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Abstract

The XPod system, presented in this paper, aims
to integrate awareness of human activity and mu-
sical preferences to produce an adaptive system
that plays the contextually correct music. The
XPod project introduces a “smart” music player
that learns its user’s preferences and activity, and
tailors its music selections accordingly. We are us-
ing a BodyMedia device that has been shown to ac-
curately measure a user’s physiological state. The
device is able to monitor a number of variables to
determine its user’s levels of activity, motion and
physical state so that it may predict what music is
appropriate at that point. The XPod user trains the
player to understand what music is preferred and
under what conditions. After training, the XPod,
using various machine-learning techniques, is able
to predict the desirability of a song, given the user’s
physical state.

1 Introduction
In this paper we study the problem of creating a music player
that plays contextually correct music by using a system of
physiological sensors to monitor a user’s state. We propose
using machine learning algorithms to estimate a user’s pref-
erence of songs in various situations. Several machine learn-
ing algorithms were used to model the complex relationships
between an individual’s musical preferences and his or her
activities. We studied several machine learning systems ona
modified version of the existing mobile MP3 player, XPod.
This player will attempt to select the song best suited to the
current activity of the user. XPod was previously reported on
in [Dornbushet al., 2005], wherein the system was designed
to use a database and a neural network to suggest music to
users. In this paper we expand on that work, and approach
many different machine-learning algorithms, with varied re-
sults.

This paper is layed out in the following format: in Section
2, we will review similar work in this field. In Section 3, we
will discuss the motivation for creating such a device. In Sec-
tion 4, we will speak about the data collected and how it was
used to produce learning algorithms. We will then discuss

Figure 1: Proposed XPod Form Factor

the results of five experiments in Section 5, and end with a
discussion on future research in this area in Section 6.

2 Related Work
Context aware systems can greatly improve a users experi-
ence with computer systems. For example several systems re-
late user activity to mobile phones[Bylund and Segall, 2004;
Siewioreket al., 2003]. This paper proposes an extension to
the mobile MP3 player, XPod, which is able to automate the
process of selecting the song best suited to the current ac-
tivity of the user. That system used a collection of machine
learning techniques to play contextually correct music. The
array of user state information was converted to one of three
states (active, passive and resting) using a decision tree.The
state was used as a key into the database of state dependant
ratings. That was combined with the results from a neural
network that estimated the users preference of a song. While
this showed the potential of an adaptive context aware music
player it had significant limitations.

The concept of a music player that is aware of the user’s
activity has made it into the mainstream market with indus-
try leaders Nike and Apple teaming up to deliver an iPod



that wirelessly communicates with a sensor in a Nike running
shoe[Nike and Apple, 2006]. That system has had limited
market success so far, but has shown that there is consumer
interest. The primary use case for this system is to record and
analyze a runners athletic performance. That system is built
to facilitate the user’s athletic training, not to allow theuser
to train the system. We uniquely address the problem of a
context aware music player that learns a users preferences.

Other researchers have studied the relationship between
a users activity and the music selection played for them.
In [Park et al., 2006] the authors explore the idea of using
Bayesian networks to predict the proper music for the current
situation. The authors used a fairly small set of attributesto
describe the context. The authors only used attributes from
the large area context such as weather, user gender, time and
season.

Sonic City[Gayeet al., 2003; Gaye and Holmquist, 2004]
developed a wearable jacket that created music based on the
sensed light, noise and movement. In this experiment the user
and the environment together create music.

[Elliott and Tomlinson, 2006] developed a system that cor-
relates the song played to a users pace. This system used
machine learning to determine which song to play, matching
the song’s beats per minute(BPM) to the users pace. While
this naive approach provides a level of context aware music it
is not sufficient. For one this does not address the question of
what music to play when a user is not active or when partic-
ipating in an activity such as bicycling where the concept of
pace is not well defined. Secondly in our experiments BPM is
not sufficient to characterize a piece of music. We found some
pieces of music with high BPM that our user found suitable
to low activity level, and pieces of music with low BPM that
were suitable for high activity level.

3 Motivation
The XPod concept is based on the idea of automating much
of the interaction between the music player and its user. The
XPod project introduces a “smart” music player that learns
its user’s musical preferences for different activities, and tai-
lors its music selections accordingly. The device is able to
monitor a number of variables to determine its user’s levels
of activity, motion and physical states at the current moment
and predict what music would be appropriate. The XPod user
trains the player to predict the preference of music under var-
ious conditions. After an initial training period, XPod is able
to use its internal algorithms to make an educated selectionof
the song that would best fit its user’s emotion and activity.

