after existing name service techniques such
as DNS (which is widely implemented) and CORBA
(whose namespace mechanisms are only narrowly im-
plemented). Such techniques are well-studied, highly
reliable, and scalable. Agent name service will di�er
from DNS primarily in that agents will tend to appear,
disappear, and move around more frequently than do
Internet hosts. This will necessitate the development
of naming conventions that are less rigid than those
used in DNS, and algorithms for mapping from names
to agent information that do not rely on the static local
databases found in DNS.

Intelligent Broker A system that is to respond to
the demands of multiple users, with needs that vary
over time, under an ever-increasing query load must
be able to do on-the-
y matching of queries to doc-
uments and services. In an agent-based architecture,
this means that one agent must be able to dynami-
cally discover other agents based on the content of their
knowledge. It should exploit the research on conver-
sations and the symbolic agent-addressing scheme de-
scribed above, while at the same time �tting neatly into
existing brokered systems. Such systems will continue
to see a single broker where there had been a single bro-
ker all along; now, however, that broker will have the
option of coordinating many other disparate brokers of
varying capabilities.

An Overview of Jackal's Design

Jackal was designed to provide comprehensive function-
ality, while presenting a simple interface to the user.
Thus, although Jackal consists of roughly seventy dis-
tinct classes, all user interactions are channeled through
one class, hiding most details of the implementation.
Figure 1 presents the principal Jackal components,

and the basic message path through the system. We
will �rst discuss each of the components, and then, to
illustrate their interaction, trace the path of a message
through the system (that is, as it is received by Jackal,
passed on to and replied to by an agent thread, and the
reply sent back to the original sender).

Intercom

The Intercom class is the bridge between the agent ap-
plication and Jackal. It controls startup and shutdown
of Jackal, provides the application with access to in-
ternal methods, houses some common data structures,
and plays a supervisory role to the communications in-
frastructure.

Transport Interface

Jackal runs a Transport Module for each protocol it uses
for communication. Jackal 3.0 comes with a module for
TCP/IP, and users can create additional modules for
other protocols. A Transport Module is responsible for
receiving messages at some known address, and trans-
mitting messages out via a given protocol.

Message Handler

Messages received by the Switchboard must be directed
to the appropriate place in the Conversation Space; this
is the role of the Message Handler. Messages are asso-
ciated with current (logical) threads based on their ID
(the value of the `reply-with' �eld). This directs their
assignment to ongoing conversations when possible. If
no such assignment can be made, a new conversation
appropriate to the message is started.

Conversations

Based largely on the work of Labrou and Finin (Labrou
1996; Labrou & Finin 1997) regarding a semantics for
KQML, we have created protocols, which describe the
correct interactions for various performatives and sub-
sequent messages. The protocol for ask-one, for exam-
ple, speci�es among other things that a reply must be
a tell, untell, deny, sorry or error. These protocols are
`run' as independent threads for all current conversa-
tions. This allows for easy context management, while
providing constraints on language use and a framework
for low level conversation management. This is in con-
trast with earlier approaches (e.g., TKQML (Cost et
al. 1997)) which require the agent to maintain context
on their own.
The Conversation Space is a virtual entity, consisting

of the collection of conversations started by the Message



...
...

4,10

7

3,9
6

5,11

13

2
8

12

1
Intercom

Switchboard

Distributor
Message
Handler

Conversation
Space

Address
Cache

Internet

Transport
Modules

= Message Queue = Java Thread

Services

Jackal 3.0 in a Nutshell

= Message Path

14

15

Figure 1: Jackal Architecture and Message Flow

START Asked STOP
(ask-one)

(tell)

(untell)

(deny)

(error)

(sorry)

Figure 2: DFA for KQML ask-one conversation

Handler. These conversations run individual protocol
interpreters.
As of Jackal 3.0.4, conversation templates (or speci-

�cations) are completely independent from the Java li-
brary. Rather, they are speci�ed by URLs, and loaded
at runtime from some remote source. Figure 3 shows
the conversation template for a standard KQML con-
versation available from the Jackal host. This template
corresponds to the �nite state machine depicted in Fig-
ure 2.
The conversation management component o�ers a

number of signi�cant bene�ts to the agent:

� Running conversations in individual threads provides

maximum 
exibility.

� Conversations, in conjunction with the Distributor,
route messages automatically to the threads which
need them.

� Each conversation maintains a local store, which can
be accessed by the agent via a message ID, and which
serves as the conversation's context.

