
On Mining Web Access Logs

Anupam Joshi
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County, Baltimore, MD 21250
joshi@cs.umbc.edu

Raghu Krishnapuram
Department of Mathematical and Computer Sciences

Colorado School of Mines, Golden, CO 80401
rkrishna@mines.edu

Abstract
The proliferation of information on the world wide web has made
the personalization of this information space a necessity. One
possible approach to web personalization is to mine typical user
profiles from the vast amount of historical data stored in access
logs. In the absence of any a priori knowledge, unsupervised
classification or clustering methods seem to be ideally suited to
analyze the semi-structured log data of user accesses. In this paper,
we define the notion of a “user session”, as well as a dissimilarity
measure between two web sessions that captures the organization
of a web site. To extract a user access profile, we cluster the
user sessions based on the pair-wise dissimilarities using a robust
fuzzy clustering algorithm that we have developed. We report the
results of experiments with our algorithm and show that this leads
to extraction of interesting user profiles. We also show that it
outperforms association rule based approaches for this task.

1 Introduction
The proliferation of information on the world wide web
has made the personalization of this information space a
necessity. This means that a user’s interaction with the web
information space should be tailored based on information
about him/her. For example, a person in Switzerland
searching for ski resorts is more likely to be interested in
the Alps, whereas a person in Colorado would likely be
interested in the Rockies. Personalization can either be
done via information brokers (e.g. web search engines),
or in an end to end manner by making web sites adaptive.
Initial work in this area has basically focused on creating
broker entities, often called recommender systems. One of
the earliest such systems was the Firefly system [1] which
attempted to provide CDs that best match a user’s professed

interests. More recently, systems such as PHOAKS [4]
and our own W 3IQ[2, 3] have sought to use cooperative
information retrieval techniques for personalization.

End–End personalization is predicated on adaptive web
sites[15, 16], which change the information returned in
response to a user request based on the user. Very primitive
forms of this can be seen in sites that ask the users to
provide some basic information (address, phone, keywords
indicating interest), and then tailor their information content
(and especially ads) based on things like zip code, area
code and demographic profile. However, in general the
appearance of a particular page, including links on it, can
also be changed when web sites are adaptive. Perhaps
the earliest work along similar lines was the Webwatcher
project[5] at CMU. It highlights hyperlinks in a page based
on the declared interests and the path traversal of a user as
well as the path traversals of previous users with similar
interests. There is also a recent body of work[18, 17] which
seeks to transform the web into a more structured, database
like entity. In particular, Han et al.[17] create a MOLAP
based warehouse from web logs, and allow users to perform
analytic queries. The also seek to discover time dependent
patterns in the access logs[21].

Mining typical user profiles from the vast amount of
historical data stored in server or access logs is a pos-
sible approach to personalization that has been recently
proposed[28, 7, 20], and some initial work done. In [7], as-
sociations and sequential patterns between web transactions
are discovered based on the Apriori algorithm [8]. The logs
are first split into sessions (transactions), and then the apri-
ori algorithm used to discover associations between sessions.
However, in creating sessions, an assumption is made that
the identity of the remote user is logged by the web server.
Except for rare instances when the server is so configured
and the remote site runs identd in a mode that permits plain-
text transfer of ids, this assumption is clearly not valid. Chen
et. al.[20] also use association rule algorithms (FS and SS)
to find associations between user sessions. They define a

1



session (traversal pattern in their nomenclature) to be a set
of maximal forward references, in other words, a sequence
of web page accesses by a user in which s/he does not re-
visit an already visited page. The claim is that a backward
reference is mostly for ease of navigation. However, that is
not necessarily the case – users may seek to revisit a page
to read more, or clarify what they had read in light of new
information on a subsequent page. Also like [7] they assume
that user ids are known.

Note that most existing efforts to mine web logs have
relied on association rule type techniques. These can be
inadequate for extracting profiles from web log data. First,
they are not resilient to the noise typically found in the logs
due to a wide variety of reasons inherent to web browsing
and logging. There is a significant percentage of time
(sometimes as large as 20-30 percent) that a user is simply
“browsing” the web site and does not follow his normal
access pattern. For example, a user who typically goes to
CNN’s site for sports news will also visit their (say) politics
and national news sections every so often. Moreover, the
noise contamination rate and the scale of the data is rarely
known in advance.

