Context-Aware System to Create Electronic

Medical Encounter Records

by
Sheetal K. Agarwal

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of

Master of Science
2006



ABSTRACT

Title of Thesis: A Context-Aware System to Create Electronic Medical Encounter
Records

Author: Sheetal Agarwal, Master of Science, 2006

Thesis directed by: Dr. Anupam Joshi, Assistant Professor

Department of Computer Science and
Electrical Engineering

An Electronic Health Record (EHR) is a medical record or any other
information relating to the past, present or future physical and mental
health, or condition of a patient which resides in computers for the primary

purpose of providing health care and health-related services.

EHRs improve clinical quality by providing ready access to all relevant clinical infor-
mation at the time of the patient encounter or phone call, receipt of clinical alerts
at the point of care, the ability to easily monitor and analyze patient outcomes.
The EHR softwares currently available in the markets are very expensive and require
extensive training before physicians can use these systems. Also all these systems
require the physician or nurse to enter the data in the record manually.

We have developed a smart context-aware system to semi-automatically build an
EHR that records the medically significant events of a surgery. The system analyzes
the data streams obtained from various sensors deployed in an Operating Room (OR)

in real-time to detect events. We refer to this electronic record as the Electronic



Medical Encounter Record (EMR). This record then becomes a part of the patients
medical history. This record will provide the next physician an accurate account of
the medical treatment given to the patient. Sensors in the OR include the blood
oxygen monitor, the heart rate monitor etc.

Data from these sensor streams is analyzed using a stream processing engine to
extract the low level events, such as high blood pressure etc, occurring during the
surgery. These events are correlated using techniques such as multi-variable analy-
sis, trend based analysis etc to identify events that become a part of the electronic
medical record. Radio Frequency Identification (RFID) is used to acquire contextual
information such as presence of medical staff in the operating room and identification

of medicines used during the surgery.
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Chapter 1

Introduction

1.1 Background

The process of performing a surgery involves several important steps that need
to be performed before and after the surgery takes place. The perioperative process

can be divided into three stages
e Pre-operative process
e Intra-operative process
e Post-operative process

During the perioperative process details such as patients vital signs, medicines
administered, complications if any, supplies and tools used etc are documented by
more than one member of the nursing staff. The time spent for preparing for the
surgery and documenting the process accounts for a large part of the total time
required to perform a surgery.

The data recorded in the perioperative process become a part of the patients
medical history and is used by physicians to give further treatment to the patient.
Data collection in the operating room is complicated because multiple providers (eg,

surgeons, anesthesia care providers, nurses) record data for a single care event (ie,
1
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the patient’s surgery). Traditionally, many health care facilities use three separate

records with similar or duplicate data collected by different providers throughout the
intraoperative phase of care. Information collected by one provider is not readily
available to another; thus, duplication or differences occur in documentation, data
gathering can be cumbersome, and many of the same data elements exist on all
records. Figures 1, 2, 3 and 4 in the Appendix show the records used in the
hospitals to record the details of the perioperative process.

Each of the providers during the surgery need an detailed information about the
patients health status to perform their part in the surgical process. For example,
the anesthesiologist needs to be aware of any patient allergies before the anesthetic
is administered. Experienced nurses are able to assess the patients’ condition ac-
curately and provide appropriate treatment, sometimes without documenting these
procedures. It is essential to capture all the treatment given to the patient for the
surgery to proceed efficiently.

Errors in medical documentation cost billions of dollars to the health industry
every year [7]. Inaccurate records put not only the patient but also the healthcare
provider at risk [5] [27]. An Electronic Medical Record (EMR), has the potential
to standardize the documentation in the perioperative environment, minimize data
redundancy and provide accurate details of the ongoing surgery [2] [14]. Formally,
an EMR is a medical record or any other information relating to the past, present or
future physical and mental health, or condition of a patient which resides in computers
which process this data to deliver more efficient health-related services. EMR records

4

include “ patient demographics, progress notes, problems, medications, and vital

signs, past medical history, immunizations, laboratory data and radiology reports.””
Data in this form can be easily shared with other physicians and is accessible

at the point of care. Clinical quality is improved by having more ready access to
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all relevant clinical information at the time of the patient encounter or phone call,

receipt of clinical alerts at the point of care (e.g., being reminded of a drug interaction
or allergy as you're writing a prescription), the ability to easily monitor and analyze
patient outcomes. The EMR is an essential part of the systems like the Traumapod
[10] where surgeries are performed by remotely controlled robots and no humans are
involved in the process. Only the EMR can provide details of the events occurring
during the surgery.

Several hospitals and healthcare providers have started using systems that allow
then to document patient care details in an electronic format. Systems like [36]
InCare, [38] PAAT , [15] BioStream monitor the patients health in post-operative
phase or in telecare environments. They make use of various algorithms to detect
alarming conditions and alert the physician appropriately. Though the individual
components of our system such as the algorithms to analyze physiological data, stream
processing of data have been studied in previous systems, to the best of our knowledge
no system has yet been developed to create an EMR in the perioperative environment.
In this thesis we present a smart system that monitors and analyzes the data streams
from various medical equipments and create an Electronic Medical Encounter Record,
according to the inferences made by analyzing the data streams, in a perioperative

environment.

1.2 Problem Statement

The operating room has several medical devices that provide information about
the patients status. In addition to these devices, we can deploy sensors in the OR
that can provide us with better view of the activities occurring in the operating room
(OR) during a surgery. We define a medically significant event as any event that

affects or is a part of the surgical procedure. Many systems [36] [28] [35] have
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been built that monitor physiological parameters of a patient and signal alarming

conditions. These alarms are used as cues by healthcare providers as it is not possible
to maintain a constant vigil over the patients’ health status. The alarms are in the
form of an audio alert or a message displayed on the computer screen that can be
seen by the healthcare provider.

Most of these alarms are low level alarms such as tachycardia, apnea or any other
abnormal pathological state. Such low level alarms hardly provide any detail about
the patients condition.

To provide more meaningful information the alarms or medical events need to
be interpreted at a higher level and documented. In addition to physiological data
we can make use of data streams from sensors that can be deployed in an operating
room to capture additional events such as tools and medicines used and identities of
the members of the clinical staff. In our research we use the Radio Frequency Identi-
fication (RFID) system to detect medical supplies, tools and the staff. We developed
a system that analyzes the data streams from various sensors in the operating room
to identify medically significant events and create an Electronic Medical Encounter

Record at the end of the surgery.

1.3 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2 we will describe the
system architecture and the algorithms used to detect events in the operating room.
We discuss the techniques used to analyze physiological and RFID data streams.
Chapter 3 provides details of the RFID system deployed and its use in identifying
events. It describes the features of RFID and its use and limitation in the healthcare
environment. We present experimental results in Chapter 4 followed by related work

in Chapter 5. Chapter 6 present conclusions of the thesis study, ongoing research and



ideas for future work.



Chapter 2

Context-Aware Rule-Based System to Detect

Medical Events

In this chapter we describe a context-aware system used to detect low events in

the operating room and algorithms to correlate these low level events.