� Since conversations are declaratively speci�ed, they
can be loaded (remotely or locally) on demand. Our
current agents download at initialization only the
conversations they will need.

� The conversation mechanisms and the speci�cation
are almost completely independent of the content or
message language used, and so could be easily be
tuned work in a `multi-lingual' environment.

� Actions can be associated with conversation struc-
tures, enhancing their utility. While our system
supports this, the preliminary speci�cation language
does not. Extending it to include actions will require
�rst the development of an ontology enumerating ac-
tions implemented by conversation interpreters.

Distributor

The Distributor is a Linda-like (Carriero & Gelertner
April 1989) blackboard, which serves to match messages
with requests for messages. This is the sole interface
between the agent and the message tra�c. Its concise
API allows for comprehensive speci�cation of message
requests. Requesters are returned message queues, and



// Conversation Template
// Convention: Initial and accepting states all caps,
// other states initial caps,
// arc-labels lower case.
(conversation
(name kqml-ask-one)
(author "R. Scott Cost")
(date "3/4/98")
(start-state START)
(accepting-states TOLD)
(transitions
(arc (label ask-one) (from START) (to Asked) (match "(ask-one)"))
(arc (label tell) (from Asked) (to TOLD) (match "(tell)"))
(arc (label deny) (from Asked) (to TOLD) (match "(deny)"))
(arc (label untell) (from Asked) (to TOLD) (match "(untell)"))
(arc (label sorry) (from Asked) (to TOLD) (match "(sorry)"))
(arc (label error) (from Asked) (to TOLD) (match "(error)"))))

Figure 3: Conversation Template for KQML `ask-one'

receive all return tra�c through these queues. Requests
for messages are based on some combination of message,
conversation or thread ID, and syntactic form. They
also permit actions, such as removing an acquired mes-
sage from the blackboard or marking it as read only.
A priority setting determines the order or speci�city of
matching. Finally, requests can be set to persist inde�-
nitely, or terminate after a certain number of matches.

Services

A service here is any thread; this could be a Jackal
service, or threads within the agent itself. The only
thing that distinguishes among threads is the request
priority they use. System, or Jackal, threads choose
from a set of higher priorities than agent threads, but
each chooses a level within its own pool. Jackal reserves
the highest and lowest priorities for services directing
messages out of the agent and for those cleaning the
blackboard, respectively.

Message Routing

The Switchboard acts as an interface between the
Transport Modules and the rest of Jackal. It must fa-
cilitate the intake of new messages, which it gathers
from the Transport Modules, and carry out send re-
quests from the application. The latter is a fairly com-
plicated procedure, since it has multiple protocols at its
disposal. The Switchboard must formulate a plan for
the delivery of a message, with the aid of the Address
Cache, and pursue it for an unspeci�ed period of time,
without creating a bottleneck to message tra�c. In ad-
dition, it is equipped to handle the delivery of messages
with multiple recipients or `cc' �elds.

Naming and Addressing/Address Cache

In any multi-agent system, the problem of agent nam-
ing arises: how do agents refer to each other in a simple,


exible, and extensible way? If the system in question
employs a standard communication language such as
KQML, another requirement is that agents must be able
to refer to KQML-speaking agents in the outside world.
Within the development of Jackal, we propose KNS, a
naming scheme designed to support collaborating, mo-
bile KQML-speaking agents using a variety of transport
protocols. Jackal supports KNS transparently through
an intelligent address cache.
KNS is a hierarchical scheme similar in spirit to DNS.

A fully-quali�ed agent name (FQAN) is a sequence of
agent names, separated by periods. The sequence de-
scribes registrations between agents, so that the agent
preceding a period is registered with the agent following
it. An example of a FQAN is

phil.cs.http://www.umbc.edu/ans/

In this example, \phil" is an agent registered with agent
\cs", which in turn is registered with an agent that
lives at the URL http://www.umbc.edu/ans/. The �-
nal agent in a FQAN is always a URL, providing unique,
static location information for the base of an agent reg-
istration chain.
When one agent registers with another, a relation-

ship is formed between them. The registering agent
(or child) submits information to the agent being reg-
istered with (or parent) on how the child may be con-
tacted: socket ports, email addresses, or web servers
are all possible. In return, the parent becomes a repos-
itory for that information. An agent who knows how to
contact agent cs, i.e. knows a physical address for cs,
can contact phil by �rst asking cs for phil's contact
information. If an agent seeks to register with a new
parent using a name already registered with the par-
ent, the name is quali�ed by an instance number, e.g.,
phil[2].cs.http://www.umbc.edu/ans/.
Agents can register together to form teams, and can



