Policy-Based Access Control for an RDF Store

Pavan Reddivari
University of Maryland,
Baltimore County
Baltimore MD USA

pavan2@csee.umbc.edu

ABSTRACT

Specialized stores for RDF data are essential parts of many
Semantic Web applications. Current RDF stores have pri-
marily focused on efficiently storing and querying large vol-
umes of data and little attention has been given other fea-
tures common to many database systems, including how in-
formation can updated and maintained or access to data
controlled. The problem is complicated by the fact that the
addition or deletion of a simple fact (i.e., an RDF triple) are
not atomic since they can trigger reasoning that can result
in adding or deleting derived triples. Current access con-
trol mechanisms for RDF stores largely ignore this aspect.
We describe a policy based mechanism to determine access
control for an RDF store.

RAP is a prototype implementation of an RDF store with
integrated maintenance capabilities and access control us-
ing user defined policies. All actions to the store are routed
through RAP policy engine, to determine whether the ac-
tion is permitted or prohibited. In the RAP framework, the
same RDF store is also used to store the policy, as well as
metadata about the triples, allowing greater range in policy
specification.

1. INTRODUCTION

The Wed is evolving from a purely human consumption per-
spective to a more machine comprehensible web. This new
evolution, driven by the Semantic Web vision, is leading us
to a world of information sharing, by enabling distributed
knowledge aggregation and creation. Most of these Seman-
tic Web applications require management of large amounts
of semantic data which is stored in knowledge stores.

Resource Description Format (RDF)[27, 23, 14] knowledge
stores have become a standard component of many Seman-
tic Web applications. We believe that for RDF stores to be
more functional and widely deployed in applications they
ought to provide a mechanism to specify restrictions on cre-
ation, modification and browsing of the knowledge. Current

Tim Finin
University of Maryland,
Baltimore County
Baltimore MD USA

finin@csee.umbc.edu

Anupam Joshi
University of Maryland,
Baltimore County
Baltimore MD USA

joshi@csee.umbc.edu

implementations such as the open source project Kowari
metastore [24], Redland [11], and TAP [29] are mostly fo-
cused on scalability and rarely address issues of security and
access control.

In our work we have mapped out a set of actions which are
required to completely manage a store, and describe a model
of access control to permit or prohibit these actions. In our
model, agents make requests to perform actions against the
RDF store and the decision whether or not to carry out the
requested action is governed by an explicit policy described
in a simple, declarative policy language.

The policies are defined by a collection of policy rules gov-
erning whether the action is permitted or prohibited. Ex-
amples of actions include inserting a set of triples into the
store, deleting a triple, and querying whether or not a triple
is in the store. The conditions on a policy rule are a com-
bination of constraints on the agent requesting the action,
the type of action requested, the history of previous actions,
the contents of the store, and the possible effect on the store
and its model.

Informal examples illustrating the range of policy rules that
RAP supports include the following.

e Only agents assigned to an editor role are allowed to
insert or delete triples.

e An agent can only delete triples it previously inserted.

e An agent is only allowed to ’add properties’ to classes
it introduced.

e No agent may see any values of a ‘social security num-
ber’ property.

e No agent may insert a triple that allows any agent to
infer a patient’s ‘HIV status’.

e An agent may modify any data about itself.

e An agent may not add an instance of a foaf:Person
without providing a foaf:name property and either a
fof:mbox or foaf:mbox_shalsum property.

The wide array of policies is possible because of the con-
scious decision of storing the domain ontology, the knowl-
edge base schema, RDF data and polices together. The

agents are also represented in RDF and are part of the do-
main specific knowledge.

Access to the RDF store is controlled by the RDF-Store
Access-Control Policies (RAP) framework through which all
the transactions are routed. RAP uses the policies defined
in the framework to determine whether to permit or prohibit
the action requested by the agent.

We have implemented RAP using the Jena Semantic Web
framework [28]. Jena provides a comprehensive environment
for parsing, reasoning over and querying information ex-
pressed in the Semantic Web languages RDF, RDFS and
OWL. Jena also includes a rule-based inference engine that
supports forward and backward reasoning using rules whose
atoms are RDF triples [9)].

The RAP polices are specified as rules using the RAP on-
tology to the RETE inferring engine running in the forward
chain mode. A Web-Service is also provided to access the
store, using the Sun One web-service server [6]. The authen-
tication of the agent is to be performed by an independent
mechanism.

2. RELATED WORK

Though knowledge stores have a made a presence in many
systems, access control in these system has hardly received
the attention it deserves. Though there has been consid-
erable research relating to the field of access control, these
schemes can neither be applied directly to RDF stores nor
do these schemes meet all the requirements. In this section,
we discuss some related work in access control in general
and access control in XML.