2.1 Motivation

An operating room can be thought of a smart space where we have several sen-
sors collecting information about the patients state. Typically during the surgery, the
nursing staff monitor these data signals to keep track of the patients condition during
the process and take appropriate actions. Interpreting these signals and forming an
accurate hypothesis about the patients condition requires years of experience. The
patients condition is subject to numerous factors that must be taken into account
before making a decision about the patients state. Automating the process of clinical
documentation poses significant challenges. The physiological data along with RFID
data streams collected from sensors can help us infer the medically significant events
that occur during the surgery. For example, increasing heart rate with decreasing
blood pressure indicates loss of body fluids. However, just analyzing physiological
data cannot capture all events. For example, assessment of physical characteristics

6



7
such as dilation of pupils cannot be detected from the physiological data. However,

we can infer occurrence of several events by monitoring these data streams. Context-
aware applications typically execute in an environment that is changing dynamically
and the execution of the computation adapts according to the changes. In a peri-
operative environment the context includes the surgical staff present in the room,
the surgery being performed, the medical supplies used, patients medical history and
physiological data. The electronic medical encounter record can be made more de-
tailed by considering the context of the surgery. Previous work [36] [28] [35] [26]
has focused on identifying alarming conditions by analyzing physiological data from
patient monitors. Some algorithms adapt to an individual patient by detecting pat-
terns in physiological data over a period of time. None of the current algorithms to
detect alarming conditions consider the patients medical history or the knowledge of
medications used during the surgery. With a context aware system we can capture a
detailed record of the events occurring during the surgery and also reduce the number

of false events signaled.

2.2 System Architecture

Our system is divided into three major functional components: Data acquisition,

Low Level Data Processing, Database and Data Analysis module.

2.2.1 Data Acquisition

For our research, we assume that our system has noise free data available in the
digital form from the medical sensors. Our focus is on data analysis and we leave the

problem of data acquisition methods for experts [36] [18] [20].
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Fic. 2.1. System Architecture

2.2.2 Stream Processing Engine

Analyzing continuous, high-volume data feeds poses a special challenge for appli-
cations as varied as automated financial-market trading, security-incident detection
and weather forecasting. All these applications use analytically discovered patterns
to generate predictions, yet the value of these predictions is degraded by long pro-
cessing times. Most of the systems developed to analyze medical data use simple
methods, where data is buffered for a short period of time and then trends such as
increasing, decreasing etc are established based on rate of change. Streaming data
arrives when it’s ready, irregularly and unpredictably. While point-in-time values
matter, the data may contain important patterns that can be discerned only by look-
ing at ”time windows” rather than points and only by correlating data from multiple
sources. Stream processors allow us to specify advanced queries that join/filter mul-

tiple data streams. We used the stream-processing engine developed at University of



Berkeley, TelegraphCQ [17].

In an operating room we get streams of sensor data from the various sensors
deployed. The data includes physiological signals and signals from other pervasive
devices such as RFID tags, Bluetooth devices etc. Correlating data from these data
sources can help us build a clinical context and capture the significant events occurring
during the surgery.

Data analysis is done in a hierarchical fashion. At the lowest level we have the
data sources, which stream data to the stream-processing engine. The data sources
are software modules that emulate the sensors. We assume that the data is error free
and noise free. As the data arrives at the stream-processing engine, the stored queries
are evaluated and the results are sent to the trend analyzer. The trend analyzer has

different modules to process results of queries on different data streams.

Trand Analyzer

/P from
Stream

processor

Fic. 2.2. Trend Analyzer

The results from the stream processor are streamed to a data switch, which in
turn sends the results to the appropriate processing module. Each of the physiological

data processing modules establishes trends in the physiological data.
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2.2.3 Event Detection

Previous work [19] [22] [24] on monitoring a patients condition based on
physiological data shows that it is a non-trivial task and has a lot of uncertainty in it.
Intelligent patient monitoring algorithms have been developed using machine learning
techniques.

Sukuvara et al [36] developed a system InCare that would identify specific condi-
tions in post-cardiac patients. Data was collected and analyzed by a signal processor
that interfaced with beside monitors. The rate of change of physiological values was
used to match against pathological patterns to identify events. Though the system
was fairly accurate it did not take into account any other information besides the
trends in the physiological data. The system was implemented using technologies
that are now obsolete. Now we have sophisticated systems that can handle large
amounts of data and have immense computation power.

Krol et al [26] designed algorithms that to detect critical conditions during
anesthesia. Zhang [38] created a system that simultaneously collects physiological
data and clinical annotations at the bedside, and to develop alarm algorithms in real
time based on patient-specific data collected while using this system. The system
requires the nursing staff to enter the clinical annotation for each alarm signaled.

Bardram et al [16] developed a prototype context-aware system for a hospital
environment. This system consists of a context-aware hospital bed, context-aware pill
container and a context-aware electronic patient record. These systems make use of
RFID sensors and touch sensors to detect the location of the nurse, the pill container
and the patient. Little has been done towards detecting events in the perioperative

environment and creating electronic documentation.
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2.2.3.1 Classification of Events

Events are classified into two categories:
e Low-level Events

e High-level Events

2.2.3.2 Low-Level Events

Event detected by executing simple queries on the sensor data streams are low-
level events. Abmnormal values for a physiological parameter, detection of an RFID
tag etc are example of low-level events. These events do not always signal a medically
significant event. Correlating these events in the context of the environment helps us
determine the significance of their occurrence. Analysis of physiological data at the
low level involves determining the rate of change of data and the range to which the

value belongs.

2.2.3.3 Detecting Low-Level Physiological Events

Changes in physiological data takes place gradually. Therefore using absolute
thresholds to determine the range or rate of change is inefficient and leads to signaling
false events. For the boundary conditions it is difficult to determine whether the value
is normal or not. To capture this uncertainty in modeling data we make use of Fuzzy
Set theory. In the current research we use the uncertainty concept to classify the rate
of change and the range of the data measured only.

According to fuzzy set theory, a fuzzy concept like normal heart rate is repre-
sented by a membership function. This function can have a value between 0 and 1.
A membership value of 1 (75 bpm) implies that the value is normal whereas value

of 0 (30 bpm) implies that the the value is not normal. For values, between 30-70
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bpm, yields a membership function value between 0 and 1 which denotes the degree

to which the value is normal. Multiple fuzzy sets can be defined for a range of values.
Some values belong to multiple sets with a varying degree of membership. For each

physiological variable, we define the following fuzzy parameters:

¢ Rate of Change
The rate of change of data is determined by comparing consecutive data val-
ues. The stream processor aggregates data over a time window and then sends
the average values to the trend analyzer. Thus comparing consecutive aver-
age values gives us a good estimate of the rate of change of values. Since it
is a fuzzy concept its we can represent the rate of change in the following lin-

” N 7N

guistic terms: ”Slight increase”, ” constant increase”, ”abrupt increase”, ”slight

decrease”, ”constant decrease” or "abrupt decrease”.

e Range of values
For each variable, we set limits for the range of normal, high and low values.
Based on these limits we determine the range to which a data value belongs.
The limits are patient dependent and are set when the application is initialized.
This is discussed in more detail in the next section. The value of the parameter

can be: "Very low”,” Low”,” Normal”,”High” or ”Very high”.