maintain multiple identities to represent roles in the
multi-agent system. Multiple registrations for an agent
become a network of aliases for that agent; if one name
becomes inaccessible, another can be identi�ed to �ll
the gap. Moreover, since agents can maintain multiple
contact information for each name, agents can change
locations and leave forwarding arrangements for mes-
sages while they migrate. In this way, dynamic group
formation is supported.
KNS also provides a set of protocols for maintaining

an agent's identity independently of any one of its regis-
tered names. This unburdens the agent and those seek-
ing it from the need to manage dynamic sets of iden-
tities over time. For example, after a series of name
registrations and unregistrations, an agent can be lo-
cated through KNS via any one of the names it has
previously used.
The Address Cache holds agent addresses in order to

defray lookup costs. It is a multilayered cache support-
ing various levels of locking, allowing it to provide high
availability. Unsuccessful address queries trigger under-
lying KNS lookup mechanisms, while blocking access to
only one individual listing.

Message Path

Having described the various components of Jackal, we
will trace the path of a received message and the cor-
responding reply, using the numbered arcs in Figure 1
for reference.
The message is �rst received by a connection thread

within a Transport Module [1], perhaps TCP/IP, and
is processed and transferred directly to the input queue
of either a waiting or new conversation [2]. A unique
thread manages each conversation. Methods for the
initial processing of the message reside in the Message
Handler, but are called by the responsible transport
thread. The target conversation, awakened, takes the
message from its input queue [3] and tries to advance its
state machine accordingly. If accepted, the message is
entered into the Distributor [4], an internal blackboard
for message distribution. The Distributor examines the
message [5] in turn, and tries to match it with any pend-
ing requests (placed by Jackal or agent code), in order
of a speci�ed priority. Ideally, a match is found, and
the message is placed in the queue belonging to the re-
quester [6]. The message may in fact be passed to sev-
eral requesting threads. This is the point at which the
agent gains access to the message 
ow; through services
attending to the blackboard.
Once the requesting service thread picks the message

out of its queue [7], it presumably performs some ac-
tion, and may send a reply or new message; we assume
it does. The service has two options at this point. If
it does not expect a reply to the message it is sending,
the message may be sent via Intercom's send message
method [8]. Otherwise, it should be sent indirectly
through the Distributor. This is equivalent to send-
ing alone and then requesting the reply, but allows the
request to be posted �rst, eliminating possible nonde-

terminism. Either way, the message is eventually pro-
cessed through send message, which directs it into the
conversation space. The message then traces the same
path as the previous incoming message [9,10] to the
distributor. Note that every message, incoming or out-
going, passes through the conversation space and the
Distributor. The message is captured by the Switch-
board's outbound message request [11], which has a spe-
cial, reserved priority. The Switchboard removes new
messages from its queue and assigns them each indi-
vidual send threads [12]; this results in some overhead,
but allows sends to proceed concurrently, avoiding bot-
tlenecks due to wide variation in delivery times. The
send thread uses the send method of the appropriate
transport module to transmit the message.

Using Jackal: An Example
In this section, we will examine an agent that uses
Jackal. This agent implements a simpli�ed, working
broker, and functions within a suite of Jackal demo
agents that includes an agent name server, remote sen-
sor agents and a client. The code for this agent is quite
sparse, illustrating the ease with which agents can be
constructed using Jackal.
Jackal agents typically consist of one main execution

thread and a number of service threads. The broker's
main thread is depicted in Figure 4.

package Agents.Weather;
import java.lang.*;
import java.util.Vector;
import J3.*;

class broker extends Thread {
Intercom j3;
Vector ad = new Vector();

public static void
main (String[] argv) { new broker(); }

broker() { start(); }

public void run() {
j3 = new Intercom("broker",
"ftp://cs.umbc.edu/common.kqmlrc");

j3.stderr("Agent broker started.");
BrokerServ brokerServ = new BrokerServ();
AdvertServ advertServ = new AdvertServ();

}

// Advertise service goes here.
// Broker service goes here.