2.1 Access Control Mechanisms

In this section, we discuss a few schemes for access control.
Most of these schemes have poor expressibility and do not
support indirect actions, where performing one action leads
to automatically perform another action. The most com-
mon access control mechanism is Role Based Access Control
(RABCQC) [20, 22, 30, 32] in which agents are assigned roles
and permissions are specified for each agent to decide which
actions the agent has permission to perform. In such sys-
tems roles have to be pre-assigned and every time the access
right of an entity needs to changed, it cannot be performed
without changing roles. Role Based Access Control have in-
herit limitation because of close coupling of roles and access
rights and changing one requires modification of the other.
In comparison using Policy based scheme allows us to bind
the access rights not to the roles, but credentials and prop-
erties of the agent. This allows the independence of the user
properties and the access

The Simple Public Key Infrastructure (SPKI)[5], Simple
Distributed Security Infrastructure (SDSI) are some of the
other access control mechanisms widely used, but none can
be successfully incorporated in to access control for RDF.

2.2 XML AccessControl and RDF

In current form RDF can be represented in either N-triples
or XML. XML is the most common used format to rep-
resent RDF. Access Control in XML has been researched

and many mechanisms have been developed [18, 17]. These
mechanisms provide an authorization model tightly tied to
the XML syntax and structure. This approach is completely
acceptable to XML documents but not to RDF documents.

In XML syntax of a document is fixed, each document can
be represented only in one way. The limitation of using XML
access control mechanism in RDF is that fact RDF is syntax
independent, the same RDF statement can be represented
in variety of way. The other issue is the knowledge property
of RDF statements. In RDF adding one statement might
lead to inferring additional statements. For example RDF
describing X as a boy implies that X is male and similarly
deleting a statement will lead to loss of more statements.

Therefore the mechanisms should be able to dynamically
assign access control on the new inferred statements and
detect unauthorized statements being inferred. Kaushik et
al. [33] have done some work on access control in ontologies.
They use a logic programming based policy language to de-
termine access to partial or full ontologies. Jain and Farkas
[10] propose an access control framework for RDF data that
assigns Multi Level security classifications to RDF patterns.
The model has been partially implemented in a prototype
system that controls access to information stored in RDF.
It does not deal with insertions, deletions or updates.

Rei [26, 25] uses a policy-based approach for governing au-
tonomous behavior in distributed environments. It allows
permissions to be specified as policies over actions and obli-
gation. The policies are specified in OWL-Lite [7] extended
with a simple variable mechanism. Rei has a concept of
meta-policies for conflict resolution, speech acts for remote
policy management. The Rei policy engine is developed in
XSB [15], it uses the policies and domain knowledge to gen-
erate permissions for the actions. The philosophies and de-
sign decisions used in REI were studied and some incorpo-
rated during the design of RAP.

3. RDF GRAPH

In this section we review the RDF model [27, 23, 14] and
identify a set of primitive actions that can be performed on
a RDF graph. An RDF graph is composed of three types of
nodes, a RDF URI references node (N), a Blank node y(B)
and a RDF literal Node (L). The edges (E) in the graph are
directional and each edge also is associated with a URI [31].
The triple in a RDF graph can be described as (subject,
predicate, object) € (NU B)x Ex (NUBU L).

Consider the following example RDF document encoded us-
ing the RDF /XML syntax and depicted as a graph in Figure
1.

1:<7xml version="1.0" encoding="utf-8"7>
:<rdf:RDF xmlns:rdf=
"http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"

N

3: xmlns:owl="http://www.w3.org/2002/07/owl#"
4: xmlns:foaf="http://xmlns.com/foaf/0.1/" >
5: <foaf:Person>
6: <foaf:name>Li Ding</foaf:name>
7: <foaf:mbox rdf:resource="mailto:dinglil@umbc.edu"/>
8: <owl:sameAs rdf:resource=
"http://www.csee.umbc.edu/ dinglil/foaf.rdf#dingli"/>
9: </foaf:Person>

malfo:dingli1@umbe.edu

owl sameds

hitp://ce.umbe. edv/~dinglil/foaf rdfdingli

Figure 1: The RDF document described earlier has
a simple representation as a graph.

10:</rdf :RDF>

Line 1 declares that this is an XML document. Lines 2-
4 further define the content to be an RDF document and
provide abbreviations for three common ”namespaces” for
RDF, OWL, and Friend of a Friend (FOAF), which defines
classes and properties for describing people, their common
attributes, and relations among them. The SWD’s vocab-
ulary consists of literals ("Li Ding’ in line 6), URI-based
resources (mailto:dinglil@umbc.edu in line 7), and anony-
mous resources (lines 5-9). Users assert statements using
RDF triples such as the one starting at line 5, which has
an anonymous resource as the subject, rdf:type as the pred-
icate, and foaf:Person as the object. A higher level of gran-
ularity is class-instance, which RDFS’s object-oriented on-
tology constructs offer. Lines 5-9 assert that ”there is an in-
stance of a foaf:Person having foaf:name Li Ding, foaf:mbox
mailto:dinglil@umbec.edu, and this instance is owl:sameAs,
identified by http://www.csee.umbc.edu/ dinglil/foaf.

The simplest manipulations on this graph are adding or
deleting a single triple consisting of a subject, a predicate
and an object. For our purposes, we consider three special
cases when inserting a triple, yielding the following four ac-
tions:

1. Add a triple such that neither the subject nor object
nodes were previously in the graph. This leads to ad-
dition of two new nodes and an edge to the graph.