2.2.3.4 Detecting Low Level RFID Events

Figure 2.3 shows the components of the RFID system. The software module
interfacing with the reader, constantly polls the reader for the tags detected and
streams the Electronic Product Codes (EPC) of the tags detected to the stream-
processing engine. The stored queries in the engine are evaluated every time data
is pushed to the engine and the results of the query as then pushed to the RFID

stream analyzer. An RFID tag can be associated with either medical staff or the
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medical supplies. The RFID stream analyzer makes this association and establishes

the presence or absence of a tag in the operating room.

Anlenna

Tags
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ame selected
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Fic. 2.3. RFID System

2.2.3.5 High-Level Events

Analyzing the physiological data streams in isolation may lead to detection of
several false events. Patterns occurring in physiological data are specific to each
patient and depend on the current and past medical history. For example, a patient
with asthma will have high respiratory rate at the onset of the surgery as opposed to
the patient with no such condition.

Medicines administered during the surgery may produce drastic changes in cer-
tain physiological parameters. These changes are a normal response to the medicine
but may be interpreted as an abnormal condition when the algorithm as no knowl-
edge of the medicines used. Correlating low-level events is the key to determine
medically significant events occurring in the operating room. We make use of the
following techniques to correlate and identify high-level events in the perioperative

environment.
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Table 2.1. Commonly Monitored Physiological Parameters

Name Normal Range Conditions
Systolic blood pressure 90-110 Hypertension, Hypotension
Diastolic blood pressure 70-80 Hypertension, Hypotension
Respiratory Rate 8-16 breaths/min | Tachypnea, Respiratory Arrest
Blood Temperature 37 Hypothermia
Oxygen Saturation 98-99 Hypoxia

2.2.3.6 Multi-Variable Analysis

A patients physiology consists of several parameters. Table 2.1 lists most fre-
quently monitored parameters along with the range of values for healthy patients and
some conditions associated with each parameter. Abnormal readings for a physiolog-
ical parameter can signal low-level events like hypothermia, hypoxia etc.

Observing these events do not help us infer the goings on in the surgery or what
stage the surgery is in. Thus these conditions do not always signify an alarming
condition or a significant event. However, simultaneous analysis of these parameters
can help us identify more meaningful events.

Example 1: Detecting Hypovolemia
Tachycardia with increasing heart rate and hypotension with decreasing blood pres-

sure may signify loss of excess fluids.

If HR>90 and Hr Rat eOf Change = I ncreasing
If SBP <90 and DBP <70 and BpRat eO Change = Decr easi ng

Then Event (Hypovolem a - Excess Loss of fluids)

In order to detect events we need to determine the set of parameters that need to
be monitored. Not every parameter needs to be monitored for each event. Interviews

of clinicians and literature review [12] [23] helped us identify the parameters to be
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monitored for certain conditions. Multi-variable analysis alone is not sufficient to

identify events with accuracy. We also need to consider the surgical context before

we can signal an event.

2.2.3.7 Context of Surgery

Several parameters together determine the context for the surgery being per-

formed. The surgical context includes the following:
e The surgical staff present
e The patients pre-operative assessment and his medical history
e The medicines used during the surgery

The patients medical history includes details such as known allergies, past med-
ications used, known diseases or medical conditions, laboratory reports, radiology
reports etc. Medical history information can be use effectively to detect events. For
example:

Example 2: Detecting Tachypnea
From Table 2.1 we know that normal range of value for respiratory rate is 8-16

breaths/min. Therefore a rule such as:

If RR <8 then

Event Tachypnea

However, if the patient has a history of asthma, he or she can have a normal
respiratory rate of 20-25 breaths/min. Thus making use of patients medical history

can help reduce signaling of false events.
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2.2.3.8 Effect of Medicines

Medicines can have a significant effect on the patients physiological output. How-
ever, the effect of a medicine is not always observable as a change in physiological
data. Therefore, given that a medicine was administered we associate this information
with the change in physiology but not vice versa i.e by observing the changes in the
physiology we cannot determine whether a medicine was administered. Associating

the change in physiology with a medication is tricky and depends on the following:

e The time taken for the medicine to show its effects. Some medicines have an

immediate effect while others may take anywhere between a 5-20 minutes.
e Duration for which the medicine is in effect
e Dose of the medicine

We need to associate the time at which the medicine is detected and the time
its effect reflects in the physiology. We maintain a knowledge base that classifies
medicines into categories, the effects of the medicine; time to take effect, duration of
effect and the typical scenarios in which it is used.

Thus rules are based on a class of medicines rather than a specific instance.
Consideration of the medications used helps reduce the number of false events dra-
matically. In our system, we signal an event for medicines whose effect was detected
in the physiological parameters. The other medicines detected by the RFID system
may or may not have been administered.

Example 3: Effect of an Anesthetic (Propofol)

Adm ni stration of an anesthetic results in an abrupt drop in the
bl ood pressure and the respiratory rate, while the heart rate
remai ns stable. Propofol takes effect in 40 seconds Thus if we

detect propofol followed by an drop of nore than 25%in the bl ood
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pressure and a drop in respiratory rate we can determnm ne that

an anest heti c has been adm ni stered.

2.2.4 User Interface

We designed the user interface for the medical encounter record in Java. This
interface provides a summary of the patient profile, the pre-op diagnosis and labo-
ratory reports. The vital signs of the patient are updated periodically on the screen
during the surgery. The Event list gets populated as an when events are detected. A
part of the screen is used to show the medicines and the surgical staff as detected by
the RFID system. For each event we save the vital signs of the patient at that instant
of time. Given the complete video of the surgery, video clips for each of events are

created and the corresponding video url is stored in the medical encounter record.

2.2.5 Performance Parameters

1. False Event Detection:
One of the important performance characteristics of a monitoring algorithm is
the number if false events detected. An event is false when it is inappropriate for
the input data. For example: Conditions to detect hypovolemia are increasing
heart rate and a decreasing blood pressure. But these conditions occur during
Tension pneumothorax also. Thus failure to detect changes in oxygen saturation
will result in signaling of hypovolemia. The methods used to detect high-level

events help minimize the detection of false events.

2. Latency of detecting events
The latency between the occurrence of an event and its detection by the mon-
itoring algorithm plays an important role in the performance of the system.

The event list that the system constructs is timestamped. However, the actual
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time of occurrence of an event has a significant impact on the way the event is
interpreted. Therefore the order of detection of events and the time of detection

is essential.



Chapter 3

Radio Frequency Identification System

3.1 Introduction

Radio Frequency Identification (RFID) systems allow automatic capturing of
data using contact less radio frequency identification. These systems are mainly used
to identify and track object. In this chapter we shall see how RFID can be used in
healthcare and in acquiring context information in a per-operative environment.