Further, the data involved in web mining lend themselves
better to a “fuzzy” approach which allows for degrees of
similarity between entities. In particular, association rule
techniques assume that each item is distinct, so any two
items are either the same, or not. This creates a problem
when we apply association rules to user sessions, which
have as their elements the URLs visited in the session. Con-
sider for example three sessions with one URL visited each
(http://www.anyu.edu/courses/mycourse/hw.html),
(http://www.anyu.edu/courses/mycourse/proj.html), and
(http://www.anyu.edu/academics/admission.html). Since each
session has a distinct URL, association rule techniques will
not group session 1 and 2 into the same “large” itemset, even
though it is fairly clear to a human observer from the context
(i.e. structure of the web site) that they should be grouped
together. This is principally because as defined, association
rule algorithms cannot handle graded notions of similarity
between itemsets. Han et al. [23] have suggested creating
an attribute hierarchy, merging together attributes at its var-
ious levels. However, the hierarchy needs to be explicitly
created and items merged (by the user) before the associa-
tion rule algorithms can be run. As we shall show later, our
approach has this hierarchical notion built in and does not
need user intervention.

We propose to use unsupervised clustering methods to
analyze the semi-structured log data of user accesses by
categorizing them into classes of user sessions. The URLs in
each session then represent a typical traversal pattern – i.e.
they are often visited together. This information can be used

in a variety of ways, including the creation of adaptive web
sites. At the very minimum, this information can be used by
the site designer to reorganize the site to better convey the
information to the user.

Categories in most web mining tasks are rarely well
separated. In particular, some sessions likely belong to more
than one group to different degrees. The class partition
is best described by fuzzy memberships, particularly along
the overlapping borders. Also, it is necessary for the
clustering process to work with relational1 data. As opposed
to object data when the data elements represent points
in some n-dimensional space and the distances between
them are Minkowski norms, relational data means that
only pairwise distance between the data elements can
be described. In particular, it is not obvious how to
map two objects web sessions into numerical features
in a manner that makes (Minkowski) distances between
them meaningful. This immediately rules out the use of
fast clustering algorithms developed by the data mining
community such as CLARANS[27] and Birch[26], which
only deal with object data.

2 Clustering Access Logs
Sessionizing
The access log for a given web server consists of a record
of all files accessed by users. Each log entry consists of
:(i) User’s IP address, (ii) Access time, (iii) Request method
(“GET”, “POST”, � � � ), etc), (iv) URL of the page accessed,
(v) Prototcol (typically HTTP/1.0), (vi) Return code, (vii)
Number of bytes transmitted. We filter out some of these
entries. These include entries that: (i) result in any error,
(ii) use a request method other than “GET”, or (iii) record
accesses to image files (.gif, .jpeg, , � � � , etc), which are
typically embedded in other pages and are only transmitted
to the user’s machine as a by product of the access to a
certain web page which has already been logged. While
error entries contain potentially useful information, they
do not serve any purpose with regards to finding traversal
patterns.

Analogous to [7], the individual log entries are grouped
into user sessions using a perl script which is a modification
of [22]. A user session is defined as a sequence of temporally
compact accesses by a user. Since web servers do not
typically log usernames (unless identd is used), we define a
user session as accesses from the same IP address such that
the duration of time elapsed between any two consecutive
accesses in the session is within a pre-specified threshold.
Each URL in the site is assigned a unique number j 2
f1; : : : ; NUg, where NU is the total number of valid URLs.

1Note that this term is used in its statistical sense, not as used by the
database community

2



Thus, the ith user session is encoded as an NU -dimensional
binary attribute vector s(i) where s(i)j is 1 if the user accessed
the jth URL during the ith session, and 0 otherwise.

The ensemble of allNS sessions extracted from the server
log file is denoted by S. Note that our scheme will map one
user’s multiple sessions to multiple user sessions. However,
this is not of concern since our attempt is to extract “typical
user session profiles”. If we assume that the majority of
a user’s sessions follow a similar profile then clearly no
difference is made. On the other hand, this notion of multiple
user sessions enables us to better capture the situation when
the same user displays a few different access patterns on this
site. This approach will not work as well when multiple
users from the same machine are accessing the site at the
same time. However, this is likely a rare phenomenon given
the proliferation of Desktops. Web caches cause another
problem for our technique (like for all other related systems).
We assume though that by appropriate use of the No cache
pragma in HTTP/1.1, this problem can be avoided.