}

Figure 4: Broker Agent

This agent has a `main' method so that it can be
started directly via the command `java J3.broker'. Al-



ternatively, it could be instantiated by another agent;
an important option if several agents are running within
the same virtual machine. As an aid to development,
each instance of Jackal spawns an individual console,
which it uses for standard output. The console can also
be used to execute methods in the API directly, includ-
ing spawning agents, via a simple command interface.
The �rst parameter to the Intercom constructor is

the agent's initial name. As outlined above, this will be
augmented at registration into a fully quali�ed name.
The second parameter speci�es the agent's resource �le,
which contains information needed for basic operation.
Once Intercom is instantiated, Jackal performs basic
startup operations, such as starting listener threads
and registering with this agent's primary Agent Name
Server. Note the use of the console in the next step.
Finally, the broker starts the threads that will per-

form its basic services; accepting advertisements (Fig-
ure 5), and matching stored advertisements with in-
coming requests (Figure 6). For clarity, these threads
have been separated out from the main broker code.

class AdvertServ extends Thread {
FIFO queue;

public AdvertServ() { start(); }

public void run() {
Message msg, reply;
queue = j3.attend(null,"(advertise)",
null,8,false,true,0,true,false);

while ((msg = (Message)
queue.dequeue()) != null) {
ad.addElement(msg);
try {
reply = new
Message("(tell :content true)");

reply.put(":language","ascii");
reply.put(":receiver",
msg.get(":sender"));

reply.put(":in-reply-to",
msg.get(":reply-with"));

j3.send_message(reply);
} catch (MalformedMessageX e) {
System.err.println(e);

}
}

}
}

Figure 5: Broker Agent: Advertise Thread

The advertisement service illustrates the basic Jackal
service construction. Its �rst step is to place a perma-
nent request with the Distributor for all incoming mes-
sages with the performative `advertise'. All matches
should be left for other threads, but with the write per-
mission removed. It is returned a queue from which to

fetch results. The thread then enters a cycle in which
it waits (blocks) for the next message, processes it, and
repeats. Our simple service merely stores the incoming
message, and replies that it has been noted. Threads
have the option to poll the queues, rather than block.

class BrokerServ extends Thread {
FIFO queue;

public BrokerServ() {
start();

}

public void run() {
Message msg, reply = null, a, b;
int i;
queue = j3.attend(null,"(broker-one)",
null,8,false,true,0,true,false);

while ((msg = (Message)
queue.dequeue()) != null) {
try {
for (i = 0; i < ad.size(); i++) {
a = (Message) ad.elementAt(i);
b = (Message) a.get("content");
if (b.equals(msg)) break;

}
if (i == ad.size()) reply = new
Message("(sorry :content \"\")");

else reply = new
Message("(tell :content "+a+")");

reply.put(":language","ascii");
reply.put(":receiver",
msg.get(":sender"));

reply.put(":in-reply-to",
msg.get(":reply-with"));

j3.send_message(reply);
} catch (MalformedMessageX e) {
System.err.println(e);

}
}

}
}

Figure 6: Broker Agent: Broker Thread

The broker service is only slightly more complicated,
but has the same basic structure. Each message re-
ceived is compared to (the contents of) each existing
advertisement, using the comparison method associated
with the message. Where possible, this will recursively
make use of the comparison method for the given con-
tent language. If a match is found, it is forwarded to
the requesting agent. Otherwise, a `sorry' is sent.

Summary
Jackal provides developers with an easy to use facility
for KQML, supporting the use of conversation based
protocols. In addition, it provides basic services such



as hidden address resolution. These features make it a
valuable asset in developing agents for manufacturing
information 
ow.

References

Barbuceanu, M., and Fox, M. S. 1995. COOL: A
language for describing coordination in multiagent sys-
tems. In Lesser, V., ed., Proceedings of the First Inter-
national Conference on Multi{Agent Systems, 17{25.
San Francisco, CA: MIT Press.

Bradshaw, J. M.; Dut�eld, S.; Benoit, P.; and Woolley,
J. D. 1997. KAoS: Toward an industrial-strength open
agent architecture. In Bradshaw, J. M., ed., Software
Agents. AAAI/MIT Press.

Bradshaw, J. M. 1996. KAoS: An open agent architec-
ture supporting reuse, interoperability, and extensibil-
ity. In Tenth Knowledge Acquisition for Knowledge-
Based Systems Workshop.

Carriero, N., and Gelertner, D. April, 1989. Linda in
context. CACM 32(4):444{458.

Chauhan, D. 1997. JAFMAS: A java-based agent
framework for multiagent systems development and
implementation. Master's thesis, ECECS Department,
University of Cincinnati.