Before playing a song the internal algorithm is used to pre-
dict the users rating of that song in their current state. That
prediction is used to weigh the chance that the current song
will be played. A song with a low expected rating may be
skipped in the current state. Every song has a chance of be-
ing played at any time. This is done so that the XPod explores
the feature space and does not get stuck playing a few songs.
For example if a song is rated zero once, that should not be
interpreted rating that song as zero in all contexts. In a differ-
ent state that song might be rated a four. Our goal would be
to model the level of knowledge for every song; then use that

Figure 2: An author collecting training data.



Name Type

Input

Galvanic Skin Response Real value
Mean Acceleration Longitudinal Real value
Std. Dev. Acceleration Longitudinal Real value
Mean Acceleration Transversal Real value
Std. Dev. Acceleration Transversal Real value
Skin Temperature Real value
Heat Flow Real value
Heat Flow Cover Real value
Transversal Cadence Integer
Longitudinal Cadence Integer
Time of Day Integer
Day of Week Integer
Song Genre Symbolic
Song Artist Symbolic
Song Album Symbolic
Song Title Symbolic
Beats Per Minute Integer

Output User’s Action Integer{0-4}

Table 1: Input and output fields for XPod classifiers.

model to weight the trust we have in the rating. At this point
we used a fixed discount of the predicted rating.

We propose a form factor illustrated in Figure 1 where
the device is mounted on an armband matching the current
widespread usage patterns of MP3 players. In addition a de-
vice on the arm can capture an accurate view of how a user is
moving his or her body.

4 XPod Dataset
The XPod system is comprised of a standard MP3 playing de-
vice and a human body sensor. The device tracks and stores a
record of song meta-data as a song is played, including artist,
album, genre, title, and beats-per-minute. In addition, the
system records the time of day, a user’s rating (from 0 to 4
stars), and a full range of physical responses from the user’s
body. The full set of attributes recorded are detailed in Table
1. These measurements include skin temperature, heat flow,
two dimensions of acceleration, cadence, and galvanic skin
response, which is a measure of how much sweat is on the
user’s skin. Each of the symbolic attributes, artist, album, ti-
tle, and genre are all expanded into a large number of binary
attributes. This was done so that the symbolic attributes could
be accurately handled by the numerical algorithms, such as
SVMs and neural networks. For this reason the total num-
ber of attributes in our experiments, including the user state,
is 289. Typically each instance is a sparse array with most
attributes set to 0 or false.

To gather the information about the user’s physical state, a
BodyMedia[BodyMedia, 2006] device was used. This device
straps on to the arm, and broadcasts its readings wirelessly
to a nearby system, which records the data for use by the
XPod. The BodyMedia device is capable of monitoring a
user’s physiological and emotional state[Nasozet al., 2003].
In this paper we focus on the physiological state; however
this system should be able to adapt musical preference to the
emotional state.

Genre Artists Tracks
Alternative Rock Red Hot Chili Peppers 17

Blues Louie Armstrong 20
Electronic M.I.A. 12

Funk Mofofunka 15

Hip-Hop
Black Eyed Peas 14
Digable Planets 11

Kanye West 20

Jazz
Art Blakey 8

John Coltrane 13
Miles Davis 10

Reggae Bob Marley 10

Rock

Beatles 11
Phish 16

Rolling Stones 10
Grateful Dead 8
Jimi Hendrix 6

Santana 9
Ska Tokyo Ska Paradise Orchestra 27

Table 2: Music library.

5 Machine Learning Algorithms

To test the XPod, we trained several independent learning al-
gorithms on our test data. To construct our dataset, we gath-
ered 239 different mp3 song files. Each song was analyzed to
find the beats per minute. A researcher collected training in-
formation using a prototype system. The prototype shown in
Figure 2 involved a tablet computer and a BodyMedia device.

A researcher on the XPod team proceeded to record train-
ing instances in a variety of physical situations (exercise, mild
activity, rest, etc.). A training instance, or data point, includes
a value for each field in Table 1. 565 training instances were
recorded. For each instance the XPod player would rate a
song and play that song. If the rating matched the researcher’s
preference he took no action. If the rating did not match the
preference the researcher gave the song a rating from 0 to 4,
reflecting how appropriate the researcher felt the song was at
that time. A rating of 0 would result in the music player skip-
ping the remainder of the song. Each classification algorithm
was trained on some or all of the training instances. That
training was used to predict how a user would rate a song in
the future.