Computing The Dissimilarity Matrix

In the following paragraphs, we introduce the similarity
measures between two user-sessions, s(k) and s(m), which
we have recently proposed[24]. The measures attempt to
incorporates both the structure of the site, as well as the
URLs involved. We first consider the simple case where all
URLs accessed in the sessions are assumed to be to be totally
distinct. Then, we can simply use the cosine of the angle
between s(k) and s(l) as a measure (M1;kl) of similarity. This
simply measures the number of common URLs accessed
during the two sessions relative to the total number of URLs
accessed in both sessions. It has the desirable properties that
M1;kk = 1; M1;kl = M1;lk; and M1;kl > 0;8k 6= l:
The problem with this similarity measure is that like the
association rule based approaches, it ignores the similarity
between URLs (as described in the introduction section).
Moreover, cosine type measures tend to best use when
the binary vectors are symmetric (i.e. not visiting a URL
would be as significant as visiting one in terms of grouping
sessions).

One possible approach to estimate similarity of URLs
is to analyze their contents. However this itself is an
open area of work in IR, and tends to be computationally
expensive. This leads us to define a similarity measure on
the structural URL level. We model the web site as a tree
with the nodes representing different URLs – essentially
the directory structure rooted at the server’s document root,
with links (such as redirects and aliases) explicitly brought
in. Similarity between two URLs is assessed by measuring
the overlap in the paths from the root of the tree to the
corresponding nodes. Hence, we define the similarity

between the ith and jth URLs as

Su(i; j) = min

�
1;

j(pi \ pj j

max(1;max (jpij ; jpj j)� 1)

�
(1)

where pi denotes the path traversed from the root node to
the node corresponding to the ith URL, and jpij indicates
the length of this path. Now the similarity between sessions
is defined by measuring the “similar” URLs visited in the
two sessions relative to the total number of URLs visited:

M2;kl =

PNU

i=1

PNU

j=1 s
(k)
i s

(l)
j Su(i; j)PNU

i=1 s
(k)
i

PNU

j=1 s
(l)
j

(2)

For the special case when all the URLs accessed during
session s(k) have zero similarity with the URLs accessed
during session s(l), i.e., Su(i; j) = 0 if i 6= j; M2;kl reduces
to

M2;kl =

PNU

i=1 s
(k)
i s

(l)
iPNU

i=1 s
(k)
i

PNU

j=1 s
(l)
j

and when the two sessions are identical, this value further
simplifies to

M2;kk =
1PNU

i=1 s
(k)
i

which can be considerably small depending on the number
of URLs accessed. This is unintuitive, because ideally the
similarity should be maximal for two identical sessions.
Besides identical sessions, this similarity will generally be
underestimated for session pairs that share some identical
URLs while the the unshared URLs have low similarity. In
general for such sessions where the URL similarities are
low, M1;kl provides a higher and more accurate session
similarity measure. On the other hand, when the URL
similarities are high, M2;kl is higher and more accurate.
Therefore, we use [24] the maximum of M1 and M2

as our similarity measure. For the purpose of relational
clustering, this similarity is mapped to the dissimilarity
measure d2s(k; l) = (1�Mkl)

2. This dissimilarity measure
satisfies the desirable properties: d2s(k; k) = 0; d2s(k; l) >=
0;8k; l; and d2s(k; l) = d2s(l; k);8k; l: We note here that
our dissimilarity measure is not a metric. In particular,
unlike a metric distance it is possible for two distinct
sessions to have zero dissimilarity. This occurs wheneverPNU

i=1

PNU

j=1 s
(k)
i s

(l)
j Su(i; j) =

PNU

i=1 s
(k)
i

PNU

j=1 s
(l)
j , or

equivalently
PNU

j=1 s
(k)
i s

(l)
j Su(i; j) = s

(k)
i

PNU

j=1 s
(l)
j for all

i = 1; : : : ; NU .