2. Add a triple such that either subject or object (but
not both) existed in the graph prior to the addition.
This leads addition of one new node and an edge to
the graph.

3. Add a triple such that both subject and object node
exist in the graph prior to this addition. This leads
addition of an edge to the graph.

4. Delete a triple from the graph. This will lead to the
predicate edge being removed from the graph and the
subject and object nodes may be removed or not, de-
pending on whether they are part of any other triple
or not.

In addition, we will introduce and make use of several com-
pound actions and indirect actions. Compound actions in-
clude the action of updating or replacing one triple with

another, the action of inserting a set of triples, and the ac-
tion of deleting a set of triples. Indirect actions cover the
introduction or removal of a triple in the model through the
addition or deletion of separate tripe into the explicit store.

4. RDF STORE ACTIONS

We need to identify the set of actions which are required
to maintain an RDF store. The access control policies will
control permission and prohibition to these actions. Main-
taining an RDF store involves four basics actions: adding,
deleting, updating and searching for triples.

4.1 Additionstothestore

These actions allow agents to add new information to the
RDF stores.

e insert(A, T). Agent A directly inserts triple T into
the graph. This action is used by the agent to add min-
imal information into the store, such as ‘foaf:Person is
a subclass of wn:Mammal.

e insertModel(A, T): Agent A insertModels triple T
if A performed insert(A, T1) and T1’s insertion en-
ables the store to infer that triple T is in the model.
This action leads to indirect addition of knowledge by
the user, such as after adding the triple foaf:Person
is a subclass of wn:Mammal, addition of triple X In-
stance of foaf:Person leads to indirect addition of X
rdf:type wn:Mammal. Constraints on this action are
useful in preventing an agent from adding information
indirectly.

e insertSet(A, {Tc}): Agent A insertSets a set of
triples {Tc} if A inserts all the triples in {Tc} into
the store together. It is possible that A is not allowed
to add the triples in set {Tc} individually. This action
can be used to ensure that the agent always inserts a
set of triples which are related, for instance an agent
may not add an instance of a foaf:Person without pro-
viding a foaf:name property and either a foaf:mbox or
foaf:mbox_shalsum property .

4.2 Deletionsfrom the store

These actions allow agents to delete information from the
stores.

e remove(A, T): Agent A directly removes triple T
from the graph. This Action would be used by the
agent to remove minimal information from the store,
such as ?Xemp: WorksFor of foaf: CompanyX.

e removeModel(A,T): Agent A removeModels triple
T if A performs Remove(A,T1) and the store cannot
infer triple T after the removal of T1.

e removeSet(A, {Tc}): Agent A removeSets a set of
triples {Tc} if A removes all the triples in {Tc} into
the store together. It is possible that agent A is not
allowed to remove the triples in set {Tc} individually.
This action is useful when you do not want the agent
to remove something unless it is removing something
else too. For instance you might want to enforce a

policy that unless you are deleting the entire employee
record, the social security number property can not be
removed.

4.3 Updatestothestore

The update action provides a mechanism to update partic-
ular triples in an RDF store. While this could me modeled
as a combination of a delete and an insert, it is convenient
to have an update that acts as a single transaction.

e update(A, T1, T2): Agent A directly replaces the
triple T1 with the T2.

The update action is useful in cases when you want the user
to have the modification rights without the deletion right
as in the case where you want your employees to be able to
modify their cell phone triple but not delete it.

4.4 Queryingthestore

Two actions are defined to describe an agent’s actions of
querying or searching an RDF store, covering both direct
and indirect access.

e see(A, T): Agent A sees triple T if it returned in the
response to one of A’s queries to the store. This action
will allow users to browse the knowledge in the store.

e use(A, T): Agent A uses triple T if it is used by the
store in answering one of A’s queries. This action is
useful when you want the user to be able to restrict
what information is being used to answer agent A’s
query.

Both these actions are independent of each other, even though
it might appear that if A can ‘see’ triple T, then A can ‘use’
triple T. For example, consider three triples T1, T2 and T3.
Let us assume that A can infer T3 only by using T1 and
T2. If A can see T1 but cannot use it and can use T2 but
cannot see it, then A will not be able to see T3.

5. RAPPOLICIES

In the RAP framework, a policy is defined by a set of policy
rules that together specify if an agent’s specific requested
action is permitted or prohibited. Following Rei [26, 25], a
query about the status of an agent’s specific action request
might have any of four outcomes: unknown, proven to be
permitted, proven to be forbidden, and proven to be both
permitted and forbidden. Like Rei, RAP allows a policy to
include meta-rules that can be used to resolve the two prob-
lematic cases. The two kinds of meta-rules that RAP allows
are a default policy and a modality preference. Together,
these can be thought of as implicit policy constraints.