An RFID system has three major components:

e RFID tag or transponder This is a microchip that stores data and a coupling
element (coiled antenna). It is located on the object to be identified. It can be

active or passive depending on whether it has its own power supply or not.

e RFID reader or transceiver This device is responsible for reading from and
even writing data onto a RFID tag. The passive tag derives its power from
the signal transmitted by the reader. A reader consists of a RF module, a
control unit, and a coupling element and also an interface to the data processing

subsystem.

e Data processing subsystem This is the system, which makes use of the data

obtained from the tag by a reader. The communication signal incident upon

19
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them by the tag-reader powers passive tags up. The mechanism could either be

inductive coupling(near field) or far-field energy harvesting. Near-field extends

up to a distance 1/(2 f) meters from the signal source.

3.1.1 Classification of RFID Tags

RFID tags can be active, passive or semi-passive. Depending on the application

requirements the appropriate tags are used.

e Active RFID Tags

These tags are battery powered in order to transmit a signal to a reader, and
are generally used for high-value goods that need to be tracked over long ranges
(100 feet or more). Active tags are usually more expensive than passive tags,
typically priced as much as $20 apiece. The high cost of active tags make them

suitable to tag objects that are of high value and need to be tracked constantly.

e Passive RFID Tags These tags are not battery powered, and instead draw
power from electromagnetic waves given off by an RFID reader. The read range
for passive tags is usually less than two meters, and these tags can be priced at

less than a dollar.

Passive tags require no maintenance, and are primarily intended to track items
at the pallet, case, and individual levels. These low-cost tags are the focus of the
Auto-ID Center, and are being used in its field trials. These tags are suitable

to track supplies and personnel in an operating room.

e Semi-Passive RFID Tags These are similar to active tags because they have
batteries, but the battery is used only to run the microchips circuitry, not to

power communications with the reader. These tags are typically priced above
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a dollar and are generally used for tracking high-value goods, with longer read

ranges.

3.1.2 Types of RFID Chips

The microchips contained within RFID tags can be identified as read-write or

read only.

e Read-Write RFID Chips

New information can be added to these chips, or existing information on these
chips can be written over when the chip is within range of a reader. These
chips are generally more expensive than read-only chips and are typically used

to track high-priced, valuable items.

e Read-Only RFID Chips: Generally less expensive than read-write chips,
these chips store information that can never be changed unless the chip is re-
programmed electronically. We note that read-only RFID chips can also use
electrically erasable programmable read-only memory (EEPPROM), in which
case the data stored on the chip during the manufacturing process can be over-
written through an electronic process that is able to erase and reprogram the

data on the chip.

3.1.3 RFID Frequency Ranges

RFID tags and readers operate at various frequencies, and at the moment there
is no universal set of global frequencies (although we note that the 13.56 MHz band
is considered global). Although some vendors claim to have created a universal, or
agile reader (capable of reading tags operating at multiple frequencies),

RFID tags generally operate at the low-frequency, high-frequency, ultra-high-

frequency, or microwave levels. Each frequency has advantages and disadvantages
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that make it more suitable for certain applications. Typically, the lower the frequency,

the slower the data read rate, and the better the ability to read on (or near) wet or
metal surfaces, which typically interfere with radio waves and tend to short radio
waves. We summarize some information about the different frequencies of passive

RFID tags in Fig 3.1

Frequency Range LF {Low) HF [jHigh} UHF (Ultra High)
) 125 KHz ]3.515::- MHz BOB-915 MHz
Read Range
(Passive Tags) <2fi =3ft ~13-30ft
Data Rate Slower Faster
Passive Tag Size | Larger Smaller

Fic. 3.1. RFID Frequency Ranges

3.2 RFID in Perioperative Environment

In addition to the medically significant events, a complete medical encounter
record consists of nursing documentation. This documentation includes details such
as the names of the members of the surgical staff, medicines and tools used during
the surgery. Also in chapter 2 we saw that just analyzing physiological data is not ad-
equate to detect high-level medical events. Knowledge of the medicines administered
can help us identify events more accurately and reduce the number of false events
signaled. We chose RFID to detect the presence of surgical staff and the patient in
the operating room and the medicines used.

For use in the perioperative environment, we used a 900MHz system that would
detect RFID tags in the range of one to two meters. The reader would be deployed
near the operating table. This gives enough range to detect the staff and the medicines

being administered. The surgical staff and the medicines were tagged with passive
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RFID Tags.

3.2.1 RFID System Components

1. Reader: There are several RFID readers available in the Market with different
capabilities. Each of the readers has custom protocols and apis used to commu-

nicate with the RFID reader. Our system is customized to communicate with

the Symbol AR400 900MHz reader [9].

2. Tags: Passive RFID tags were used to detect personnel and medical supplies.

These tags are cost effective and work well for the application requirements.

3. RFID API Software: The AR400 system did not come with any application-
programming interface. We implemented the protocol to communicate with the

AR400 RFID reader and created a custom application programmer interface.

4. Stream Processing Engine: The stream engine retrieves data about tags
detected from the RFID reader periodically. This list of tags returned by the
reader consists of duplicate tag reads also. This list is processed by the api
functions to return only unique tag ids. The stream engine further processes
this data by executing queries over a time window on the data stream. The
results of the queries are then sent to RFID stream analyzer. Details of the

stream-processing engine are covered in Chapter 2.

5. RFID Stream Analyzer: Each RFID tag is associated with a medical supply
or a member of the staff. Based on the results of the queries sent by the stream
engine, the analyzer determines the presence or absence of tags and signals

appropriate events.



24
3.2.2 RFID API Software

In this section we will describe in brief the Byte Stream Protocol [13] we im-
plemented to communicate with the reader. The reader is always waiting in passive
mode for this protocol. The Host system initiates all communication sequences. The
packet sent from the Host system is as a request and the reply from a reader is a re-
sponse. It is a synchronous protocol, which means that the Host must wait to receive
the response for last request before issuing a new request. The maximum length of a
request packets data section is 64 bytes; the maximum length of a response packets
buffer space is 256 bytes. We connect to the reader using a TCP/IP connection.
Figure 3.2 show the packet format for the request and response respectively. Table

3.3 defines the fields of the packet.

General Communication Sequence Figure 3.4 shows the general
communication sequence for the byte stream protocol. For a TCP/IP socket connec-
tion, the Host system needs to establish connection to the reader before any message
exchange. An established TCP/IP socket connection will be kept open until the Host
system closes it or error occurs.For each request sent by the Host system to a reader,
there could be multiple response packets back. The progress bit in a response packets
status field serves as an indicator. Being zero means this is the last packet; otherwise,
it means the command execution is still in progress and more packets are going to

come until the last one with this bit set to zero.

3.2.3 Limitations of RFID Technology
3.2.3.1 Tag Collisions

Current RFID systems are limited in their accuracy to detect presence of RFID

tags. The reader may detect tags that are not present in the vicinity or may not
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Reguest Response
SOF SOF
Mode Address Mode Address
Length Length
Command Cmd mirrer

Status
DATA
0-64 BYTES
DATA
0-250 BYTES
CRCLSB
CRC MSB

CRC LsSB
CRC MSB

Fic. 3.2. Byte Stream Protocol Packet Format

detect all the tags that are within its range. This problem is related to the concept
of tag collisions. When the reader emits a signal, all tags that receive the signal
respond by sending their tag ids. When there are several tags close to each other or
overlapping, the reader may not receive all the tag ids.