This is particularly true if the URL level similarities are
1 for all the URLs accessed in the two sessions. A typ-
ical example consists of the sessions f/courses/cecs345g
and f/courses/cecs345/syllabus.htmlg. This property is ac-
tually desirable for our application, because we consider

3



these two sessions to fit the same profile. The session dis-
similarity measure also violates the triangular inequality for
metric distances in some cases. For instance, the dissimi-
larity between the sessions f/courses/cecs345/syllabusg and
f/courses/cecs345g is zero. So is the dissimilarity between
f/courses/cecs345g and f/courses/cecs401g. However, the
dissimilarity between f/courses/cecs345/
syllabusg and f/courses/cecs401g is not zero (it is 1=4). This
illustrates another desirable property for profiling sessions
which is that the dissimilarity becomes more stringent as the
accessed URLs get farther from the root because the amount
of specificity in user accesses increases correspondingly.
Clustering
As has been described earlier, clustering of sessions requires
algorithms that can accept graded notions of similarity and
overlap between clusters, and deal with relational data.
Moreover, the algorithms need to be able to handle noise
in the data. We have recently proposed a robust fuzzy
clustering algorithm[25] which we use here.

Let X = fxiji = 1; : : : ; ng be a set of n objects. Let
r(xi;xj) denote the dissimilarity between object xi and
object xj . Let V = fv1;v2; : : : ;vcg;vi 2 X represent
a subset of X with cardinality c, i.e., V is a c-subset of
X . Let Xc represent the set of all c-subsets V of X .
Each V represents a particular choice of prototypes for
the c clusters in which we seek to partition the data. The
Robust Fuzzy Medoids Algorithm (RFCMdd) minimizes the
objective function:

Jm(V;X) =
nX
i=1

cX
i=1

umij r(xj ;vi); (3)

where the minimization is performed over all V in Xc. In
(3), uij represents the fuzzy membership of xj in cluster i.
The membership uij can be defined heuristically in many
different ways. We use the Fuzzy c-Means [10] membership
model given by:

uij =

�
1

r(xj;vi)

�1=(m�1)
Pc

k=1

�
1

r(xj;vk)

�1=(m�1) ; (4)

wherem 2 [1;1) is the “fuzzifier”. The fuzzifier influences
the degree of membership of a point in the cluster. This
generates a fuzzy partition of the data set X in the sense that
the sum of the memberships of an object xj across all classes
is equal to 1. Since uij is a function of the dissimilarities
r(xj ;vk), it can be eliminated from (3), and this is the
reason Jm is shown as a function of V alone.

Substituting the expression for uij in (4) into (3), we

obtain:

Jm(V;X) =
nX
i=1

 
cX

i=1

(r(xj ;vi))
1=(1�m)

!1�m

=
nX

j=1

hj ;

(5)

where

hj =

 
cX

i=1

(r(xj ;vi))
1=(1�m)

!1�m

(6)

is 1=c times the harmonic mean of the dissimilarities
fr(xj ;vi)) : i = 1; : : : ; cg when c = 2. The objective
function for the Robust Fuzzy c Medoids (RFCMdd) algo-
rithm is obtained by modifying (5) as follows:

JTm(V;X) =

sX
k=1

hk:n: (7)

However, the objective function in (7) cannot be mini-
mized via the alternating optimization technique, because
the necessary conditions cannot be derived by differentiating
it with respect to the medoids. (Note that the solution space
is discrete). Thus, strictly speaking, an exhaustive search
over Xc needs to be used. However, following Fu’s [12]
heuristic algorithm for a crisp version of (3), we describe a
fuzzy algorithm that minimizes (7).

In (7) hk:n represents the k-th item when hj ; j =
1; : : : ; n, are arranged in ascending order, and s < n.
The value of s is chosen depending on how many objects
we would like to disregard in the clustering process. This
allows the clustering algorithm to ignore outlier objects
while minimizing the objective function. For example, when
s = n=2, 50% of the objects are not considered in the
clustering process, and the objective function is minimized
when we pick c medoids in such a way that the sum of the
harmonic-mean dissimilarities of 50% of the objects is as
small as possible.

The quadratic complexity of the algorithm arises because
when looking to update the medoid of a cluster, we consider
all n objects as candidates. In practice, the the new mediod
is likely to be one that currently has a high membership in
the cluster. Thus by restricting the search to say k objects
with the highest membership in the cluster, the process can
be made linear, i.e. O(kn), where k is a low integer. In
that case, the complexity will be determined by the sorting
operation required to find the smallest s (or equivalently the
largest n� s) of the hj’s. This is a good result, considering
that robust algorithms are typically very expensive.