It is our goal to show that a music player can choose
the contextually correct music if it uses information abouta
user’s physiological state. To prove this theory we created
two sets of machine learning systems, those trained with user
state information, and those without user state information.
“State” refers to the array of information gained from the
BodyMedia device, as well as any other outside information,
such as date and time. Due to our small sample size, activity
can be inferred from the date and time. For this reason those
variables where included in state information. We will con-
sider our experiment successful if the system is more accurate
when it has access to the state information than when it does
not have access to state information.

We used 10 fold cross-validation to measure the accu-



(a) % Accuracy of various learning algorithms. (b) RMSE of various learning algorithms.

Figure 3: Performance of learning algorithms

racy of the machine learning algorithms. We also experi-
mented with Leave-One-Out-Cross-Validation(LOOCV). We
found very similar results between the two methods. Since
LOOCV is much more expensive we have reported the re-
sults of 10 fold cross-validation. We used classifiers from the
open source Weka library[Witten and Frank, 2005] and neu-
ral networks from the open source Joone library[Marrone and
Team, 2006].

In the following experiments each training instance could
be classified into one of five classes. The expected perfor-
mance of a random algorithm would be 20%. All of the algo-
rithms performed significantly better than random.

5.1 Decision Trees
The first classifier used was the decision tree algorithm
(J48)[Quinlan, 1993]. When learning without state, the de-
cision tree was able to properly classify the training data
39.47% of the time. However, when using state, the decision
tree was able to properly classify the training data 41.06% of
the time. The accuracy of decision trees was not the best in
the survey, however they do show a slight (2%) advantage of
using state information in the learning algorithm. The poor
generalization of J48 can be seen in the fact that the system
not using state information had less error than the system that
did use state information.

5.2 AdaBoost
The J48 classifier improved significantly when it was boosted
with AdaBoost (AdaBoostM1)[Freund and Schapire, 1996].
This classifier was correct against the training data 39.47%
without state, and 46.55% with state. AdaBoost suffered from
the same generalization performance inversion as the original
J48 classifier. This showed that AdaBoost is somewhat effec-
tive at increasing the performance of the J48 algorithm.

5.3 Support Vector Machine (SVM)
The third classifier we experimented with was support vector
machines (SMO)[Platt, 1998; Keerthiet al., 2001]. SVM’s
generalized well and had a little improvement when using
state (43.19%) over not using state (40.89%). In this case
the SVM was almost able to divide the dataset into the re-
searcher’s preference based solely on the musical data. When
adding in state, the dimension space changed minimally, ad-
justing enough to shuffle a few incorrectly classified instances
to the proper area.

The small difference between the SVM trained with state
information and without state information, (2%) is likely a
result of the relatively large feature space and small training
set. The expressiveness of the second order kernel allows the
SVM to identify the user’s preference without the state infor-
mation.

5.4 K-Nearest Neighbors(KNN)

We had surprisingly positive results from the lazy classifier:
k-nearest neighbors (IBK)[Aha and Kibler, 1991]. We al-
lowed Weka to choose the optimal number of neighbors. The
best number of neighbors was found to be 9. Results showed
a 7% increase in accuracy when using state (46.72%) over not
using state (39.82%). More importantly KNN had a low root
mean squared error (RMSE) (0.3753).

5.5 Neural Networks

We had very promising results from a neural network trained
on this data-set. We created a three layer network with 288, or
276 inputs depending on whether state information was used.
A small hidden layer and a single neuron output was used.
We experimented with a variety of different size hidden lay-
ers from 1 to 50. The results of these experiments are shown
in 4(a) and 4(b) We found very similar results with a small
number of hidden nodes, 3, as when we used a large number
of hidden nodes, 50. As the size of the hidden layers grows,
the accuracy of the network using state information does not
increase much. However the accuracy of the network not us-
ing state information does increase. We believe that the more
complex networks are better at memorizing erroneous infor-
mation to accurately rate the songs.

We had difficulties with over training. The network would
find the best validation error in the first 100 training epochs.
We used early stopping to keep the best network on the vali-
dation data. We are investigating ways to avoid this problem.
We were able to achieve respectable performance with a net-
work given state information. That network correctly classi-
fied instances 43.54% much better than the 31.87% accuracy
without state information. This is not the best percent accu-
racy, however it did get the best results in terms of RMSE
(0.17). The neural network had a fraction of the RMSE of the
other methods.