The signals sent by the tags collide and results in loss of data. Thus a single read
from the reader is not enough to decide the presence or absence of a tag. Repeated
reads are required to make such assertions. Our algorithm uses the following criteria
to determine the presence of a tag. Count the number of times a tag id is present in

the RFID data stream over a window of 60 seconds.

I f the Count >5 then



Field Size(Byte) | Value Description

SOF 1 0x01 Start of Frame

Node Address | 1 0~0xIF | RS485 network node address of the recipient or
responding reader.

Packet Length | 1 Dependent | The length of the packet including CRC, but excluding
SOF

Command 1 Various The action to be taken by a reader

CmdMuror |1 Dependent | Mirror the original command in the response packet

Status 1 Various | The result or status of a command execution

Data Vartous | Dependent | The parameters or data for the command or response

CRC 2 Dependent | Bifwise mversion of the 16-bit CCITT-CRC of the
packet excluding SOF, with the LSB (Least Sigmificant
Byte) first

Fic. 3.3. Byte Stream Protocol Packet Field Definitions

Tag i s present

A tag is considered to be missing when its visibility count becomes zero.

3.2.3.2 Interference:

in the vicinity
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The 900 MHz systems are advertised to have a read range of 3 meters. However

this range is valid for scenarios where there are no major obstructions between the

antenna and the RFID tag. Presence of metallic objects and fluids between the tag

and the antenna result in loss of signals and the tag cannot be detected.

3.2.4 Issues in Healthcare

The use of RFID in healthcare presents a number of critical issue unique health-

care in addition to the basic limitations of the technology.

e Electromagnetic Interference: The healthcare environment is already full

of safety critical devices that are sensitive to radiation at various frequencies.
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e Tagging Medical Supplies: We conducted a feasibility study of using RFID
to tag medical supplies. The current state of art is not sophisticated enough to
allow tagging of all medical supplies. The smallest passive tags available are 1
x 1 inches. With tags of this size it is difficult to tag items like surgical tools,
medical supplies like cotton balls, sponges, gauze etc. Tags that are of the size
of a grain of rice are also available. But these tags are designed to embed under

the skin of cattle or humans. These are not suitable to tag medical supplies.
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e Environment Hazards to Tags: The healthcare industry presents a unique

challenge to the physical integrity of RFID tags because of its pervasive infection
control measures. Supplies like sponges, gauze become wet with fluids. Tags
attached to clothes may be damaged when they are washed. The RFID tags
were originally designed to tag objects for supply chain management and are

not capable of withstanding harsh medical environments.

3.2.5 Discussion

In spite of the limitations of the current state of art RFID has immense potential

for use in healthcare.

e State Information On Tag RFID tags have a small amount of on chip mem-
ory. This memory can be exploited to store state information of the object on
the tag itself. For medicines, the expiration date can be stored on tag. Tools
can have information such as number of times it has been used, date when it
was last sharpened etc. With this information on the tag itself, the state in-
formation can be obtained by reading the tag and it obviates the necessity of
storing this information in a database. Currently, this information is stored in

the database.

e Updating Information on Tags In order to maintain state information on
tags, we need to write this data to the tag. The range at which a tag can be
written is usually shorter than the read range. Laboratory test results show that
the operation of writing to the tag seldom succeeds in the first attempt. As the
distance from the antenna increases the number of write failures increase. Thus

updating information on tags in real-time is subject to a lot of inaccuracy.

e Supply Counts One of the important tasks of a scrub nurse is to ensure that

no supplies are left within the patient at the end of the surgery. The numbers
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of supplies used are counted and should either end up in the waste bin or in the

storage. With RFID we can only determine a range in which a tag is detected.
Partitioning an operating room with high frequency RFID systems does not
help us determine the exact zone/location of the tags. Low frequency RFID

systems work at a very short range.

For such systems the tag must be very close to the antenna before it can be
read. These systems do not offer any advantage over the bar-code systems.
Localization in RFID systems is a subject of research. When this becomes

possible, supply count can be possible with RFID.



Chapter 4

Results

To evaluate the performance of our system we used physiological data sets from

a human patient simulator.

4.1 Human Patient Simulator

The Human Patient Simulator (HPS) is a product of Medical Education Tech-
nologies Inc (METTI). The HPS is called Stan for Standard Man. “The system consists
of electrical, mechanical, hydraulic and pneumatic devices that accurately control
bodily functions. His eyes blink, his pupils dilate, his pulse can be felt in the same
spots a doctor would check on a humanat the wrist, neck, crook of the arm, thigh
and foot. His circulatory system is a series of hoses laid out like veins and arteries
and can contain water or fake blood. Air bags in the chest pneumatically rise and
fall to simulate breathing, while external mechanical ”lungs” replicate the flow of
oxygen and carbon dioxide.” All these systems connect through a series of wires and
are controlled by an Apple Mac G4.

Stan is controlled by a software interface. When an instructor logs on to the
Patient Editor software, the first thing he or she will see is a screen with a medical

history template. The teacher chooses the name, age, and gender of the patient—
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F1G. 4.1. Human Patient Simulator [6]

thanks to interchangeable genitalia Stan can become Sue— and fills out a brief medical
history, including current complaints.

For example, the doctor could create an asthmatic patient with chronic heart
disease who is taking a handful of certain drugs and is currently experiencing ana-
phylactic shock, a severe allergic reaction. The medical students in turn have to figure
out how to treat the patient. If medication is required, the drugs are ”administered”
by scanning a bar code on a syringe. The computer produces in Stan the physiological
response that the drug would have produced in a patient with that medical condition.

This system was made available to us by the Air Force Simulation Center at
University of Maryland Medical School. In order to evaluate our system we used two

custom scenarios:

4.1.1 Scenario 1: Blunt Trauma Multiple Injuries

This scenario consists of a patient who has been wounded in a battlefield. In this
scenario the patient is goes through the following states during the course of trauma

care:
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Excess blood loss

Tension pneumothorax

e Decompression

Fluid Infusions

4.1.2 Scenario 2: General Anesthesia

In this scenario we subject the simulator to general anesthesia and follow the

steps to wake the patient at the end of the procedure. The general steps followed are:

e Intubation

Pain Relief

Administer Anesthetic

Maintain Anesthetic

Reduce Anesthetic

The HPS remains in each of these states for a fixed period of time after which
it transitions to the next state. The changes in the physiological parameters of the
simulator are logged constantly and the parameters vary according to the current state
of the HPS. In addition to the above we created slight variations of these scenarios.

The above two scenarios are simulated on different patient profiles. Each patient
has different medical history and pre-op diagnosis. Figure 4.2 shows a sample patient
profile.

Each of the scenarios was simulated with five different profiles. Slight variations

of the scenarios were simulated to give us more varied data sets.