4



The Robust Fuzzy c Medoids Algorithm (RCMdd)

Fix the number of clusters c, and the fuzzifier m;
Randomly pick initial set of medoids: V = fv1;v1; : : : ;vcg
from Xc;
iter = 0;
Repeat

Compute harmonic dissimilarities hj for j = 1; : : : ; n using (6);
Sort hj , j = 1; : : : ; n to create hj:n;
Keep the objects corresponding to the first s hj:n;
Compute memberships for s objects:
for j = 1 to s do

for i = 1 to c do
Compute uij:n by using (4);

endfor
endfor
Store the current medoids: V

old = V;
Compute the new medoids:
for i = 1 to c do

q = argmin
1�k�s

Ps

j=1 u
m
ij:n r(xk:n;xj:n)

vi = xq;
endfor
iter = iter + 1;

Until
�
V

old = V or iter = MAX ITER
�
.

Notice that the algorithms as described assume that the
number of clusters is known a priori, which is not the case
here. This is a well known problem in clustering. We use a
heuristic to automatically determine the number of clusters
by initializing it to some large number, much larger than the
expected (final) number of clusters. A SAHN type process
is then used to hierarchically reduce the number of clusters.
As we ascend up the hierarchy, we have to progressively
increase the dissimilarity over which clusters will be merged.
We note the change in this distance at each step, and assume
the level at which the greatest change occurred has the right
number of clusters.

3 Experimental Results

The user sessions are assigned to the closest clusters. This

creates C clusters Xi =

�
s
(k) 2 S j dik < djk 8j 6= i

�
; for

1 � i � C.
The sessions in cluster Xi are summarized in a typical

session “profile” vector Pi =
�
Pi1; : : : ; PiNU

�t
. The

components of Pi are URL weights which represent the
number of access of a URL during the sessions of X i as
follows

Pij = p
�
s
(k)
j = 1js(k) 2 Xi

�
=

��Xij

��
jXij

; (8)

whereXij =

�
s
(k) 2 Xi j s

(k)
j > 0

�
: The URL weights Pij

measure the significance of a given URL to the ith profile.
Besides summarizing profiles, the components of the profile
vector can be used to recognize an invalid profile. This
will have no strong access pattern, and all the URL weights
will be low. We have created Java+JDBC based scripts
to automate the process of creating typical session profiles
using views in an Oracle backend.

We generated session profiles for several different logs
obtained from servers at UMBC, CSM, U of Missouri etc.
These logs ranged from a few hundred entries to tens of
thousands of entries. Fig 1 shows the time required both
by the clustering process, as well as the overall mining time
(sessionizing + dissimilarity computation + clustering) for
logs that represent one day to five days worth of accesses to
the UMBC web server. This is also tabulated in Table 1. The
clustering process revealed both obvious profiles (students
enrolled in courses accessing course pages, visitors to
a particular faculty’s research page, visitors to UMBC’s
well known AgentsWeb site etc) as well as less obvious
groupings. As an example, we saw that students enrolled in
the UG AI course also seemed to visit the AgentsWeb pages.
This could be because the AI course is often taught by Prof.
Finin, who also maintains the AgentsWeb pages.

2000 4000 6000 8000 10000 12000 14000
0

200

400

600

800

1000

1200

1400

1600

1800

2000
Execution Time Graph

Number of Sessions

T
im

e
 (

S
e
c
o
n
d
s
)

Clustering Time 

Total Analysis Time 

Figure 1: Execution time vs Number of Sessions in the log

As a comparison, we used a publicly available im-
plementation of the apriori algorithm (http://fuzzy.cs.uni-
magdeburg.de/ borgelt/) created by Christian Borgelt to gen-
erate association rules between the sessions. When a sup-
port of 10% was sought, no associations could be found. At

5



Days Sessions Accesses Clustering Time Total Exec Time
1 2913 53912 4 191.33
2 5956 113845 20 644.64
3 8777 162829 54 1038.38
4 11074 207223 166 1497.798
5 12586 234903 255 1912.67