The default policy, if specified, determines what happens
in the upper left quadrant of the decision matrix shown in
2. If default(permitted) is true then any actions not explic-
itly prohibited are permitted. If default(prohibited) is true,
than actions not expressly permitted are prohibited. One
of these two default settings must be selected (typically de-
fault(prohibited)).

proven
permitted
no yes

no ? permitted

proven
prohibited

Y€S | prohibited | conflict

Figure 2: In reasoning about an action, four out-
comes are possible. An uncertain or conflicted out-
come may be resolved by meta-policy rules

The modality preference specifies what to do when we are
in the lower right quadrant of the decision matrix. If pre-
fer(permitted) is true, then an action that can be proven
to be both permitted and prohibited is considered to be
permitted. If prefer(prohibited) is true, then prohibitions
dominate permissions. One of these two settings must be
selected, typically the latter.

Explicit policy rules are used to permit or prohibit an agent
from performing a class of actions on the RDF store. The
general form of a policy rule is “Modality(Action(A,T)) :-
Condition “ where Modality is one of permit or prohibit, Ac-
tion names an action, A identifies an agent and T identi-
fies a triple. Condition is a Boolean combination of simple
constraints expressed as RDF triples. The Triple (T) rep-
resented in the head of the policy has the form (subject,
predicate, object). The wild card character “?” can be used
in the triple pattern, a triple of the form (7, ?, 7) would
thus hold true for all the triples.

The Specification of the agent is defined by the agent repre-
sentation in the domain knowledge. This allows us to specify
policies using agent specific data.

The Condition for the policy can be specified either using
the metadata about the triples, the triple data itself, the
agent data or by combing both Agent and triple data.

5.1 Metadata specific conditions.

The conditions in the policy can be specified based on the
metadata about the triples that the store maintains. The
kind of metadata to be collected is specific to the store im-
plementation.

permit(insert(A,(?,rdfs:type,C))) :- createdNode(A,C)

The above policy will allow agents to create instances of
classes only if they had created those classes. The creat-
edNode (A, C) returns true if agent A had created triple T
which created node C.

5.2 Triple specific conditions
The policies can also be specific to the kind of triples being
added.

prohibit(see(A,(?,emp:salary,?))
prohibit(see(A,(?,P,?))) :-
rdfs:subProperty (P,emp:salary)

These policies will prohibit agents from seeing the value of
the emp:salary property, its sub properties or any equiva-
lent property. The rdfs:subProperty(P,emp:salary) returns
True if predicate P is defined to be an rdfs:subProperty of
emp:salary.

5.3 Agent specific conditions.

The attributes of the agent could also be used in the condi-
tions of policy. The agent’s representation would be specific
to the domain

permit(see(A,(?,emp:salary,?)):-
existTriple(A,rdfs:type,emp:Auditor)

This policy will permit an agent A to see anyone’s salary as
long as the agent A is an auditor.

5.4 Agent and Triple specific conditions.
The conditions in the policy could be tied to both the agent
attributes and the triple data being acted upon.

permit(update(A,(P,emp:salary,?),(P,emp:salary,?)) :-

existTriple(A,emp:Supervisor,P)

This policy will permit an agent A to update salary of P as
long as A is the supervisor of P.

5.5 Custom Policy Predicates

The RAP framework defines and implements several special
predicates useful for building policies. The current set of
four predicates, two using the metadata about triple ’own-
ers’ and two based on RDFS predicates, be extended as
needed.

e isTripleOwner (A, T): This predicate determines
ownership of the triple. It is true if agent A created
the triple T.

e isNodeOwner(A, N): This predicate determines own-
ership of the node in the RDF graph. It is true if agent
A was first to create the node N in the RDF graph.

e isSchemaPredicate (P): This predicate is true if P
is a predicate used to define RDF schema level infor-
mation (e.g., rdfs:subClass, rdfs:domain, etc). This is
useful in policies that specify whether or not an agent
is allowed to add to or modify the schema used by the
RDF store.

e isSubProperty (P1, P2): This predicate is true if
P1 is a Sub-Property of P2.

6. RAPPOLICY ONTOLOGY

In this section we explain the RAP ontology and describe
how the RAP policies are converted to set of rules. These
rules are then used by the RAP policy engine to determine
whether the actions requested by the agents should be per-
mitted or prohibited. Here list of permissible set of actions:

e Insert Action:
store explicitly.

This action adds a triple into the

e Model Insert Action: This action adds a triple as
result of addition another triple into the store.

e Set Insert Action: This action adds a set of triples
to the store.

e Delete Action: This action deletes a triple from the
store.

e Model Delete Action: This actions deletes a triple
as result of deletion another triple.

e Set Delete Action: This action deletes a set of triples
from the store.

e See Action: This action shows a triple as a part of a
result set for query requested by the agent

e Use Action: This action uses a triple to generate the
result set for query requested by the agent

e Update Action: This action replaces one triple with
another

Each action is associated with an actor, the agent requesting
the action as shown in Figures 3. The effects of each action
are also associated with it, an insert action might lead to
a model insert action and a delete action might lead model
delete action. The actions are also associated with an action
object, it is the statements or set of statements the action is
performed with. Each action is associated with two types of
permissions, an explicit permission which gets dynamically
generated as per the policies. An implicit permission is also
associated with each type of action which is static to each

type.

RAP policies are converted to Jena’s RETE forward chain-
ing rules as shown in the examples in Figures 4 and 5.