SIANDArD MEn Narcouzed 33
MName, Age, and Gender:

Stan O Ardman ["Standard Man®, "Stan®), 33-year old, male
History of Present liness:

Otherwise healthy adult with compound ankle fracture reguiring ORIF,
Past Medical History:

Mane

NEDA,

Denies tobacco, alcohol, and IV drug use

Runs 2 miles several times a week
Past Surgical/Anesthetic History:

Tonsillectomy at age 8, general anesthesia without complications

Mo family history of anesthetic problems
Roview of Sysfems:

CHE: Megative for stroke
Cardiovascular: MNegative for hy pertension, angina, DOE
Pulmonary: Megative for COPD, asthma, recent LRI
Renral'Hepatic: Megative for renal failure, jaundice
Endocrine; Megative for diabetes, thyroid disease
Heme/Coag: Megative for anemia, bruising
Current Medications:
Mone
Physical Examination:
General: Healthy adult male, average build, in no distress
Weight, Height: 70 kg, 607
Vital Signs: HR 72 bpm, BP 11352 mmHg, RR 12 br/min, Sp02 97%
Airway: Full dertition, no loose teeth FROM neck & TMJ, wide oral
opening, < fb mandible, MC 1
Lungs: Relaxed respiration, with clear bilateral breath sounds
Heart: RRR. Mormal 31, 32; no 33, 34, murmur, or rub
Laboratory, Radfology, and other relevant studies:
HCT: 42 3%
Narrative:

This patient profile is identical to Standard Man, except that the patient has received 500 pg

of fentanyl. This causes respiratory depression and blunting of physiclogic control mechanisms
such as the baroreflex and the vertilator response to carbon dicxide. This patient profile is
useful for scenarios in which you do not want the patient to breathe spontaneously during
mechanical ventilation, but do want some ventilatory response (though blunted as compared

to the awake baseline) to hypoxentia and hypercapnia.

Fi1G. 4.2. Patient Profile

4.1.3 Limitations of The HPS

During our simulations we discovered certain limitations of the HPS system.

e The physiological responses produced by the HPS under certain conditions are

not as would be expected in a human.

e The rate at which the parameters change in response to a pathological condition

is not as quick as would be observed in a human patient
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e When subjected to a complicated scenario, such as a combination of scenario 1

and 2, the HPS fails to produce the desired response. It works well for small

relatively simple scenarios.

Due to the above limitations the data sets produced by the HPS are not very
accurate. Hence the rule engine triggers some false positives and false negatives.

We gathered data sets from 30 simulations on the METT system. The simulations
were run over 7 different patient profiles for the two scenarios mentioned above. The

key events to be detected from the data sets are
e Tension Pneumothorax
e Decompression
e Hypovolemia
e Fluid Infusion
e Start Anesthesia
e External ventilation
e Paralytic
e Reduce Anesthetic

Figure 4.3 shows the sensitivity for each of the events and Figure 4.4 shows
specificity.

Hypovolemia and Fluid Infusion are the events with high false positives. These
events depend on the blood pressure and heart rate which are affected by number
other pathological conditions. However, making use of the pre-op diagnosis reduced
the false positives for these events by 30%. The events ”Paralytic Administered” and

"Reducing Anesthetic” show 100% specificity and sensitivity as they are triggered
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Sensitivity

B False Megatives
W True Positives

Total Events

Start

Anesthesia
Reduce

Paralylic
Ancsthetic

Tension
Prcumolthorax
Decompression
Hypovolemia
Fluid Infusion
External
ventilation

Events

Fic. 4.3. Sensitivity of Events

only when the medicine is detected by the RFID reader. Without RFID, it is difficult
to detect these events by just monitoring the physiological data.

Our rule base currently has 27 rules. Adding and retracting facts from the knowl-
edge base is an expensive operation. We designed the knowledge base to minimize
such operations. As rfid events are detected facts are either asserted or retracted. For
our rule base we start with a knowledge base of 12 initial facts.

Given the size of the rule base, Table 4.1 show the average latency and the
standard deviation of detecting each of the key events. The high standard deviation
implies that event detection is highly subjective to an individual patient as the change
in physiology is affected by the patients medical history. For example, it is difficult
to detect Hypovolemia in a hypotensive patient and the change in blood pressure is
gradual as compared to a patient with normal blood pressure who blood pressure will

drop rapidly with loss of fluids.
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Fic. 4.4. Specificity of Events

4.1.4 Discussion

In this section we shall discuss the scalability of the system architecture. We
have developed a context aware system that is capable of analyzing physiological
data streams and detecting medically significant events. We also make use of radio
frequency identification technology to detect medicines administered and the surgical

staff present in the Operating room. A stream-processing engine that executes low-

Table 4.1. Average Latency of Detecting Events with Standard Deviation

Name Average Latency | Standard Deviation
Tension Pneumothorax 56.3 11.08
Decompression 29.3 5.44
Hypovolemia 36.8 7.12
Fluid Infusion 35.01 7.86
Start Anesthesia 50.12 12.22
External ventilation 32.5 7.07
Paralytic Administered 47.2 13.35
Reducing Anesthetic 9.6 7.3
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level queries on the data streams processes the data streams. The trend analyzers

further process the results of these queries.
Scalability of our system depends on the capabilities of the stream engine Tele-

graphCQ), the trend analyzers and the Jess Rule Base.

4.1.4.1 TelegraphCQ

To evaluate the performance and scalability of telegraphcq we conducted some
preliminary tests. The tests we performed in a local sub network with 100 Mbits/s
Ethernet card. The load on the network was zero. Fixed amount of data was streamed
to the stream engine at a constant rate. Telegraphcq was deployed on a Pentium 4
machine with 2.4 GHz CPU, 1.00 GB RAM. The aim was to test amount of data
loads that Telegraphcq could handle without loss of data.

To determine amount of data handled, we log the data streamed to telegraphcq
and compare it will the summary presented by tcq when it gets the end of the stream.
The amount of data it can handle depends on the queries. We were able to generate
722 Mb/sec which telegraphcq could handle without loss of data. The query used
was an aggregate query to count the number of distinct tags seen in a window. A
study by [34] et al showed that telegraphcq is capable of handling upto 3.4 Mb/sec
of network data for certain types of queries. They used a network traffic generator
for their load tests.

In its default configuration, telegraphcq is capable of handling 64 input data
streams and 32 client connections. Changing the configuration, we could increase the
number of client and data connections up to 100. The number of connections could
be further increased by additional changes in the configuration. Increasing the data
connections required recompilation with the current version of TelegraphCQ. Thus

telegraphcq can easily handle additional data streams with minimal changes in the
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configuration.

Currently we use simple aggregate queries over the data streams to get average
data values over a time window. To analyze or determine the rate of change of values
we have trend analyzers that determine the change for each parameter. Current
version of telegraphcq does not support subqueries. It allows only a single pass over
data in a time window. When the subquery support is added, the determination of
rate of change can be done using simple queries instead of having a trend analyzer
for each parameter.

As the number of physiological parameters to be monitored increases, the number
of trend analyzers will also increase linearly. This is because the same rules for rate

of change do not apply to all parameters.

4.1.4.2 JESS: Rule Base

The Jess rule base is an expert system that has a set of if-then rules and a work-
ing memory. The rules are evaluated against the contents of the working memory,
which changes over the course of time. Jess uses an efficient approach to evaluate
rules called the Rete Algorithm. Jess is faster than some popular rule engines written
in C. Computational complexity of Rete is linear in the size of the working memory
[4]. Also, Rete is an algorithm that explicitly trades space for speed, so Jess’ memory

usage is not inconsiderable.