Table 1: Time Measurements

lower values, a progressively larger number of rules were
generated with varying confidence (50% – 80%). However,
the largest itemset apriori could find, even with a support of
5% was of size 3. Note that this means that apriori could
only find associations between groups of at most 3 sessions.
In contrast, the clustering algorithm was able to find much
larger coherent groups containing hundreds of similar ses-
sions. We conjecture that this is because apriori cannot han-
dle graded notions of similarity which are needed to group
together similar (but not identical) sessions. The computa-
tion time needed by this implementation of apriori and our
clustering algorithm were generally quite fast. Given our
non-optimized implementation of RFCMdd, we were not
surprised that as the log files grew larger (4-5 days worth
of logs) apriori was faster. Moreoverver, the computation
of the dissimilarity matrix between sessions creates an extra
overhead for our approach. Note that the computation of the
dissimilarity has components, specifically the overlap com-
putation, that need to be done only once on a given site. Fur-
ther, it is easily parallelizable. Thus the overhead involved
in the distance matrix generation can be made acceptable,
especially given that this mining process is off-line.

4 Conclusion

In this paper, we have presented a new approach for
automatic discovery of user session profiles in web log
data. The sessions extracted from real server access logs
were clustered into typical user session profiles using a
new robust fuzzy algorithm. The resulting clusters are
evaluated subjectively and described by the significance
of the components of a session “profile” vector which
also summarizes the typical session represented by each
cluster. A comparison with association rule based approach
shows that the fuzzy clustering process creates better session
profiles since it can group together “similar” (but not
identical) sessions. In ongoing work, we are creating an
apache module which will use the results of such offline
analysis along with cookies to adapt a web site’s content to
the user accessing it. We are also creating a linear version of
our clustering algorithm.

Acknowledgments
This work was partially supported by cooperative NSF
awards (IIS 9801711 and IIS 9800899) to Joshi and Kr-
ishnapuram respectively, a grant from the Office of Naval
Research (N00014-96-1-0439 to R. Krishnapuram), and an
IBM faculty development award (to A. Joshi).

References
[1] Firefly, “http://www.firefly.com”

[2] A. Joshi, S. Weerawarana, and E. Houstis, “On disconnected
browsing of distributed information,” Proc. Seventh IEEE Intl.
Workshop on Research Issues in Data Engineering (RIDE), pp.
101-108, 1997.

[3] A. Joshi, C. Punyapu, P. Karnam, “Personalization and Asyn-
chronicity to Support Mobile Web Access”, Proc. Workshop on
Web Information and Data Management, ACM 7th Intl. Conf.
on Information and Knowledge Management, November 1998.

[4] L. Terveen, W. Hill, and B. Amento, “PHOKAS - Asystem for
sharing recommendations,” Comm. ACM, 40:3, 1997.

[5] R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell,
“WebWatcher: A learning apprentice for the world wide
web,” AAAI Spring Symposium on Information Gathering from
Heterogenous, Distributed Environments, March, 1995.

[6] C. Shahabi, A. M. Zarkesh, J. Abidi and V. Shah, “Knowledge
discovery from user’s web-page navigation,” Proc. Seventh
IEEE Intl. Workshop on Research Issues in Data Engineering
(RIDE), pp. 20-29, 1997.

[7] R. Cooley, B. Mobasher, and J. Srivastava, “Web mining:
Information and Pattern discovery on the World Wide Web,”
Proc. IEEE Intl. Conf. Tools with AI, Dec, 1997.

[8] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules,” Proc. of the 20th VLDB Conference, pp.
487-499, Santiago, Chile, 1994.

[9] U. Fayad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,
ed. Advances in Knowledge Discovery and Data Mining,
AAAI/MIT Press, 1996.

[10] J. C. Bezdek, Pattern Recognition with Fuzzy Objective
Function Algorithms, Plenum Press, New York, 1981.

[11] H. Frigui and R. Krishnapuram, “Clustering by competitive
agglomeration,” Pattern Recognition, vol. 30, No. 7, pp. 1109-
1119, 1997.

[12] K. S. Fu, Syntactic Methods in Pattern Recognition, Aca-
demic Press, New York, 1974.

[13] R. J. Hathaway, J. W. Davenport and J. C. Bezdek, “Relational
duals of the c-means algorithms,” Pattern Recognition, vol. 22,
pp. 205-212, 1989.