7. RAPARCHITECTURE

RAP allows agents to access the RDF store via a web-
service, the agent tries to access the RDF store via the RAP
web service by providing its identity and the desired action
it wants to perform. The identity of the agent is verified
independently by other mechanisms. The agent’s request is
send to RAP policy engine, here the action is modeled as a
RAP ontology action and submitted to the policy engine for
approval. The policy engine first determines if according to
current set of policies the agent has Permission to Perform
this action. In the case the agent is allowed perform the ac-
tion, RAP temporarily performs the action and records the
indirect effects of this action. These effects are then modeled
as RAP ontology effects of the performed action. Once the
agent has permission to perform the action and its effects

Action
Object

Action Object

Action

Figure 3: RAP Action description

RAP Policy : Only a Supervisor of a Person can update the Salary .

permit(update(A,(P,emp:salary,?),(P,emp:salary ,?)) :-
existTriple(A,emp: Supervisor,P)

Raprule: (?x rdf:type rap:Update_Action) (?x rap:Actor ?y
(?x ap:oldTriple_object ?z1) (?x
newTriple_object ?22)
(?Z1 rdf:subject ?s1)(?z1 rdf:predicate emp: Salary)
(?22 rdf:subject ?s1)(?22 rdf:predicate emp:Salary)
(?y rap:Supervisor ?s1)

->(?x rap:explicitPermission rap: Permitted)

Figure 4: RAP policy rules are expressed in a
Prolog-like notation and then compiled into Jena
forward chaining rules. This policy rule specifies
that a person’s supervisor is allowed to update his
salary.

RAP Policy : Only a Creator of aclass can make instances.

permit(insert(A,(?,rdfs:type,C))) :- createdNode(A,C)

Raprule: (?x rdf:type rap:Insert_Action) (?x rap:Actor ?y
(?xrap:insertTriple_object ?z1)
(?Z1 rdf:object ?s1)(?z1 rdf:predicate rdfs: type)
(IsNodeOwner (?y, ?s1))

->(?x rap:explicitPermission rap:Permitted)

Figure 5: RAP policy rules are expressed in a
Prolog-like notation and then compiled into Jena
forward chaining rules. This policy rule specifies
that an agent is allowed to create an instance of a
class if the agent had previously introduced the class
into the schema.

RAP performs the action on the RDF store on the agent’s
behalf.

The framework consists of four components: RDF store,
the RETE policy engine, the actions implementations, and
a web-service API. In section we study them detail and show
how each component was designed and implemented.

7.1 RAP RDF Store

In RAP, the RDF store contains domain specific RDF schema
as well as RDF data. RDF store is also used to store the pol-
icy, represented in RDF, as well as other data and meta-data
needed for the policy rules. The agents are also represented
in RDF and are parts of the domain specific knowledge. This
representation of agents is used in the policy specifications.
The RDF store also maintains metadata about the triples in

Act +Actor
(Insert (X type Persofll, Y) Result
1.

2. Action Effect
Permission
. Perform Act

. Action Permissi

—/\
Policy Engine
(Forward chaining RETE)

=

RDFS
Inferencin
Rules

Figure 6: RAP Architecture has four main com-
ponents: RDF store, the RETE policy engine, the
actions implementations, and a web-service API.

Domain Specific Schema
and Instance

Policies

Figure 7: RAP’s RDF store holds the RDF data, its
schema, provenance metadata and the access policy
rules. A uniform and integrated representation in
RDF supports a wide and expressive range of access
control policies.

the store, like the creator of the triple. The store is imple-
mented as jena RDF store object. RAP provides persistence
of the store by serializing the store and storing it on the file
system. The meta-data about the triples such as creator
of the triple, creator of nodes in the graph are stored using
persistent hash-maps in Java.

7.2 RAPRETE Policy Engine

The policy engine is implemented using the general purpose
reasoner provided in Jena2 [2] framework. Jena2 includes a
general purpose rule-based reasoner which is used to imple-
ment both the RDFS and OWL reasoner but is also available
for general use. This reasoner supports rule-based inference
over RDF graphs and provides forward chaining, backward
chaining and a hybrid execution model.

In RAP we use the policy engine in RETE forward chain-
ing mode, which is based on the standard RETE algorithm
[21] which is optimized for such incremental changes. The
policies are modified to allow the re-inferencing of certain
triples even if the triples are already present in the model.
A new primitive deduce was developed to allow the engine
to derive even the redundant facts. This feature allows us to
determine what effects an action can cause. The RAP poli-
cies are also converted to forward chaining rules and added
to the same rule-set.

7.3 RAP Action Implementations

In the RAP framework the access to store is controlled by
a set API of actions. These set of actions allow addition,
updating, deletion, querying for complete management of
the RDF store. In section we discuss how each action was
implemented.