However, Jess does contain some commands, which will allows us to sacrifice some
performance to decrease memory usage. In our system, size of the working memory
changes slowly, once the initial set of facts has been added. As the physiological
parameters change their values, the existing facts are updated to reflect the change.

We avoid adding and retracting facts frequently as this affects the performance of the
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system. The working memory will increase linearly as the number of parameters to
be monitored increases with the current system design. Thus the rule base is scalable
as new rules can be added without significantly degrading the performance of the rule

base.

4.1.4.3 RFID API

In addition to reading RFID tags, the API provides support for writing tags,
writing tags within view of a specific antenna, killing a tag etc. The system can be
easily extended to make to use of these functions as required. Some of the scenarios

where this can be done are described in the future work section.



Chapter 5

Related Work

5.1 Alarm Algorithms

Automated patient monitoring systems and algorithms has been a subject of
research since over a decade. Several prototype systems and alarm algorithms have
been created. As mentioned previously, the focus of these systems was to detect
alarming conditions. In our research we presented a system that captures any medi-
cally significant event. Our algorithms and techniques are based on the previous work
done.

One of the major limitations of the previous systems is the high false alarm rate.
These systems determined an alarming condition by observing each physiological
parameter individually. Each parameter had an absolute threshold. When the value
crossed this threshold an alarm would be signaled. This is a very inefficient way to
monitor the patients state for several reasons. Firstly, as reported by Koski et al
[19] changes in a single parameter is not sufficient to determine an alarm. Secondly,
in the overall context of the patients state, the alarm may be meaningless. During
anesthesia, sudden drop in respiratory rate is an expected response. But this can be
inferred only from the context of the surgery. Therefore conventional alarm algorithms

do not provide sufficient information about a patients state.

40
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One of the techniques suggested by Koski et al [19], to reduce false alarms

was multi-variable analysis. Simultaneous monitoring of more than one parameter
can help determine alarms with more accuracy. Navabi et al [28] developed an
integrated anesthesia monitor that could detect intubations with high accuracy. The
algorithm monitored the end-tidal carbon-di-oxide, oxygen saturation and airway
pressure. With this method the false et-co2 alarms were reduced by 70% and false
heart rate alarms reduced by 68%.

[26] Krol et al developed similar computer algorithms to detect conditions like
Light Anesthesia by analyzing hemodynamic data. Schecke et al [35] designed a
knowledge-based decision support system for patient monitoring in cardio anesthesia
and Sukuvaara et al [36] developed system to monitors the state of post-cardiac
surgery patients. Both used multi-variable analysis to detect alarms. Fuzzy set
theory was used to model uncertainties in the decision-making process.

While monitoring more than one variable at a time helped reduce false alarm
rates, not all parameters are monitored for each condition. Mylrea et al [31] showed
that monitoring a smaller number resulted in better output.

The thresholds set for various parameters is another source of false alarms. In
Chapter 2 we saw some examples showing that absolute thresholds are not efficient
to detect alarming conditions. A limit that is alarming for one patient may not be
harmful for another patient. A study by Makivirta and Koski et al [29] shows that
actual range of values indicating an alarming condition does not vary significantly
from the limits decided by a physician. However, there are outliers in the data values
that cause false alarms. Thus setting limits according to individual patient state
reduces number of false alarms and produce more meaningful alarms.

Thresholds for parameters are dynamic based on the patients medical condition.

Changing the threshold to adapt to the patients condition will help reduce the number
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of false alarms. Algorithms to detect alarming conditions make use of a small subset

of data that a clinician would otherwise use to determine the patients condition. [24]
Bloom s study showed that interpretation of signals varied with the context of the
patients state.

[37] Tsien studied four algorithms that filter output signals of a bedside monitor:
moving average, moving median, delay, and sampling rate. Moving average algorithms
and delay algorithms decreased false alarms up to a particular window size. Moving
median algorithms seemed more likely to eliminate true alarms than false alarms.
The sampling rate algorithm showed no consistent effect on the positive predictive
value of the alarms.

[24] Bloom et al represented a cluster based algorithm to analyze physiologic
data. The aim is to group patient measurements that resemble each other in sub-
groups. Each group represents a possible distinct state that the patient can be in.
Weights are assigned to each measurement and discriminant analysis is used to esti-
mate the patients state. Cluster analysis was used on one hundred and twenty three
averaged EEG spectra of dogs subjected to severe, hypoxia and hypoxic states. Clus-
ter analysis distinguished four different states though only three were defined. They
concluded that even though their technique suffers from some weaknesses, clustering
can approximate the number of distinct states of the patient.

[22] Hunter et al developed a Time series workbench to help clinicians detect
events in data collected from patient monitors. The approach used is to segment the
time series data into intervals and feed the data segments to a pattern matcher that
could detect events. The example used here is to detect the re-siting of transcutaneous
C0O2/02 probe on a baby in the NICU. The algorithm used to segment time series
data is to find an interval of set of points that satisfy a relative error threshold.

This is called is the best-fit algorithm. These intervals are then merged to create a
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super-interval. A test on 45 samples resulted in an accuracy of 89%. As the relative

threshold error increased the accuracy decreased significantly.

In this thesis we have assumed the physiological data available to be noise free
and valid. But this is another area of research. Horn et al [21]developed a knowledge-
based system that used time-point, time-interval and trend-based methods to elim-
inate and repair faulty data received from physiological monitors. Data validation

resulted in reduced false positive alarms rate.

5.2 Decision Support and Patient Monitoring Systems

Research in the area of patient monitoring has resulted in a number of systems
making use of artificial intelligence techniques to improve the quality of patient mon-
itoring systems. In this section we will see case studies of some of the systems.

One of the earliest rule-based alarm systems was developed by Sukuvaara et al
[36] to detect a set of conditions in post-cardiac operated patients. The conditions
included hypovolemia, hypertension etc. The system consisted of a data acquisition
module Datalog, which collected signals from patient monitors, and InCare, a rule-
based system that consisted of the rules to detect events by combining the measured
signals and estimated trends. The system was capable of detecting events even when
the data available was incomplete. Data values and trends over a time window were
used to detect events. Evaluation of the system on 35 post-cardiac operated patients
resulted in a specificity of 71% and sensitivity of 100%.

Machine learning algorithms are typically used to learn patterns or trends in a
data set. These algorithms adapt over a period of time and detect patterns with in-
creasing accuracy. Zang et al developed two intelligent alarm algorithms for patient
monitoring based on Classification Tree and Neural Networks. These algorithms

aim to create models that are specific to a patient. Classification tree learning is
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a method for inductive inference that takes on continuous-valued, discrete-valued,

and/or Boolean inputs and generates a discrete-valued output, and the learned func-
tion is represented by a classification tree or a set of if-then rules. It classifies each
instance by sorting it down a tree from the root, through branching nodes that de-
pend on the values of the instances attributes, to a leaf node, which represents the
instances class. Neural Networks learning is among the most effective methods for
learning complex sensor data. Both these methods are shown to be effective in iden-
tifying whether or not an alarm is a true alarm or not.