[14] R. J. Hathaway and J. C. Bezdek, “NERF c-Means: Non-
Euclidean relational fuzzy clustering,” Pattern Recognition,
vol. 27, No. 3, pp. 429-437, 1994.

[15] M. Perkowitz and O. Etzioni, “Adaptive Web sites: an AI
Challenge” Proc. Intl. Joint Conf. on AI, 1997.

6



[16] M. Perkowitz and O. Etzioni, “Adaptive Web sites: Automat-
ically Synthesizing Web Pages” Proc. AAAI 98, 1998.

[17] O.Zaiane and J. Han, “ WebML: Querying the World-Wide
Web for Resources and Knowledge” Proc. Workshop on Web
Information and Data Management, ACM 7th Intl. Conf. on
Information and Knowledge Management, November 1998.

[18] G. Arocena and A. Mendelzon, “WebOQL: Restructuring
Documents, Databases, and Webs”, Proc. IEEE Intl. Conf.
Data Engineering ’98, Orlando, February 1998

[19] S. Sen and R. N. Davé, “Clustering of Relational Data
Containing Noise and Outliers,” Proceedings of FUZZIEEE,
Anchorage, Alaska, May 1998, pp. 1411-1416.

[20] M.S. Chen, J.-S. Park and P. S. Yu, “Efficient Data Mining for
Path Traversal Patterns,” IEEE Trans. on Knowledge and Data
Engineering, Vol. 10, No. 2,pp. 209-221, April 1998.

[21] O.R. Zaiane, M. Xin, and J. Han, “Discovering Web Ac-
cess Patterns and Trends by Applying OLAP and Data Min-
ing Technology on Web Logs”, Proc. Advances in Digital Li-
braries Conf. (ADL’98), Santa Barbara, CA, April 1998, pp.
19-29.

[22] Mark Nottingham, “Follow: A session based Log analyzing
tool” , http://www.pobox.com/˜mnot/follow/ .

[23] J. Han, “Data Mining”, in J. Urban and P. Dasgupta (eds.),
Encyclopedia of Distributed Computing, Kluwer Academic
Publishers, 1999.

[24] O. Nasraoui, H. Frigui, A. Joshi, and R. Krishnapuram,
“Mining Web Access Logs Using Relational Competitive
Fuzzy Clustering”, in Proc. Eight International Fuzzy Systems
Association World Congress - IFSA 99, Taipei, August 99.

[25] Krishnapuram, R., Joshi, A. and Yi, L., A Fuzzy Relative of
the k-Medoids Algorithm with Application to Web Document
and Snippet Clustering, in Proc. IEEE Intl. Conf. Fuzzy
Systems - FUZZIEEE99, Korea, 1999.

[26] Zhang, T., Ramakrishnan, R. and Livny, M., BIRCH: A New
Data Clustering Algorithm and its Applications, Data Mining
and Knowledge Discovery Journal, 1:2, 1997.

[27] R. T. Ng and J. Han, Efficient and Effective Clustering Meth-
ods for Spatial Data Mining, Proc. 20th VLDB Conference, pp.
144-155, 1994.

[28] A. Joshi, and R. Krishnapuram, “Robust Fuzzy Clustering
Methods to Support Web Mining”, Proc. Workshop in Data
Mining and knowledge Discovery, SIGMOD, pp. 15-1 – 15-8,
1998.

[29] R. Krishnapuram and J. M. Keller, “A Possibilistic Approach
to Clustering”, IEEE Trans. Fuzzy Systems, 1:2, pp 98–110,
1993.

[30] R. Krishnapuram and J. M. Keller, “The Possibilistic c-Means
Algorithm: Insights and Recommendations”, IEEE Trans.
Fuzzy Systems, 4:3, pp 385-393, 1996.

[31] R. N. Davé and R. Krishnapuram, “Robust Clustering Meth-
ods: A Unified View”, IEEE Trans. Fuzzy Systems, 5:2, pp
270–293, 1997.

[32] J. Kim, R. Krishnapuram and R. N. Davé, “Application of
the Least Trimmed Squares Technique to Prototype-Based
Clustering”, Pattern Recognition Letters, 17, pp 633–641,
1996.

7