7.3.1 Insert Actions

This action is most basic action, allowing the addition of a
triple to the store. To add a triple to the store an Insert
Action RAP ontology action is created. The policy engine
after inferencing fills the permission status of this action. If
an explicit permission is not generated the implicit permis-
sion for insert action is referred to. A permissible status of
action leads to a temporary addition of the triple. Following
the addition inferencing is performed on the model to deter-
mine the set of new inferred triples. These set of triples are
recorded by using the model listener in Jena. The Model
listener monitors the RDF graph and records the set of new

triples added to the graph. These set of triples are mod-
eled as addition to the store by Model Insert actions. Each
triple which was inferred causes Model Insert RAP ontol-
ogy action, which linked to the action as effects. The action
would be permitted if the value of its permission property
is permitted and the permission of all its effect is also per-
mitted. If either the action or any its effect have prohibited
the action is said to be prohibited.

7.3.2 SetInsert Actions

This action allows addition of a set of triple to the store.
This action allows RAP to implement a kind of obligation
speech act. The agents are obligated to insert specific set
of triples at the same time. These statements may not be
allowed to be inserted individually. For example a policy
rule may require that an agent insert a foaf:Name property
whenever it inserts a new foaf:Person.

To add a set of triples to the store a Set Insert Action RAP
ontology action is created. Each statement which is a part
of the set is attached to the current action as a set insert
object. The action is also appended with the agent that re-
quested the action. The policy engine after inferencing fills
the permission status of each action object. If an explicit
permission is not generated the implicit permission for the
set insert action is referred to. Permission of each action ob-
ject is verified, a prohibition status for even a single action
object leads to Prohibition of Set-Insert action. A permis-
sible status of action object leads to a temporary addition
of the triple, following the addition inferencing is performed
on the model to determine the set of new inferred triples.
These set of triples are recorded by using the model listener
in Jena. The Model listener monitors the RDF graph and
records the set of new triples added to the graph. These
set of triples are then modeled as addition to the store by
Model Insert actions. Each triple which was inferred causes
Model Insert RAP ontology action, which linked to the cur-
rent action as effects. The set action would be permitted if
the value of the action objects permission property is per-
mitted and the permission all its effect is also permitted. If
either the either action objects or any the effects are pro-
hibited the Set Insert action is said to be prohibited and no
triples would be added.

7.3.3 DédeteAction

This allows deletion of triple to the store. To delete a triple
to the store a Delete Action RAP ontology action is cre-
ated. This current action is appended with the agent that
requested the action. The policy engine after inferencing
fills the permission status of this action. If an explicit per-
mission is not generated the implicit permission for insert
action is referred to. A permissible status of action leads
to a temporary deletion of the triple, following the deletion
inferencing is performed on the model to determine the set
of triples were depended on the deleted triple. These set
of triples are recorded by calculating the difference in the
model before and after the deletion of the said triple. These
set of triples are modeled as deletion to the store by Model
Delete actions. Each triple which was deleted causes Model
Delete RAP ontology action, which linked to the current ac-
tion as effects. The current action would be permitted if the
value of its permission property is permitted and the per-
mission all its effect is also permitted. If either the current

action or any its effect have prohibited the current action is
said to be prohibited.

7.3.4 Sat Delete Actions

This action allows deletion of a set of triple to the store.
This action allows RAP to implement a kind of obligation
speech act. The agents are obligated to delete specific set
of triples at the same time — these statements may not be
allowed to be deleted individually.

To delete a set of triples to the store a Set Delete Action
RAP ontology action is created. Each statement which is
a part of the set is attached to the current action as a set
delete object. The current action is also appended with the
agent that requested the action. The policy engine after in-
ferencing fills the permission status of each action object. If
an explicit permission is not generated the implicit permis-
sion for the set delete action is referred to. Permission of
each action object is verified, a prohibition status for even a
single action object leads to Prohibition of Set-Delete action.
A permissible status of action object leads to a temporary
deletion of the triple, following the deletion inferencing is
performed on the model to determine the set of indirectly
deleted triples. These set of triples are recorded by calculat-
ing the difference in the model before and after the deletion
of the said triple. These set of triples are then modeled as
deletion to the store by Model Delete actions. Each triple
which was deleted causes Model Delete RAP ontology ac-
tion, which linked to the current action as effects. The set
action would be permitted if the value of the action objects
permission property is permitted and the permission all its
effect is also permitted. If either the either action objects or
any the effects are prohibited the Set Delete action is said
to be prohibited and no triples would be deleted.

7.3.5 Update Action

This action replaces one triple with another. To update a
triple in the store an Update Action RAP ontology action is
created. This current action appended with the agent that
requested the action. The policy engine after inferencing
fills the permission status of this action. If an explicit per-
mission is not generated the implicit permission for insert
action is referred to. A permissible status of action leads to
a temporary updating of the triple, following the update in-
ferencing is performed on the model to determine the set of
new inferred triples and the set of indirectly deleted triples.
These set of triples are recorded by using the model listener
in Jena. The Model listener monitors the RDF graph and
records the set of new triples added to the graph. The set of
newly inferred triples are modeled as addition to the store
by Model Insert and the set of indirectly deleted triples are
modeled as deletion to the store by Model Delete actions.
Each triple which was newly inferred or indirectly deleted is
linked to the current action as effects. The current action
would be permitted if the value of its permission property is
permitted and the permission all its effect is also permitted.
If either the current action or any its effect are prohibited
the current action is said to be prohibited.