[15] Hewlett Packard Labs has recently developed a framework that allows de-
velopment of scalable software systems to monitor and analyze continuous streams
of data. A prototype system BioStream was implemented to show its use in patient
monitoring. BioStream is built on top of stream data processing architecture for real
time processing of physiological signals. They use a database-oriented approach to
analyzes data streams. The streams are subjected to operators that belong to a part
of a patient plan. Operators can be simple database operators like it filter and join
to specific algorithms to analyze medical data. A set of operators is defined for each
patient constituting a patient plan. The system is still in the development stages
and the initial prototype is capable of identifying simple pathological conditions by
monitoring ECG signals. This is the only system we found in the literature that tries

to make use of stream processing of data.

5.3 Fuzzy Logic in Medicine

Physiological data streams are continuous valued data streams and the changes
in parameters are gradual. In classical set theory, given a data value, it is assigned
to a distinct set based on the rules to classify data values. There is no ambiguity in

the process. The gradual changes occurring in physiological data make it difficult to



make such unambiguous classification. [33] According to Freidmann ®
Fuzzy sets resolve the mismatch between the discreteness of symbolic sys-
tems and continuity of medical reality. For clear-cut cases a fuzzy system
produces the same results as its underlying symbolic skeleton. For bor-
derline cases, however it determines the degrees of fit of what is actually
present and its internal descriptions and propagates these degrees through
the system to its output, where they serve to qualify the results of the

reasoning process.

[30] Martin et al give an introduction to fuzzy control systems and argue how
the use of such systems is useful in healthcare: specifically in detecting conditions
during anesthesia. [25] Becker et al designed an intelligent patient monitoring system
to detect conditions during anesthesia using fuzzy logic process model. Validation of
this system on 641 state variable evaluations showed sensitivity of alarm recognition

is 99.3%, specificity is 66% and predictability is 45%.



Chapter 6

Conclusion and Future Work

In this thesis we presented the design, implementation and evaluation of a
context-aware system to create an electronic medical encounter record in the peri-
operative environment. We will conclude with a summary of our studies and findings

and scope for future research.

6.1 Summary

We began in Chapter 2, by describing the architecture for the system to detect
events. The main components of this system are the stream processing engine -
Telegraphcq, the trend analyzer and the Rule based engine. We also described the
techniques used to correlate low level events to infer medically significant events. The
chapter also discussed the concept of fuzzy logic that we used to capture uncertainty
in interpreting the physiological parameters.

In Chapter 3 we discussed how Radio Frequency Identification has been used
to build a context in the operating room by tagging medical supplies and surgical
staff. We described the details of the RFID system used and the API we developed.
We also outlined the issues with current state of art and the potential of RFID in

the perioperative environment. RFID can enable use to detect events that are not
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possible by monitoring and analyzing the physiological data streams only.

Chapter 4 presents results of the system evaluation. We presented Human Pa-
tient Simulator which we used to evaluate the performance of our system. The system
has average sensitivity 98% and specificity of 93.47%. The events which were sup-
ported by RFID had 100% sensitivity and specificity.

6.2 Ongoing and Future Research

In this section we describe some of the ongoing extensions we are implementing

and enhancements that could improve the system.

6.2.1 Traumapod

Trauma Pod [10] is a DARPA funded project that whose aim is to develop an
automated medical treatment system that does not require onsite medical personnel
on the front lines of battle, and is ready to receive, assess, and stabilize wounded
soldiers during the critical hours following injury.

The first phase of the program is an effort to develop robotic technology to
perform a totally unmanned surgical procedure within a fixed facility. A human
surgeon will conduct all the required surgical procedures from a remote location
using a system of surgical manipulators. The system’s actions are then communicated
wirelessly to the surgery site. Automated robotic systems provide necessary support
to the surgeon to conduct all phases of the operation.

In this unmanned system, our system will be used to take surgical notes and
create an electronic medical encounter record. This record is more sophisticated and
detailed as we can infer several medically significant events by analyzing the messages

exchanged between the robotic systems.
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6.2.2 Domain-Based Medical Ontology

A knowledge-based system represents relationships between objects, entities and
concepts that exist in a domain of interest. Ontology is a specification of such con-
cepts. The relationship between the objects is specified in a vocabulary that is used
by the knowledge systems to represent knowledge [32]. Within health informatics,
ontology is a formal description of a health-related domain.

The use of ontologies in medicine is mainly focused on the representation and (re-
)organization of medical terminologies. Physicians developed their own specialized
languages and lexicons to help them store and communicate general medical knowl-
edge and patient-related information efficiently. Such terminologies, optimized for
human processing, are characterized by a significant amount of implicit knowledge.
Medical information systems, on the other hand, need to be able to communicate
complex and detailed medical concepts (possibly expressed in different languages)
unambiguously.

In the perioperative environment, use of a standardized language decreases pa-
tients’ risk for injury by eliminating inconsistency of language or meaning. This is
a difficult task and requires a detailed analysis of the structure and the concepts
of medical terminologies. But it can be achieved by constructing medical domain
ontologies for representing medical terminology systems.

The benefits of using a medical ontology are:

e Ontologies can help build more powerful and more interoperable information

systems in healthcare.

e Ontologies can support the need of the healthcare process to transmit, re-use

and share patient data.

Constructing the medical encounter record using a domain-based ontology will
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make the record usable by other health-informatics systems for further processing.

Several groups, such as GALEN [3], CIMIT [1], SNOWMED-CT [8], have developed
medical ontologies to represent medical concepts. Most groups focus on a domain
within medicine and have their ontology represent concepts relevant to the domain.
The Unified Medical Language System (UMLS) [11] is a meta-thesaurus created by
the National Library of Medicine (NLM) that integrates the ontologies developed by

various groups.

6.2.3 Supply Tracking with RFID

Supply counting is an important procedure during a surgery. It is the responsi-
bility of the surgical team to ensure that no supply is left within the patients body
at the end of the surgery. RFID can be used to perform supply counts provided all
supplies can be tagged. Since RFID tags cannot be localized, as an alternate solution
we can use low frequency readers to detect tags in a particular zone of the operating
room. The ability to divide the operating room in zones will allow us to track the
supplies in the operating room and ensure no supply is left within the patients body.

Tracking supplies at this granularity can also be useful in inferring events that
are not detectable through physiological data streams. For example, if the surgeon is
holding a vascular clamp and the surgery involves placing a shunt, we can estimate
the time that the clamp was used to tie the blood vessels. With the current system,

such events are not detectable.

6.2.4 Video Capture

The physicians use the perioperative and anesthesia records of a surgery per-
formed to gain an insight into the complications produced, if any, and form a diag-

nosis based on the analysis of these records. A video clip of the surgical site for each



50
key event can help the physician get an accurate picture of the past surgery.

In a training environment, the supervising physician or doctor has to watch hours
of video footage of surgery performed by residents to evaluate their skills. The medical
encounter record; with video clips for the key events can improve the efficiency and
speed of evaluation.heyy We need to work on estimating the time duration of each

event to create clips of appropriate length.
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