(a) % Accurately identified using different size hidden layers. (b) RMSE using different size hidden layers.

Figure 4: Performance of different size networks.

6 Conclusion and Future Work

Our goal is to show that a music player trained with a user’s
physical activity and preference can choose the contextually
correct music. All of the systems evaluated performe signif-
icantly better than random(20% accuracy). As shown in Fig-
ure 3(a), given state information every system chooses the ex-
actly correct label more often than the same algorithm with-
out state information. For each testing instance there are five
possible categories. Figure 3(b) shows that the tree based al-
gorithms tend to generalize poorly, evidenced by the fact that
systems using state information had greater RMSE than the
systems not using state information. The other algorithms
were able to generalize well and achieved high accuracy and
low RMSE.

We believe that if we collected still more training instances
the difference between the performance of the statefull and
the stateless system would grow. Presumably if we collected
enough training instances we would find a pair of instances
that are identical on all non-state attributes but have different
ratings. Then any classifier without state information would
have to give both instances the same label. However only
one could possibly be correct. A classifier given the same
instance including the state information has a chance to clas-
sify both instances correctly. Therefore if we collected more
training instances the difference between stateful and state-
less systems should increase.

Although the lazy classifiers tended to perform well, in
practice this may not be the case. Specifically, a portable mu-
sic device is not likely to have high processing power. Given
an active user of such a device, listening for multiple hours
a day over the course of one or two years, the device would
search an instance space of over tens of thousands of data
points. Performing a calculation like this may be more than
inefficient: it could be wholly impractical.

Support vector machines may be well suited to the task
as they can begin to classify new instances having very little
training data to build on. From the end-user’s perspective,this
is a desirable feature, as the user would need to spend very
little time setting up the system, and more time enjoying the
benefits. Further, SVMs are capable of classifying in a very
high dimensional space while only performing calculationsin
a much smaller number of dimensions. However it is not clear

if SVMs could be created on a constrained device. Perhaps
the SVMs would be created on a unconstrained device such
as a PC. Then the trained SVM would then be transferred to
the portable device. Even constrained devices can evaluatea
SVM.

Decision trees would likely be the most computational fea-
sible classifier, as they can be converted into a rule set, which
can be evaluated very rapidly. As we’ve shown in this appli-
cation, decision trees perform better with boosting.

Our view is that the neural network is the most promising
result. Although it did not get the highest exact accuracy it
tended to get very close to the right answer, reflected in the
small RMSE. Since the result was used to influence pseudo-
random choice of music it is actually more important to be
close than to be exactly accurate. For example if the correct
rating should be 4 but the system responds with 3, that will
result in a low RMSE, but will not count towards the percent
correct. A rating of 0 would result in the same percent ac-
curate, however a much higher RMSE. Since a song rated 0
would be skipped, but a song rated three or four would likely
be played, a close answer is almost as good as the correct an-
swer. For that reason we feel that the low RMSE of the neural
network indicates that it would be the most useful algorithm.
Many embedded devices such as mobile phones already em-
ploy neural networks, therefore it should be possible to use
neural networks in mobile music playing devices.

In future work we will investigate other meta-data that
could be associated with the music. We have used relatively
simple music analyzing software to find the beats per minute,
however it is possible to find much more by analyzing the
music[Logan and Salomon, 2001]. It would also be interest-
ing to investigate human generated meta data in community
systems such as the Pandora Project[Westergren, 2006] or
Audoscrobbler[Audioscrobbler, 2006]. Any new meta-data
regarding songs could be included as additional inputs into
the machine learning algorithms. We will investigate aug-
menting the training instances already collected with addi-
tional meta-data. Our goal will be to see if there is a signifi-
cant increase in performance given new information.

We will investigate prototyping this system in a physical
device. While the BodyMedia device provides many different
attributes a satisfactory system could likely be built witha



selection of those attributes. An inspection of the decision
tree built by J48 shows 20 decisions based on acceleration,
almost four times more than the sum of all decisions based
on other state variables.

Nokia research has generously granted our research group
two 5500 Sport phones[Nokia, 2006]. These phones have ac-
celerometers to measure a users activity level and the capabil-
ity to play MP3’s. We expect to implement the XPod system
on this device in the near future.

We have shown the relative advantages of different ma-
chine learning systems at choosing the contextually correct
music. People have shown an interest in this type of system.
However more works need to be done to further refine this
system.
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