7.3.6 Query Actions
This action allows the agent to Query the store and see the
result set. For each triple shown as a part of the result set

a See Action RAP ontology action is created. This current
action is also appended with the agent that requested the ac-
tion. The policy engine after inferencing fills the permission
status of this action. If an explicit permission is not gen-
erated the implicit permission for see action is referred to.
A permissible status of action leads to a temporary adding
to the result set. This triple is then checked to determine
whether it was derived using other triples. If the triple is
a derived triple all the triples leading to the derivation are
collected. All these triples are then modeled as Use Action
RAP ontology. This action is also appended with the agent
that requested the action. The policy engine after inferenc-
ing fills the permission status of this action. If an explicit
permission is not generated the implicit permission for use
action is referred to. If either the see action or the use action
are prohibited the triple is not added as part of the result
set.

7.4 Rap Web Service

RAP provides a web-service to access the RDF store. All
modifications, querying are routed through web-service to
the policy engine. The web-service is developed using Sun
One web-service server. The agent while invoking the spe-
cific methods provides the identity of itself as well as RDF
data it wants to add, delete or update. The RDF data is
serialized either in XML or N3 [12] format. While query-
ing the store the agent has to specify the query in only
RDQL [3] format. For details of messages and operations
of the web-service refer to RAP web-service WSDL file at
http:\\www.rap.umbc.edu\rap.wsdl.

8. EVALUATION AND FUTURE WORK

Performance evaluation of Rap is somewhat subjective and

non-trivial as complexity of manipulation of an RDF-entailment

is dependent on complexity of the RDF graph as well as the
RDF schema of the store. Depending how much the RDF-
entailment effects the RDF graph the performance of ma-
nipulating the entailments varies. Performance evaluation
of RAP is also determined by the fact that it uses Jena for
truth maintenances, which for performance issues does not
store the complete truth table.

In general, the insert action had a negligible delay and the
delete action had delay depending on the size of RDF graph
due to graph difference operation in the implementation.
The setlnsert and setDelete actions were delayed by factor
two to three times with setDelete taking somewhat more
time. Querying the store was delayed in general by a factor
of three, but it is completely dependent on the size of the
result set.

Jena has a simple justification-based truth maintenance sys-
tem [16] (TMS) which was not sufficient to support the rea-
soning required by RAP. For example, Jena only records
one proof for an inferred fact even if several are possible.
This means that we can not rely on the TMS to determine
whether a triple’s presence in the model depends on the
presence of another which a querying agent is not permitted
to use. Consequently, we employed the expensive technique
of temporarily removing all triples that a querying agent is
not allowed to see or use from the model before running a
query. Using a reasoning system with a more comprehensive
TMS would make checking use constraints more efficient.

Whether the reasoning overhead of a complete TMS would
be justified would depend, of course, on the expected mix of

policies and the value of other uses of a complete TMS.

A well known issue in database access control is the infer-
ence problem [19] — preventing sensitive data from unautho-
rized disclosure by revealing non-sensitive data and meta-
data from which the sensitive data can be inferred. Such
mechanisms are known as inference channels and are diffi-
cult to detect and remove, especially since they are often
low-bandwidth and complex and may depend on the use
of additional background knowledge known by the querying
agent. While handling constraints using the insertModel
predicate might seem to require solving the inference prob-
lem, they do not for two reasons. The first is that we are only
handling constraints with respect to knowledge and data
currently in the RDF store. Additional knowledge, perhaps
of a statistical nature, that the querying agent may have is
not within the scope of RAP’s processing. Second, RAP’s
reasoning is limited rdf- and rdfs-entailments, a tractable
and complete reasoning problem for which many practical

approaches are possible.

One of the main issues in the current RAP framework is
that the actual store is not built into the framework. The
store is an independent implementation in Jena and there
were no specific modification made to Jena code to integrate
the inferencing needs of the policy engine. In future we
would like to integrate the policy action requirements, such
as notification of inferred triples as a feature of the store.
This would increase performance of RAP store and will make
the response time of RAP store negligibly higher to that of

normal RDF store.

Delegation of policies allows remote management of polices,
it allows one agent to delegate the right of changing partic-
ular policy, to another agent. We feel delegation of policies
would be very useful in the management of RDF stores.
In current implementation of RAP delegation of policies is
not possible. But a conscious design choice of representing
policies in RDF and storing policies and domain knowledge

together allows delegation of policies in future.

In the current version of RAP only RDF- and RDFS-entailments
are considered, all OWL entailments are also treated as
RDF, no specific provisions are considered. In future we
would like to integrate some reasoning over OWL-lie and

OWL-DL features into RAP.

9. CONCLUSION

The Semantic Web is often described as a “web of data” in
which information and knowledge is encoded in ways that
are easy for machines to process and make use of. The cur-
rent technology being used to explore this model is RDF,
extended with the RDFS and OWL vocabulary and seman-
tics. RDF triple stores are playing an increasingly important
role in practical applications using RDF data. We believe
that for RDF store to be more functional and widely de-
ployed in applications they ought to provide a mechanism
to specify restrictions on creation, modification and brows-
ing of the knowledge. The main motivation for our work was
lack of such provisions in current implementations of RDF

stores.