Chu, B.; ans R. Wilhelm, W. J. T.; Hegedus, M.;
Fesko, J.; Finin, T.; Peng, Y.; Jones, C.; Long, J.;
Matthes, M.; May�eld, J.; Shimp, J.; and Su, S.
1996. Integrating manufacturing softwares for intel-
ligent planning-execution: A CIIMPLEX perspective.
In Plug and Play Software for Agile Manufacturing,
SPIE International Symposium of Intelligent Systems
and Advanced Manufacturing.

Cost, R. S.; Soboro�, I.; Lakhani, J.; Finin, T.; and
Miller, E. 1997. TKQML: A scripting tool for building
agents. In Wooldridge, M.; Singh, M.; and Rao, A.,
eds., Intelligent Agents Volume IV { Proceedings of the
1997 Workshop on Agent Theories, Architectures and
Languages, volume 1365 of LNAI. Berlin: Springer-
Verlag. 336{340.

Dickenson, I. 1997. Agent standards. Technical report,
Foundation for Intelligent Physical Agents.

Dourish, P., and Bellotti, V. 1992. Awareness and co-
ordination in shared workspaces. In Proceedings of the
ACM 1992 Conference on Computer-Supported Coop-
erative Work: Sharing Perspectives (CSCW '92), 107{
114.

Eriksson, J.; Espinoza, F.; Finne, N.; Holmgren, F.;
Janson, S.; Kaltea, N.; and Olsson, O. 1998. An
internet software platform based on SICStus prolog.
Position Paper, Swedish Institue of Computer Science.

Finin, T.; Labrou, Y.; and May�eld, J. 1997. Soft-
ware Agents. MIT Press. chapter KQML as an agent
communication language.

FIPA. 1997. FIPA 97 speci�cation part 2: Agent
communication language. Technical report, FIPA -
Foundation for Intelligent Physical Agents.

Frost, H. R. 1998. Java Agent Template. Online
Documentation:
http://cdr.stanford.edu/ABE/JavaAgent.html.

Genesereth, M. R., and Katchpel, S. P. 1994. Software
agents. CACM 37(7):48{53, 147.

Genesereth, M. R. 1992. Knowledge interchange for-
mat version 3.0 reference manual. Technical Report
Logic Group Report Logic-92-1, Stanford University.

Kuwabara, K.; Ishida, T.; and Osato, N. 1995.
AgenTalk: Describing multiagent coordination proto-
cols with inheritance. In Proceedings of the 7th IEEE
International Conference on Tools with Arti�cial In-
telligence (ICTAI 95), 460{465.

Kuwabara, K. 1995. AgenTalk: Coordination protocol
description for multi-agent systems. In Proceedings
of the First International Conference on Multi- Agent
Systems (ICMAS 95). AAAI/MIT Press.

Labrou, Y., and Finin, T. 1997. Semantics and con-
versations for an agent communication language. In
Proceedings of the Fifteenth International Joint Con-
ference on Arti�cial Intelligence (IJCAI-97). Morgan
Kaufman.

Labrou, Y. 1996. Semantics for an Agent Commu-
nication Language. Ph.D. Dissertation, University of
Maryland Baltimore County.

Martin, D. L.; Cheyer, A. J.; and Moran, D. B. 1998.
Building distributed software systems with open agent
architecture. In Proceedings of the Third Interna-
tions Conference on Practical Applications of Intelli-
gent Agents.

Nodine, M. H., and Unruh, A. 1997. Facilitating open
communication in agent systems: the InfoSleuth in-
frastructure. In Singh, M.; Rao, A.; and Woolridge,
M., eds., Proceedings of the 14th Annual Workshop on
Agent Theories, Architectures and Languages (ATAL-
97).

Parunak, H. V. D. 1996. Visualizing agent conversa-
tions: Using enhanced dooley graphs for agent design
and analysis. In Proceedings of the Second Interna-
tional Conference on Multi- Agent Systems (ICMAS
96).

Peng, Y.; Finin, T.; Labrou, Y.; Chu, B.; Long, J.;
Tolone, W. J.; and Boughannam, A. 1998. A multi-
agent system for enterprise integration. International
Journal of Agile Manufacturing.

Petrie, C. 1998. JATLite. Online Documentation:
http://java.stanford.edu/.

Shoham, Y. 1993. Agent{oriented programming. Ar-
ti�cial Intelligence 60:51{92.

White, J. 1995. Mobile agents. In Bradshaw, J. M.,
ed., Software Agents. MIT Press.

Winograd, T., and Flores, F. 1986. Understanding
Computers and Cognition. Addison-Wesley.