Towards this end, our RAP framework makes the following
contributions. In our work we mapped out a set of actions
which are required to completely manage a store, and de-
scribe a model of access control to permit or prohibit these
actions. In our model, agents make requests to perform ac-
tions against the RDF store and the decision whether or
not to carry out the requested action is governed by an ex-
plicit policy. Policies are defined by a collection of policy
rules governing whether the action is permitted or prohib-
ited. The overall system also shows the effectiveness of a
policy based access control mechanism for a RDF store.

10.

(1]
2]

B3]

(10]

(11]

(15]

(16]

REFERENCES
The foaf project. http://www.foaf-project.org/.

Jena2 inference support.
http://jena.sourceforge.net /inference/.

Rdql w3c specifications.
http://www.w3.org/Submission/RDQL/.

Redland rdf application framework.
http://www.librdf.org.

Simple public key infrastructure. simple public key
infrastructure (spki).
http://www.ietf.org/html.charters/spkicharter.html.

Sun one application server.

http://www.sun.com/software/products/appsrvr/index.xml.

Owl web ontology language. In W3C Candidate
Recommendation, 2003.

Rdf vocabulary description language 1.0: Rdf schema.
In W8C Working Draft, 2003.

Jena: implementing the semantic web
recommendations. In Proceedgins of the 13th
International World Wide Web Conference, pages
74-83, May 2004.

Secure resource description framework: an access
control model. In ACM Symposium on Access Control
Models And Technologies, June 2006.

D. Beckett. The design and implementation of the
redland rdf application framework. In Proceedgins of
the Tenth International World Wide Web Conference,
May 2001.

T. Berners Lee. Notatation3- an rdf language for the
semantic web.
http://www.w3.org/Designlssues/Notation3.

T. Berners-Lee, J. Hendler, and O. Lassila. The
semantic web. Scientific American, 279(5):34-43, May
2001.

D. Brickley and R. Guha. Rdf vocabulary descrip-tion
language 1.0: Rdf schemardf semantic. In W3C
Working draft, W3C, January 2003.

S. Decker. Yajxb (yet another java-xsb bridge).
http://www-db.stanford.edu/.

J. Doyle. A truth maintenance system. pages 259-279,
1987.

(17]

(18]

(19]

20]

(21]

23]

(24]
(25]

(31]

(32]

33]

E.Bertino, S.Castano, E.Ferrai, and M.Mesiti.
Rspecifying and enforcing access control policies for
xml documents and sources. In World Wide Web,
2000.

E.Damaiani, S. di Vimeracati, S.Paraboshi, and
P.Samarati. Role-based security for distributed object
systems. In A fine grained access control system for
XML documents. ACM Transaction on Information
and System Security TISSEC, 2002.

C. Farkas and S. Jajodia. The inference problem: a
survey. SIGKDD Ezxplorations Newsletter, 4(2):6-11,
2002.

D. Ferraiolo and R. Kuhn. Role-based access controls.
In 15th NIST-NCSC National Computer Security
Conference, pages 554563, 1992.

C. Forgy. Rete: A fast algorithm for the many
pattern/many object pattern match problem. In
Artificial Intelligence, 1982.

L. Guiri. A new model for role-based access control. In
11th Annual Computer Security Application
Conference, pages 249255, New Orleans, LA,
December 2003.

P. Hayes. Rdf semantic. In W8C Working draft, W3C,
January 2003.

T. Inc. Kowari-metastore. http://www.kowari.org.

L. Kagal, T. Finin, and A. Joshi. A policy based
approach to security for the semantic web. In
Proceedings of 2nd International Semantic Web
Conference (ISWC2008), September 2003.

L. Kagal, T. Finin, and A. Joshi. A policy language
for a pervasive computing environment. In Proceedings
of IEEE jth International Workshop on Policies for
Distributed Systems and Networks, June 2003.

O. Lassila and R. Swick. Resource description
framework (rdf) model and syntax specification. In
Working draft, W8C, 1998.

B. McBride. Jena: a semantic web toolkit. In IEEFE
Internet Computing, v6n6, pp. 55-59, November 2002.

R.Guha, R.McCool, A.Sundarajan, and K.Joly.
Tap:building semantic web. In hitp://tap.stanford.edu.

R. S. Sandhu. Role-based access control. In In M.
Zerkowitz, editor, Advances in Computers, volume 48.
Academic Press, 1998.

D. Weitzner, J. Hendler, T. Berners-Lee, and

D. Connolly. Creating a policy-aware web:
Discretionary, rule-based access for the world wide
web. In In Elena Ferrari and Bhavani Thuraisingham,
editors, Web and Information Security.

N. Yialelis, E. Lupu, and M. Sloman. Role-based
security for distributed object systems. In In Fifth
IEEE Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WET
ICE 96) (1996), pp. 80-85,, 1996.

N. Yialelis, E. Lupu, and M. Sloman. Policy-based
dissination of partial web-ontologies. In SwsS, 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

